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Abstract

EEG event-related potentials, and the P300 signal in
particular, are promising modalities for brain-computer in-
terfaces (BCI). But the nonstationarity of EEG signals and
their differences across individuals have made it difficult to
implement classifiers that can determine user intent with-
out having to be retrained or calibrated for each new user
and sometimes even each session. This is a major imped-
iment to the development of consumer BCI. Recently, the
EEG BCI literature has begun to apply convolutional neural
networks (CNNs) for classification, but experiments have
largely been limited to training and testing on single sub-
jects. In this paper, we report a study in which EEG data
were recorded from 66 subjects in a visual oddball task
in virtual reality. Using wide residual networks (WideRes-
Nets), we obtain state-of-the-art performance on a test set
composed of data from all 66 subjects together. Addition-
ally, a minimal preprocessing stream to convert EEG data
into square images for CNN input while adding regulariza-
tion is presented and shown to be viable. This study also
provides some guidance on network architecture parame-
ters based on experiments with different models. Our re-
sults show that it may possible with enough data to train
a classifier for EEG-based BCIs that can generalize across
individuals without the need for individual training or cali-
bration.

1. Introduction
A brain-computer interface (BCI) is a device that allows

a user to interact with a computer through neural activity

[20, 7]. BCIs were originally conceived as a way to al-
low paralyzed individuals to communicate [11] and move
around [1]. And while that is still a primary motivation be-
hind BCI research, the last decade has seen an increased
interest in the potential uses of BCIs—EEG-based BCIs,
in particular—for hands-free interaction with consumer de-
vices, industrial applications, and entertainment [37, 1, 2].
BCIs may even be a viable interaction method for virtual
reality and augmented reality applications [37, 22].

One of the most-commonly studied signals in EEG-
based BCIs is the P300 event-related potential (ERP) [29].
The P300 is so called because it is characterized by a pos-
itive peak approximately 300ms after the subject attends to
an “oddball” target stimulus among several similar but non-
target stimuli [11]. The stimuli can be visual, such as flash-
ing rows and columns of letters [11, 7, 38], objects, faces, or
scenery [32, 28], or geometric shapes [8]. But they can also
be auditory [5] or tactile [23]. The common denominator is
the “oddball” task design.

Despite recent progress in the BCI literature, there are
a few major obstacles preventing the widespread deploy-
ment and adoption of EEG-based BCIs. First, noninva-
sive methods such as EEG have a low signal-to-noise ratio
[29, 36]. Second, the EEG signals that are used to deter-
mine user intent in these applications—such as the P300—
are highly specific to each person and can even vary signif-
icantly within an individual over time [47, 35]. While the
first problem can be addressed with more or less success
through signal filtering [36, 3, 6], the second problem has
been harder to deal with. In practice, that difference in sig-
nal profiles across people and data sessions has meant that
most classifiers used to detect EEG event-related potentials



in real time are trained specifically for each user and often
even for a particular data session [29].

The solution to this problem is to find a way to train
EEG classifiers that can generalize across people and time.
Convolutional neural networks have recently gained atten-
tion in the EEG literature [7, 32, 28, 38, 26] because of
their feature-extraction properties [6] and success in image
classification [34]. We extend this line of work by apply-
ing wide residual networks (WideResNets) [46] with spa-
tial dropout [40, 43] and cutout [10] to 6-electrode EEG
data obtained from 66 subjects performing a visual oddball
task in virtual reality. This paper presents a minimal pre-
processing stream to convert EEG epochs into images. We
then examine the performance of ResNets [15, 16] of differ-
ent widths and depths on ERP detection. Furthermore, we
study the effect of using cutout for regularization of EEG
data. Our experiments show that convolutional networks
can classify target vs nontarget stimuli accurately on a test
set taken from many subjects, and that it may be possible
with enough data to train a classifier that can detect ERPs in
the general population without any need to calibrate or train
specifically for an individual user at runtime.

2. Motivation and Related Work
Convolutional neural networks (CNNs) are excellent at

classifying images of objects belonging to different classes
[25, 39, 42, 41]. In a convolutional network, lower-level
representations of the image are convolved with a learned
kernel to extract higher-level features from a larger region
of the image [48, 34, 25]. Multiple convolutional layers
can be stacked to extract progressively higher-level feature
maps [48, 34]. CNNs have gained attention in recent years
as a possible solution for EEG signal classification because
of their power to extract nonlinear and holistic features from
their input data.

The first study to use convolutional neural networks to
classify P300s was done by Cecotti and Gräser [7]. The
input to their network for each epoch of data to be clas-
sified is a tensor of dimensions Nelectrodes × Nsamples.
Their network was composed of the input layer just de-
scribed, feeding into a first hidden spatial convolution layer
of NFM feature maps with a convolution kernel of size
(Nelectrodes × 1), then a second convolutional layer pro-
ducing NFM × 5 feature maps, which performs time con-
volution and downsampling with a kernel of length 13 =
Nsamples

3 , followed by a fully connected layer and an ouput
layer of two neurons representing the probabilities of the
two classes (target and nontarget).

Similar studies followed. The authors of [6] used a sim-
plified version of the Cecotti-Gräser network to explore the
spatial filters learned by the first convolutional layer and
compared the results to those obtained by using xDAWN
[36] and CSP spatial filters [3]. Manor and Geva added a

Figure 1: Visual stimuli presented during the EEG record-
ing task. Subjects were instructed to make a mental note
when the object indicated by a white circle flashed and to
ignore the flashing of all other objects.

max-pooling layer [27] after the intial spatial convolution
and replaced the single temporal convolution and down-
sampling layer of the Cecotti-Gräser network with tempo-
ral convolution → max pooling → temporal convolution.
They also incorporated ReLU [33] and dropout [40] into
their network. The network in [28] was also based on the
Cecotti-Gräser architecture, but it added batch normaliza-
tion [21] after the input and temporal convolution layers. As
in Manor and Geva [32], Liu et al. used ReLU activations
in their convolutional layers. Other studies used networks
with similar network architectures [38, 26].

A few P300 studies using convolutional neural networks
have experimented with input tensors different from the
ones in Cecotti and Gräser [5, 31, 23]. The paper of Ko-
dama and Makino [23] is the closest to our approach to net-
work input. The authors of that study created a 20 × 20
square matrix from the time series data for each electrode
and then then joined the feature matrices from each of 8
electrodes, plus one feature matrix created from the average
of all 8 electrodes, into a single 2D input tensor for each
epoch of EEG data [23]. Our method also represents an en-
tire EEG data epoch as a single 2D tensor, but we arrange
our data in a way that we believe better preserves its tempo-
ral information in the deeper layers of the network and adds
regularization

3. Materials and Methods

3.1. EEG Dataset

Sixty-six subjects participated in a visual oddball task in
virtual reality. Each subject wore a Neurable DK1 headset
(Neurable, Inc., Boston, Mass.), which comprises an HTC
Vive (HTC, New Taipei City, Taiwan) virtual reality headset



equipped with DSI dry EEG electrodes (Wearable Sensing,
San Diego, Cal.) at the P4, Pz, P3, PO8, PO7, and Oz loca-
tions. EEG was sampled at 300Hz. The experiment was
programmed in the Unity game engine (Unity Technolo-
gies, San Francisco, Cal.) using the Neurable SDK, which
allows synchronization of stimuli presented in virtual reality
using Unity with the EEG data from the electrodes attached
to the headset.

A screenshot from the experiment is presented in Fig-
ure 1. The subjects were placed in a room in virtual reality
while seated on chair to maintain an approximately fixed
distance to a plane presenting five toy objects: a ring stack,
a train, a ball, a cube, and an airplane. Each recording ses-
sion consisted of 10 trials. In each trial, one of the five ob-
jects was randomly selected as the target by having a solid
white circle appear around the item. This solid circle stayed
around the item for the duration of the trial. Subjects were
instructed to make a mental note when the target object for
the current trial flashed and to ignore the flashing of the re-
maining four objects.

Each trial comprised 10 sequences. A sequence con-
sisted of each of the five objects flashing bright green once
in a random order. That is, in a given trial the first sequence
could consist of the flash order airplane, ball, cube, ring
stack, train, while the second sequence might be ball, ring
stack, train, cube, airplane, and the third might be train, air-
plane, cube, ring stack, ball, and so on for the given number
of sequences per trial. Each flashing object was highlighted
in bright green for 60ms. Within a trial, the interstimulus
time in between the end of one flash and the beginning of
the next one was 100ms. There was a pause of approxi-
mately 3s in between trials. During this pause the circle
around the target object disappeared and the subject was
shown an animation of the object floating towards the sub-
ject. The object would then return to its original position
along the other four objects and a new circle would appear
around another object, indicating it as the target for the next
trial. For each stimulus, an EEG data epoch was extracted
consisting of the 800ms of recorded data for all 6 electrodes
beginning with the stimulus flash onset.

Thus, there were 10 × 10 × 5 = 500 labeled EEG
epochs for each session: 100 target epochs and 400 non-
target epochs. Additionally, 3 of the sessions (1 session
each from subjects 1, 4, and 25) were mistakenly recorded
at 6 sequences per trial rather than 10 sequences per trial.
Seeing no downside other than the loss of the extra data
which could have been acquired in those sessions, we opted
to keep those 3 sessions in the dataset. There were a total of
233 data sessions recorded (across all subjects). In total the
dataset consists of 115900 EEG epochs. To create a training
and test set, the target and nontarget epochs in each session
were separated. The targets and nontargets were then sep-
arately shuffled and 80% of each designated for training,

Figure 2: Visualization of a random subset of 50 target
epochs (red crosses) and 50 nontarget epochs (blue stars)
using t-SNE [30].

with the other 20% set apart for testing. The training sets
from all sessions were then combined and shuffled to form
a single large cross-subject and cross-session train set, and
the same was done to create a combined test set. The final
distribution of the data is shown in Table 1. As seen in Fig-
ure 2, the classes are not separable by a simple surface even
in the high-dimensional space of the original features.

Target Nontarget
Train 18480 73920
Test 4620 18480

Table 1: Description of dataset. EEG epochs from each
session were split 80%/20% between training and test sets
and combined into a single cross-subject and cross-session
training set and test set.

3.2. Data Preprocessing

This section describes our method for turning each raw
EEG data epoch into a 2D image-like input tensor. For con-
venience, we abbreviate Nelectrodes as Ne and Nsamples as
Ns. Each raw epoch data matrix E has a shape Ne × Ns.
Ns in the case of the data above is 240, since the epochs
are each 800ms and the data is sampled at Fs = 300Hz. A
characteristic P300 signal is expected around 300ms after
stimulus onset in the target epochs but not in the nontar-
get epochs [11, 7]. Additionally, there might be an atten-
tional [12] or visual component of the event-related poten-
tial around 100ms after onset that correlates with the tar-
get/nontarget label [4, 17]. Figure 3 shows a P300 epoch
and an NP300 epoch in their time series and image forms.

We apply the minimal preprocessing described below to
each epoch to turn it from raw temporal data into an input
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Figure 3: Examples of EEG epoch data as electrode time-
series data and as images. (a): A single target epoch after
bandpass filtering and decimation. (b): A single nontar-
get epoch after bandpass filtering and decimation. Note the
possible P300 peak around 380ms in the target epoch and a
negative peak around 120ms (a possible N100 related to at-
tending to a nontarget stimulus [12]) in the nontarget epoch.
(c), (d): The same epochs as images after preprocessing.

image for the CNN. Minimal data processing is emphasized
for two reasons. First, in online applications the data pre-
processing must not be too computationally expensive. Sec-
ond, we are using CNNs precisely for their power as feature
extractors.

Each epoch E is bandpass filtered to 2–9Hz. The signal
data is then decimated by a factor of 2. We then find
an amount of padding P for the decimated matrix D of
dimensions Ne ×Nd such that:

For Ne, Nd, P
′ ∈ Z+,

M ≡
√
Ne(Nd + 2P ′)

P = argmin
P ′
{M |M ∈ Z+} (1)

Each electrode time series is padded with P zeros at ei-
ther end. Let Di,t indicate the tth time sample taken from
electrode i. There are Nd = 120 samples per electrode af-
ter decimation and our Ne = 6. Therefore, we pad each Di

with P = 15 zeros at the beginning and at the end, ending
up with a padded D′ of dimensions M = 6 × 150 = 900,
with Np = 150 samples for each electrode after padding.
D′ is then reshaped into a 30 × 30 square matrix DSq ac-

cording to eq. (2). We choose this method rather than the
block layout of [23] because in Kodama’s method corre-
sponding time samples taken from highly correlated elec-
trodes can be in distant parts of the image, limiting the ef-
fectiveness of regularization methods like cutout.

DSq =


D′1,1 D′2,1 . . . D′

Ne,
√

M
Ne

D′
1,
√

M
Ne

+1
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2,
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M
Ne

+1
. . . D′

Ne,
2
√

M
Ne

...
. . .

D′
1,

(
√

M−1)
√

M
Ne

+1
. . . D′Ne,Np


(2)

Then, the entries di,j of DSq are discretized into 256
bins and normalized to be in [0, 1]. We preprocess the data
this way for two reasons. First, CNN architectures have
been designed for and tested most extensively on square,
discrete image data of this form. Therefore, heuristics
and parameters developed for classifying image data will
likely transfer most readily to data in this form. Second,
by discretizing the data into 256 bins we reduce the en-
tropy of our input layer Hin. Therefore, discretizing the in-
put data shrinks the search space for future weight vectors.
In particular, let Hc1 be the entropy of the output tensor
from the convolutional layer connected to the input layer.
Hc1 = F(Hin, pc1), where F is a increasing function in
Hin and pc1, and pc1 is a constant that depends on the in-
put dimensions and the convolution kernel size, stride, and
number of output feature maps. And likewise, for a second
convolution following the first Hc2 = F(F(Hin, pc1), pc2)
is also increasing in Hin, and so on. Intuitively, the space of
feature maps that a convolutional layer can produce given
all possible discretized inputs is smaller than the space of
all feature maps it could produce given all possible nondis-
cretized inputs from the same distribution. Therefore, this
discretization acts as a regularizer.

3.3. Neural Network Architectures

A ResNet [15, 16] is a CNN that uses residual units that
add the output of convolutional layers and activations to the
input to the residual unit by using skip connections. Several
variations of residual convolutional networks (ResNets), in-
troduced in [15] and refined in [16], are currently the state
of the art [18, 45, 14, 13, 10] in image classification on
the CIFAR [24] and ImageNet [9] datasets. Following
[16, 46, 10], our networks use preactivation. That is, batch
normalization and dropout precede the convolutional layers
in the residual blocks. We use the term residual block to
refer to the structure shown in Figure 4b, which in turn is
composed of one or more stacked residual units. A residual
unit takes the form:

Y = C ◦ R ◦ B ◦ · · · ◦ C ◦ R ◦ B ◦ C(X) + P(X) (3)



(a)

(b)

Figure 4: The networks studied in this paper follow the WideResNet architecture templates from [46]. For convolutional
layers, FM , [x, y] indicates convolutions in that layer or block output FM feature maps and use a kernel of size [x, y]. (a):
The generic WideResNet architecture. The number of output feature maps for each residual block is given in parentheses.
The global average pooling layer is densely connected to a two-way softmax at the top. (b): The architecture of the bth

residual block of the network with width parameter k and depth parameter n. All convolutions use a stride of [1, 1], except
the first convolutions of residual blocks 2 and 3, which use a stride of [2, 2] for downsampling. A curved arrow indicates a
skip connection.

Arch. Params Cutout Acc. Bal.
Acc.

Precision Recall False
Alarm

False
Omis-
sion

F1

WRN–
16–1

175K Yes 73.87% 64.03% 39.83% 58.82% 22.35% 11.77% 0.4750

No 72.92% 62.66% 37.78% 55.82% 22.84% 12.45% 0.4506
WRN–
16–2

700K Yes 77.06% 64.96% 43.35% 47.66% 15.62% 13.43% 0.4540

No 77.75% 65.10% 44.20% 43.75% 13.77% 13.99% 0.4397
WRN–
16–4

2.75M Yes 79.34% 67.15% 48.15% 43.15% 11.61% 13.85% 0.4551

No 78.58% 65.88% 45.90% 41.93% 12.30% 14.15% 0.4383
WRN–
16–8

11M Yes 80.51% 68.82% 51.63% 41.23% 9.67% 14.00% 0.4585

No 80.06% 68.03% 50.23% 40.60% 10.06% 14.18% 0.4490

Table 2: Architectures with depth fixed at d = 16 weight layers, with and without cutout. (Mean of 5 bootstrapped runs on
random 80% subsets of the test data.) The best results for each metric are shown in bold.

In eq. (3), B means batch normalization, R represents
ReLU activation, and C means convolution. X and Y are
the input and output tensors, respectively. P is a projection

such that the right- and left-hand sides of the addition have
the same dimensions. P can be the identity or a [1, 1] con-
volution with stride [2, 2] for downsampling—the two op-



Arch. Params Cutout Acc. Bal.
Acc.

Precision Recall False
Alarm

False
Omis-
sion

F1

CNN–
10–8

4.6M Yes 79.25% 66.86% 47.51% 43.09% 11.79% 13.79% 0.4519

WRN–
10–8

4.8M Yes 79.56% 66.97% 48.94% 37.12% 9.77% 14.91% 0.4222

WRN–
16–8

11M Yes 80.51% 68.82% 51.63% 41.23% 9.67% 14.00% 0.4585

WRN–
22–8

17M Yes 79.47% 67.46% 48.74% 43.53% 11.50% 13.82% 0.4599

WRN–
28–8

23M Yes 74.52% 64.09% 40.19% 56.73% 21.04% 12.02% 0.4705

WRN–
40–8

36M Yes 78.95% 66.51% 47.11% 42.22% 11.86% 14.09% 0.4453

Table 3: Architectures with width parameter fixed at k = 8. (Mean of 5 bootstrapped runs on random 80% subsets of the test
data.) The best results for each metric are shown in bold.

Model Acc. Bal.
Acc.

Precision Recall False
Alarm

False
Omis-
sion

F1 Trained
on

Tested
on

WRN–
16–8

80.51% 68.82% 51.63% 41.23% 9.67% 14.00% 0.4585 66 66

WRN–
16–1

73.87% 64.03% 39.83% 58.82% 22.35% 11.77% 0.4750 66 66

Cecotti
& Gräser

78.19% 66.87% 40.9% 69.2% 20.02% 7.14% 0.5141 1 1

Manor &
Geva
Speller 79.1% – – 70% 19.11% – – 1 1
Objects 75.0% 70.0% – 64.4% 23.7% – – 1 1
Liu et al. 79.02% 67.56% 42.14% 69.47% 19.07% 7.02% 0.5246 1 1
Kodama
&
Makino
Corrected
for 5 : 1
class
priors

27.52% 57.35% 18.39% 97.40%* 86.46%* 3.70% 0.3094 9 1

Table 4: Model comparison. We use the best reported results on target/nontarget classification tasks run on fewer than 3
subjects. For tasks with more than 3 subjects where the authors reported mean metrics, we present those. Where a metric
was not reported in a paper but it could be calculated from the reported results, we have calculated it. The best results for
each metric are shown in bold.

tions we use, following the findings in [46]. But it can also
be some other mapping of the input X into the same space
as the left-hand side of the sum. We use residual units of
length 2 for all our networks, again following the results of
[46] and [10].

Different WideResNet [46] architectures were tested on

our data, with and without cutout [10]. The name of each
network tested describes its architecture. So, for example,
WRN–16–2 indicates a network with a depth of 16 weight
layers and a width parameter k = 2. A width parameter
k = 1 corresponds to the architecture template of [16]. The
depth d of the network is an integer d satisfying d = 6n+4,
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Figure 5: (a)–(d): Cutout of 15× 15 randomly applied four
times to the same epoch.

for n ∈ Z+, n > 0. All networks use in this paper follow
the architecture pattern shown in Figure 4.

Training parameters generally followed those for the CI-
FAR datasets in [46] and [10].The loss function was cross-
entropy weighted to account for the 4 : 1 class inbalance
between target and nontarget stimuli. Dropout of 0.3 was
used between convolutional layers in the residual blocks.
The models trained with cutout use a 15×15 cutout square.
See Figure 5 for an example of how cutout was applied to
our data. No data augmentation was used.

4. Results
All models were programmed in Keras with a Tensor-

Flow back end and trained on an NVIDIA Tesla V100 GPU.
In Table 2 we show the results of runs with networks of
depth d = 16 and width parameter k = 1, 2, 4, 8, with and
without cutout. The effect of depth on performance was
tested by fixing the width at k = 8 and changing the depth
to 10, 22, 28, and 40 weight layers. For the experiments
with varying depth we used cutout on all models. Those
results are shown in Table 3.

We report the following metrics, with TP , TN , FP , and
FN standing for true positives, true negatives, false posi-
tives, and false negatives, respectively:

Acc. =
TP + TN

TP + FP + TN + FN
(4)

Bal Acc. =
1

2

TP

TP + FP
+

1

2

TN

TN + FN
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

False Alarm =
FP

TN + FP
(8)

False Omission =
FN

TN + FN
(9)

F1 = (
Precision−1 + Recall−1

2
)−1 (10)

It is important to break down performance in this way
because of the class imbalance inherent in oddball tasks.
For example, for tasks with a 5 : 1 class imbalance, which
is common in the literature, a classifier could obtain a raw
accuracy value of 83.33% simply by predicting nontarget
for every epoch given to it. Table 4 compares our best
model and our smallest model to other convolutional neu-
ral network models from the literature. Manor and Geva
reported performance metrics on two oddball tasks: a 6× 6
speller and a task where the subjects where presented pho-
tographs belonging to different categories. We show their
performance on each of those tasks.

5. Discussion
Our top model (WRN–16–8) outperforms the top CNN

models in the P300 BCI literature for which metrics bro-
ken down by target/nontarget class are available or could be
calculated on accuracy, precision, and false-alarm rate. The
same model also comes in a close second in terms of bal-
anced accuracy. And, as shown in Table 4, even our smallest
model (WRN–16–1)—which has only 175K parameters—
performs competitively with the current state-of-the-art re-
sults for CNN EEG classifiers. But whereas—with the ex-
ception of Kodama and Makino—the results in the literature
have been obtained by training a model or an ensemble of
models on data from a single human subject and testing on
that same single subject, we demonstrate that is possible to
train CNN models that can learn generalizable features from
the EEG data of many subjects and still classify accurately
between target and nontarget stimuli.

On our EEG data, added regularization from cutout gen-
erally improves results, as shown in Table 2. The only ex-
ception out of the networks tested was WRN–16–2, and
even there the gain in recall and accuracy was obtained at
the expense of precision. The model of [23] has the high-
est recall and, consequently, also the lowest false omission
rate by far. But that is a result of the model predictions
being biased towards the target class, which is undesirable
in a practical BCI. For practical consumer BCIs precision
is more important than recall, since it is always possible to



flash another sequence to obtain confirmation of the user’s
intent. That is no doubt inconvenient—but less so than hav-
ing the device take unintended actions.

As expected given the empirical findings on ImageNet
and CIFAR in [46] and [44], depth is not the primary driver
of accuracy. While the initial proposition for why ResNets
work was that the skip connections allow more gradient to
flow back through the network during the backpropagation
step of training, thus allowing CNNs to grow deeper and
deeper while still being able to converge [15, 16], empirical
work in [46] showed that shallower but wider networks—
i.e., shallower networks with more feature maps in the in-
termediate layers—could outperform deeper networks with
the same computational budget. One interpretation of why
this happens is the fact that a ResNets with s skip con-
nections can be conceptualized as ensemble of 2s networks
[44, 19]. Empirically, most of the gradient of deep ResNets
tends to flow through shorter rather than longer paths [44].
This is one possible explanation for why the deeper net-
works in Table 3 do not outperform shallower networks.
Depth helps up to a point, because depth is created by
adding residual units and, therefore, expanding the number
of paths through the network. After a certain point, how-
ever, additional longer paths may not account for much of
the backpropagation gradient [44], but the added parame-
ters may result in overfitting. This observation is consistent
with [46] and our own observations on EEG data.

In terms of EEG data, our models are essentially ensem-
bles of smaller networks looking at the EEG data at differ-
ent levels of spatiotemporal resolution. Because successive
convolutional layers have larger and larger receptive fields
for each of their neurons, adding skip connections allows
shorter paths to examine the EEG data at a finer resolu-
tion, while longer paths are looking at the EEG epoch at
a more holistic level. Therefore, a residual network should
be expected to outperform a CNN with the same architec-
ture (minus the skip connections). To test this hypothesis
we compared a ResNet and a CNN of the same depth in Ta-
ble 3, and indeed we find that this is true for our data. Even
the shallowest ResNet that can be built with the architecture
in Figure 4 outperforms an equivalent network with the skip
connections taken out.

6. Conclusion
We show that ResNet models can accurately classify

EEG epochs from many subjects into target and nontarget
classes based on user intent. The models demonstrated in
this paper perform better than the best CNN models in the
EEG literature in terms of accuracy, precision, and false-
alarm rate—even though those models are trained and tested
on an individual subject and the models presented here train
and test on 66 different subjects together. Additionally, this
study shows the viability of a minimal preprocessing stream

to transform EEG data into an input compatible with CNN
models traditionally used for image classification, while at
the same time adding regularization. Cutout is shown to
be effective for regularizing EEG data transformed into im-
ages. Finally, our work offers a theoretical explanation for
why ResNets can perform so well on EEG epochs. The
main takeaway from this study is that ResNets trained on
a large and representative cross-section of the population
may be viable models for consumer brain-computer inter-
faces that do not require a calibration or training phase for
each new user.
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