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ABSTRACT. Engineering sciences and technology is experiencing the data revolution. In the past
models were more abundant than data, too expensive to be collected and analyzed at that time.
However, nowadays, the situation is radically different, data is much more abundant (and ac-
curate sometimes) than existing models, and a new paradigm is emerging in engineering sci-
ences and technology. This paper retraces some incipient applications based on data within the
framework of computational mechanics. Three main topics are addressed in the present work:
(i) construction of solution manifolds and its use for interpolating new solutions on the man-
ifold; (ii) constructing parametric solutions on the just extracted manifold; and (iii) defining
behavior manifolds to perform data-driven simulation while avoiding the use of usual constitu-
tive equations.

KEYWORDS: Model Order Reduction, Nonlinear Dimensionality Reduction, Vademecum, Ma-
chine Learning, Data-Driven
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1. Introduction

1.1. The big picture

Engineering sciences and technology, as any other branch of sciences and techno-

logy, is experiencing the data revolution. In the past models were more abundant than

data, too expensive to be collected and analyzed at that time. However, nowadays, the

situation is radically different, data is much more abundant (and accurate sometimes)

than existing models, and a new paradigm is emerging in engineering sciences and

technology.

Advanced model order reduction techniques allowed moving from data to infor-

mation, because in many systems and despite the big amount of data the hidden in-

formation was quite reduced, and it was successfully extracted by applying many,

nowadays state of the art model reduction techniques (POD, PGD or RB among many

other variants).

Prior to solve a given problem the user must introduce the different involved pa-

rameters (e.g. material parameters and applied loads) as well as define the domain in

which the problem is posed. However the just described procedure has a main han-

dicap : it rarely allows proceeding in real-time. In those circumstances the real-time

performance required in some applications are compromised. One could think that all

these issues could be circumvented with the mere use of more powerful computers.

Even if it could be a valuable route, it compromises the accessibility to the appropriate

simulation resources of small and medium industries. In order to democratize simula-

tion, new solutions are required. A possible alternative consists of calculating offline

(using all the needed computational resources and computing time) a parametric solu-

tion containing the solution of all possible scenario, that is then particularized online

using light computational facilities, as deployed devices, tablets or even smartphones,

for performing efficient simulation, optimization, inverse analysis, uncertainty propa-

gation and simulation-based control, all them under real-time constraints.

Even if someone could think for a while that for constructing the parametric solu-

tions just announced it is enough to solve the model at hand for any possible choice of

the parameters that it involves, it is clear that such a procedure rapidly fails because it

involves a combinatorial explosion (e.g. ten parameters each one taking ten possible

values will involve ten to the power of ten possibilities, and 10 parameters taking 10

possible values remains too simplistic in applications of practical interest).

Recently model order reduction opened new possibilities. First, Proper Orthogonal

Decompositions – POD – allows extracting the most significant characteristics of the

solution, that can be then applied for solving models slightly different to the ones that

served to defined the reduced approximation basis, by simply projecting the searched

solution onto the extracted reduced approximation basis [CHI16].

Another family of model reduction techniques lies in the used of Reduced Bases

constructed by combining a greedy algorithm and "a priori" error indicators. It needs
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for some amount off-line work but then the reduced basis can be used on-line for

solving different models with a perfect control of the solution accuracy because the

availability of error bounds. When the error is inadmissible, the reduced basis can be

enriched by invoking again the same greedy algorithm [CHI16].

Finally, Proper Generalized Decomposition methods are based on the use of se-

parated representations [LAD85, LAD96, AMM06, AMM10]. Such separated repre-

sentations are considered when solving at-hand partial differential equations by em-

ploying procedures based on the separation of variables, as described in the next sec-

tion.

Advanced clustering techniques not only helps engineers and analysts, they be-

come crucial in many areas where models, approximation bases, parameters, ... are

adapted depending on the local (in space and time senses) state of the system. They

makes possible define hierarchical and goal-oriented modeling.

Machine and manifold learning is also helping for extracting the manifold in which

the solutions of complex and coupled engineering problems are living. Thus, uncor-

related parameters can be efficiently extracted from the collected data coming from

numerical simulations, experiments or even from the data collected from adequate

measurement devices. As soon as uncorrelated parameters are identified (constituting

the information level), the solution of the problem can be predicted in new points

of the parametric space, from adequate interpolations or even more, parametric solu-

tions can be obtained within an adequate framework able to circumvent the curse of

dimensionality (combinatorial explosion) for any value of the uncorrelated model pa-

rameters. Thus, the subtle circle is closed by linking data to information, information

to knowledge and finally knowledge to real time decision-making, opening unimagi-

nable possibilities within the so-called DDDAS (Dynamic Data Driven Application

Systems) that allows even model-free simulations.

All the techniques just referred will be revisited in the present chapter.

1.2. The PGD at glance

Most of the existing model reduction techniques proceed by extracting a suitable

reduced basis and then projecting on it the problem solution. Thus, the reduced basis

construction precedes its use in the solution procedure, and one must be careful on the

suitability of a particular reduced basis when employed for representing the solution of

a particular problem. This issue disappears if the approximation basis is constructed at

the same time that the problem is solved. Thus, each problem has its associated basis

in which its solution is expressed. One could consider few terms in its approximation,

leading to a reduced representation, or all the terms needed for approximating the

solution up to a certain accuracy level. The Proper Generalized Decomposition (PGD)

proceeds in this manner.
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When calculating the transient solution of a generic problem u(x, t) we usually

consider a given basis of space functions Ni(x), i = 1, · · · ,N , the so-called shape

functions within the finite element framework, and approximate the problem solution

as

u(x, t) ≈
N∑
i=1

ai(t)Ni(x), (1)

that implies a space-time separated representation where the time-dependent coeffi-

cients ai(t) are unknown at each time (when proceeding incrementally) and the space

functions Ni(x) are given "a priori", e.g. polynomial basis. POD and Reduced Bases

methodologies consider a reduced basis φi(x) for approximating the solution instead

of using the generic functions Ni(x). The former are expected to be more suitable for

approximating the problem at-hand. Thus, it results

u(x, t) ≈
R∑
i=1

bi(t)φi(x), (2)

where in general R � N . Again (2) represents a space-time separated representa-

tion where the time-dependent coefficient must be calculated at each time during the

incremental solution procedure.

Inspired from these results one could consider the general space-time separated

representation

u(x, t) ≈
N∑
i=1

Xi(x)Ti(t), (3)

where now neither the time-dependent functions Ti(t) nor the space functions Xi(x)
are "a priori" known. Both will be computed on-the-flight when solving the problem.

As soon as one postulate that the solution of a transient problem can be expressed

in the separated form (3) whose approximation functions Xi(x) and Ti(t) will be

determined during the problem solution, one could make a step forward and assume

that the solution of a multidimensional problem u(x1, · · · , xd) could be found in the

separated form

u(x1, x2, · · · , xd) ≈
N∑
i=1

X1
i (x1)X

2
i (x1) · · ·Xd

i (xd), (4)

and even more, expressing the 3D solution u(x, y, z) as a finite sum decomposition

involving lower dimensional functions

u(x, y, z) ≈
N∑
i=1

Xi(x)Yi(y)Zi(z), (5)

or

u(x, y, z) ≈
N∑
i=1

Xi(x, y)Zi(z), (6)
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and the solution of a parametric problem u(x, t, p1, · · · , p℘) as

u(x, t, p1, · · · , p℘) ≈
N∑
i=1

Xi(x)Ti(t)

℘∏
k=1

P k
i (pk). (7)

The performances of all these separated representations are quite impressive in

many cases.

For a review on such techniques and their applications in engineering sciences

the interested reader can refer to [CHI10, CHI11, CHI13a, CHI13b] and the nu-

merous references therein concerning the space-time / space-frequency decomposi-

tion [BOU97, LAD99, AMM07, AMM11, BOU13, RIO13, BAR14], space separa-

tion [BOG12, VID12, VID13, BOG14, BOR15] and parametric solutions [CHI13b,

HEY13, AMM14, NER15], allowing real-time simulations [CHI13b, GON14, GON15],

optimization [GHN11, CHI13b, CHI14, BOR16, AGU17], simulation-based control

[GHN12, GON12, CHI13b, AGU15], uncertainty propagation [NOU08, NOU09a,

NOU09b, NOU10] or multi-scale upscaling [LAM10, NER10, CRE13].

In all the applications referenced above the choice of parameters was a simple

matter : material or process parameters, boundary conditions, etc ... However, in other

applications the extraction of uncorrelated model parameters is not an easy task, as it

is for example the case when addressing shape parametrization or the description of

microstructures. These issues will be addressed in what follows.

2. Constructing slow manifolds

It is well known that microstructures or shapes do not allow simple reduced des-

criptions. The main question is not if microstructures or shapes define or not slow

manifolds, the question is if they can or not be parametrized, i.e. represented, from

slow manifolds. The same issue applies in visualization of high-dimensional data.

2.1. From Principal Component Analysis – PCA – to Kernel Principal Component
Analysis – kPCA

Let us consider D observed variables defining the vector X ∈ R
D. These are com-

monly referred to in the MOR literature as snapshots. We assume that these variables

are therefore not uncorrelated and, notably, that there exists a linear transformation W
defining the vector Y ∈ R

d, where d < D represents the unknown so-called latent
variables, according to

X = WY. (8)

The transformation W, D × d, is assumed to verify the orthogonality condition

WTW = Id, where Id represents the d×d-identity matrix (WWT is not necessarily

ID). The existence of such a transformation is precisely at the origin of PCA methods.
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We assume the existence of M different snapshots X1, . . . ,XM , that can be stored

in the columns of the D × M matrix X. The associated d × M reduced matrix Y

contains the associated vectors Yi, i = 1, . . . ,M .

PCA is able to calculate both d —the necessary number of members in the basis

of the reduced-order subspace— and the transformation matrix W. PCA proceeds by

guaranteeing maximal preserved variance and decorrelation in the latent variable set.

From a statistical point of view, therefore, it can be assumed that the latent variables

are uncorrelated (no linear dependencies among them) or mutually orthogonal, thus

constituting a basis. In practice, this means that the covariance matrix of Y, defined as

Cyy = E{YYT }, (9)

is diagonal. Thus, we consider

Cxx = E{XXT } = E{WYY
TWT } = WE{YYT }WT = WCyyW

T , (10)

that by pre-multiplying and post-multiplying by WT and W respectively, and taking

into account that WTW = I, leads to

Cyy = WTCxxW. (11)

The covariance matrix Cxx can then be factorized by applying the singular value

decomposition,

Cxx = VΛVT , (12)

with V containing the orthonormal eigenvectors and Λ the diagonal matrix containing

the eigenvalues (non-negative real numbers), assumed in descending order.

Substituting the factorized expression of the covariance matrix (12) into Eq. (11)

it results

Cyy = WTVΛVTW. (13)

This equality holds only when the d columns of W are taken collinear with d
columns of V.

From a geometrical point of view, the columns of V indicate the directions in R
D

that span the subspace of the latent variables. We illustrate this interpretation in Fig.

1 where at left we can appreciate points that apparently belongs to R
2, however, it is

easy to see that all this point belongs to a slow one-dimensional manifold. PCA find

an alternative coordinate system given by V (axes in red) in which all these points are

described from a single coordinate.

Nonlinear methods are often more powerful than linear ones, because the connec-

tion between the latent variables and the observed ones may be much richer than a

simple matrix multiplication. This situation is sketched in Fig. 2 where it can be noti-

ced that no-rotation allows to extract the one-dimensional slow manifold. Thus, PCA

indicates that the different points belongs to a two-dimensional space, with the risk of
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Figure 1. Geometrical interpretation of PCA

Figure 2. PCA limits in presence of strongly-nonlinear manifolds

concluding that the closest point (using the 2D euclidean distance) to the red point is

in fact one that is very far from it when using the more appropriate geodesic distance

on the one-dimensional slow manifold. Thus, the extraction of the slow manifold is

compulsory and PCA is unable to accomplish the job.

These limitations justify the use of nonlinear dimensionality reduction techniques,

as the local-PCA (lPCA), the kernel-PCA (kPCA) or the Locally Linear Embedding

(LLE).

Local PCA applies standard PCA locally, that is, at each data-point and its closest

neighbors. It is sketched in Fig. 3. The main issue related to its practical implementa-

tion is the alignment of the local bases unfolding the slow manifold, as discussed in

many papers, e.g. [ZHA04].

7



Figure 3. Scketch of local-PCA

2.2. Kernel Principal Component Analysis (kPCA)

PCA works with the sample covariance matrix, XXT . On the contrary, kPCA

works with the matrix of pairwise scalar products that defines the Gram matrix S =
X

T
X as it is also the case of Multidimensional Scaling (MDS) [LEE07]. In its clas-

sical version, MDS preserves pairwise scalar products instead of pairwise distances

(both are closely related). It proceeds from

S = X
T
X = Y

TWTWY = Y
T
Y, (14)

whose eigenvalue decomposition results

S = UΛUT =
(
UΛ1/2

)(
Λ1/2UT

)
=
(
Λ1/2UT

)T (
Λ1/2UT

)
, (15)

from which it results

Y = Id×MΛ1/2UT . (16)

The idea behind kernel-PCA methods is simple : data not linearly separable in D
dimensions, could be linearly separated if previously projected to a space in Q > D
dimensions. Thus, surprisingly, kPCA begins by projecting the data to an even higher

dimensional space. One the biggest advantages of this technique is that there is no

need to explicitly determine the analytical expression of the mapping.

The symmetric matrix related to the mapped snapshots ZT
Z has to be decomposed

in eigenvalues and eigenvectors, after performing to the vectors involved in Z the

double centering [LEE07].
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Now, the eigenvalue-eigenvector decomposition can be performed according to

Z
T
Z = UΛUT , (17)

from which it results

Y = Id×MΛ1/2UT . (18)

It is worth noting that the previous procedure only needs scalar products in the

intermediate space RQ. The Mercer’s theorem allows computing such scalar products

in the original space R
D, by using the so-called kernel-trick. There are many possible

choices [LEE07] and then the model calibration becomes its principal advantage and

at the same time its main drawback.

2.3. Locally Linear Embedding – LLE

First we assume the existence of M multi-dimensional data Xm, m = 1, . . . ,M ,

defined in a space of dimension D, i.e. Xm ∈ R
D. LLE proceeds as follows [ROW00] :

– Each point Xm, m = 1, . . . ,M is linearly reconstructed from its K-nearest

neighbors. In principle K should be greater that the expected dimension d of the un-

derlying embedded slow manifold and the points should be close enough to ensure the

validity of the linear approximation. In general, a large-enough number of neighbors

K and a large-enough sampling M ensures a satisfactory reconstruction. For each

point Xm we can write the locally linear data reconstruction as :

Xm =
∑
i∈Sm

WmiXi, (19)

where Wmi are the unknown weights and Sm the set of the K-nearest neighbors of

Xm. As the same weights appears in different locally linear reconstructions, the best

compromise is searched by looking for the weights, all them grouped in vector W,

that minimize the functional

F(W) =
M∑

m=1

∥∥∥∥∥Xm −
M∑
i=1

WmiXi

∥∥∥∥∥
2

(20)

where here Wmi is zero if Xi does not belong to the set of K-nearest neighbors of

Xm. The minimization of F(W) allows to determine all the weights involved in all

the locally linear data reconstruction.

– We suppose now that each linear patch around Xm, ∀m, is mapped into a lower

dimensional embedding space of dimension d, d � D. Because of the linear mapping

of each patch, weights remain unchanged. The problem becomes the determination of

the coordinates of each point Xm when it is mapped into the low dimensional space,

Ym ∈ R
d.
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For this purpose a new functional G is introduced, that depends on the searched

coordinates Y1, . . . ,YM :

G(Y1, . . . ,YM ) =
M∑

m=1

∥∥∥∥∥Ym −
M∑
i=1

WmiYi

∥∥∥∥∥
2

, (21)

where now the weights are known and the reduced coordinates Ym are unknown.

The minimization of functional G results in a M ×M eigenvalue problem whose d-

bottom non-zero lowest eigenvalues define the set of orthogonal coordinates in which

the manifold is mapped.

The use of LLE exhibits some weakness, the first related to the use of euclidian dis-

tances, even if other choices could be considered. The second is related to a covariance

normalization considered when solving the second eigenproblem above. Alternatives,

like the t-SNE [MAA08] allows circumventing the last difficulty.

2.4. Discussion

The main advantage of local-PCA is that it allows extracting the real local reduced

dimensionality and the fact of having a real geometrical transformation allowing not

only extracting the embedded manifold but also to map points outside the slow mani-

fold. Moreover, PCA-based transformations preserve distances, where other nonlinear

dimensionality reduction strategies fail to accomplish it.

3. Manifold-learning-based computational mechanics

Imagine different physical systems characterized by vectors Xm ∈ R
D, whose

associated solutions (of the physical problem at hand) are dented by Tm. By applying

the LLE (among other possible choices) the slow manifold is extracted. Now, when

considering a new physical system, characterized by X, by applying the LLE it results

its image Y on the manifold, with the weights associated to its reconstruction, i.e.

Y =
∑

i∈S(X)

WiYi, (22)

where S(X) represents the set of the K-nearest neighbors of X. Now, a prediction of

the problem solution T writes

T =
∑

i∈S(X)

WiTi. (23)

This strategy was successfully considered in [LOP16] for addressing models invol-

ving parametrized microstructures and shapes. However, there is a strong assumption

10



in the rationale just described. The neighbors and their associated weights in the para-

metric space are consider to interpolate the solution.

A more accurate approach consists of calculating the parametric solution within

for example the PGD framework,

T (x, t, y1, · · · , yd) ≈
N∑
i=1

Xi(x)Ti(t)Y1
i (y1) · · · Yd

i (yd), (24)

where here x denotes the space coordinates involved in usual models and their as-

sociated partial differential equations, t the time involved in transient models and yj
are the latent variables grouped in vector Y (defining the slow manifold). This pro-

cedure was successfully applied in [GON16] for addressing the same problems that

were addressed in [LOP16].

4. Data-Driven simulations

We consider mechanical tests conducted on a perfectly elastic material, in a spe-

cimen exhibiting uniform stresses and strains. For a while, we do not consider issues

related to data generation and collection, they will addressed later. More complex be-

haviors were addressed in [IBA16]. Thus, for M randomly applied external loads, we

assume ourselves able to collect M couples (σm, εm), m = 1, . . . ,M . Each stress-

strain couple could be represented as a single point Pm in a phase space of dimension

D = 12 (the six distinct components of the stress and strain tensors, respectively). In

the sequel Voigt notion will be considered, i.e. stress and strain tensors will be repre-

sented as vectors and consequently the fourth-order elastic tensor reduces to a 6 × 6
square matrix.

Each vector Pm thus defines a point in a space of dimension D and, therefore,

the whole set of samples represents a set of M points in R
D. We conjecture that all

these points belong to (or can be embedded into) a certain low-dimensional manifold

embedded into the high-dimensional space R
D allowing for a nonlinear dimensiona-

lity reduction as discussed in [IBA16]. In what follows we proceeds without such a

dimensionality reduction and consider the simplest strategy proposed and discussed

in [IBA16]. We consider locally linear approximations, that allow writing

Pm =

M∑
i=1

WmiPi, (25)

with Wmi = 0 if i /∈ Sm (set containing the K-nearest neighbors of Pm). By mini-

mizing the functional

H(C) =
∑
i∈Sm

(σi −Cεi)
2. (26)

we obtain the secant elastic behavior C(Pm) ≡ Cm.
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4.1. Data-based weak form

From the just identified locally linear behavior C(P) one could apply the simplest

linearization technique operating on the standard weak form∫
Ω

ε∗(x) : σ(x) dx =

∫
ΓN

u∗(x) · t(x) dx, (27)

where at each point, from the stress-strain couple at position x, P(x), the locally

linear behavior C(P(x)) can be obtained (in practice at the Gauss points used for the

integration of the weak form) that allows us to write, using Voigt notation∫
Ω

ε∗(x) · (C(x)ε(x)) dx =

∫
ΓN

u∗(x) · t(x) dx. (28)

This allows, in turn, to compute the displacement field and from it, to update the

strain and stress fields, and compute again the locally linear behavior. The process

continues until convergence. The discretization related to other two alternative des-

criptions was deeply considered in [IBA16].

4.2. Constructing the constitutive manifold

In the sequel we consider perfectly elastic isotropic behavior, i.e. inelastic (irre-

versible) deformations are neglected, and also assume small displacements and defor-

mations. We consider the mechanical specimen occupying the domain Ω ∈ R
3, of

boundary Γ ≡ ∂Ω with prescribed displacements on ΓD, u(x ∈ ΓD) = ug , without

loss of generality assumed vanishing, i.e. ug = 0, and prescribed tractions in the com-

plementary boundary ΓN (Γ = ΓD ∪ ΓN ), σ · n|x∈ΓN
= t. Boundary ΓN is at its

turn decomposed in the free-traction region Γf
N where t = 0 and the remaining part

Γt
N where non null external tractions, t �= 0, apply.

We also ignore mass and inertia contributions to the mechanical state and assume

that in absence of external tractions, i.e. when t = 0, the mechanical part remains free

of strains and stresses, i.e. ε = 0 and σ = 0 respectively.

4.2.1. Linear elastic behavior

The external traction t is applied, from which the equilibrium reads∫
Ω

ε∗(x) · σ(x) dx =

∫
ΓN

u∗(x) · t dx. (29)

Taking into account the strain- and stress-free reference configuration previously

discussed, the problem can be expressed in the incremental form∫
Ω

Δε∗(x) ·Δσ(x) dx =

∫
ΓN

Δu∗(x) · t dx, (30)
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or introducing the linear behavior

∫
Ω

Δε∗(x) · (CΔε(x)) dx =

∫
ΓN

Δu∗(x) · t dx, (31)

where the tangent matrix C is unknown, but because the linear elastic behavior re-

mains constant everywhere in the domain. Using a parametrization of symmetric 6×6
matrices (the more general one making use of canonical matrices with a single nonzero

entry, taking a unit value) we can write

C =

K∑
i=1

αiKi, (32)

with coefficients αi unknown. When using canonical matrices K = 21, and any sym-

metric matrix can be written from a linear combination of those 21 canonical matrices

by considering adequate coefficients αi, i = 1, · · · , 21.

By introducing this tangent matrix representation into the equilibrium weak form

it results

∫
Ω

Δε∗(x) ·
(( K∑

i=1

αiMi

)
Δε(x)

)
dx =

∫
ΓN

Δu∗(x) · t dx, (33)

whose discrete form reads

ΔU∗ ·
( K∑

i=1

αiKi

)
ΔU = ΔU∗ ·T, (34)

with Ki the rigidity matrices corresponding to the canonical behaviors.

We assume that local displacement and their associated strains are accessible on a

certain region of the domain whose associated degrees of freedom are indicated with

the superscript •O. Thus, making use of a partition of the displacements ΔUO and

ΔUH referring to the observable and hidden displacements respectively, the previous

discrete nonlinear system can be solved to compute the unknown displacements ΔUH

and material coefficients αi.

When considering a linear behavior the resulting displacements, strains and stresses

can be easily derived from U ≡ ΔU = (ΔUH,ΔUO)T by considering

⎧⎪⎪⎨
⎪⎪⎩

u(x) =
N∑
i=1

UiNi(x)

ε = ∇Su
σ = Cε

, (35)
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where N is the number of nodes considered for approximating the displacement field

u(x) and Ni(x) the associated shape functions. ∇S• denotes the symmetric com-

ponent of the gradient operator and C results from αi

C =
K∑
i=1

αiKi. (36)

4.2.2. Nonlinear elastic behavior

In the nonlinear case, when performing homogeneous tests, it suffices applying the

external load incrementally and at each step, being the behavior the same everywhere

in the tested coupon, the behavior will be identified incrementally. However, such a

procedure do not allow exploring the whole strain-stress space, there are not testing

facilities able to prescribe any complex multi-axial strain. In our recent works we pro-

pose an alternative data-driven inverse procedure that more than using homogeneous

tests, exploits complex tests to cover as much as possible the behavioral manifold.

This approach combines an incremental loading and a clustering to identify the candi-

date points where the behavior should be updated from the inverse procedure at each

loading step.

5. Data-driven upscaling of viscous flows in porous media

Isothermal flows of complex fluids in complex microstructures can be simulated by

solving the momentum and mass balance equations and a suitable rheological consti-

tutive model. For inertialess incompressible flows, these balance equations read,

∇ · σ = 0, (37)

and

∇ · v = 0, (38)

respectively. Here, σ is the Cauchy stress tensor and v the velocity field, both defined

at time t at each point within the fluid domain Ωf . When considering porous media,

the domain Ω is assumed fully saturated, with the fluid phase occupying the region

Ωf whereas the remaining part Ωs = Ω−Ωf is occupied by a solid phase assumed at

rest.

An appropriate constitutive equation must be postulated to describe the fluid’s

rheology. There are many possible choices, the most usual ones being related to New-

tonian and the generalized-Newtonian summarized below.

For a Newtonian fluid, the constitutive equation reads

σ = −pI+ τ = −pI+ 2ηD, (39)

where p is the pressure field that can be interpreted as the Lagrange multiplier asso-

ciated with the incompressibility constraint, I is the identity tensor, τ the extra-stress
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tensor, η the constant fluid viscosity and D the rate of strain tensor, i.e. the symmetric

part of the velocity gradient, 2D = ∇v + (∇v)T .

For a generalized-Newtonian fluid, the constitutive equation (39) remains formally

unchanged but now the viscosity η depends on the effective strain rate γ̇ usually ex-

pressed from the second invariant of the rate of strain tensor, i.e. γ̇ =
√
2D : D. The

simplest of such models is the power-law (shear-thinning) viscosity given by

η = κγ̇n−1, (40)

where κ and n are the consistency and power-law index, respectively. The value n = 1
corresponds to a Newtonian fluid.

5.1. Upscaling Newtonian and generalized-Newtonian fluids flowing in porous
media

The upscaling procedure was deeply addressed in our former works [LOP15, LOP16b,

AMM16] to handle Newtonian, generalized-Newtonian fluid and quasi-Newtonian

fluids.

For all these fluids, the flow model is solved in the representative volume ω(X)
located at potion X ∈ Ω, where two phases coexist, i.e. the fluid phase occupying the

domain ωf (X) and the solid phase, assumed rigid and at rest, occupying the region

ωs(X), with ωf (X) ∪ ωs(X) = ω(X) and ωf (X) ∩ ωs(X) = ∅. The flow model

consists of the mass and momentum balances complemented by the constitutive equa-

tion discussed in the previous section,⎧⎨
⎩

∇ · σ = 0
∇ · v = 0
σ = −pI+ 2ηD = −pI+ τ

, (41)

with the viscosity η constant in the case of Newtonian fluids or depending on the

effective strain rate in the case of generalized-Newtonian fluids. The flow model above

is complemented with the boundary condition v(x ∈ ∂ω(X)) = V, where V comes

from the macroscopic flow problem.

The solution of the flow problem (41) allows calculating the velocity field v(x ∈
ωf (X)), from it the strain rate D(x ∈ ωf (X)), the local viscosity η(x ∈ ωf (X))
and finally the extra-stress tensor τ (x ∈ ωf (X)), fields that allow calculating the

dissipated power in the RVE, DP(V;X), associated with the prescribed macroscopic

velocity V on its boundary ∂ω

DP(V;X) =

∫
ωf (X)

σ(x) : D(x)dx, (42)

with the specific microscopic dissipation DPm obtained by dividing DP given by

(42) by the RVE volume |ω(X)|.
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Obviously, being the model purely viscous it only involves dissipated power, and

consequently the effective macroscopic model should account for that dissipated po-

wer. When considering the Darcy’s model, the specific macroscopic dissipated power

DPM reads

DPM (∇P,V) = ∇P ·V, (43)

where by equating the micro and macro dissipations, it results

DPm = ∇P |X ·V(X), (44)

or by assuming an effective permeability Keff (X)

∇P |X = K−1
eff (X)V(X), (45)

from which it finally results

DPm(V;X) = K−1
eff (X) : (V(X)⊗V(X)). (46)

The previous expression constitutes a constructive definition of the effective per-

meability. For calculating the last it suffices taking the second derivatives of DPm(V)
related to the microstructure existing at location X,

K−1
eff (X) =

d2DPm(V;X)

dV2
. (47)

In the case of a Newtonian fluid, the velocity, strain-rate and stress fields scale

linearly with the prescribed velocity on the RVE boundary and consequently the dissi-

pated power scales with the square of the velocity, leading to a constant permeability,

as deeply discussed in [LOP15].

6. Conclusions

We are not at the beginning of the end, but at the end of the beginning ! Data

is expected enriching modeling approaches and even replacing too poor models in

order to improve predictions accuracy. The big amount of collected data, including

synthetic data generated from simulations, should perform bringing data, information,

knowledge and decision making, operating under real-time constraints.
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