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A LIMIT THEOREM FOR THE SURVIVAL PROBABILITY OF A

SIMPLE RANDOM WALK AMONG POWER-LAW RENEWAL

OBSTACLES

JULIEN POISAT AND FRANÇOIS SIMENHAUS

Abstract. We consider a one-dimensional simple random walk surviving among a field
of static soft obstacles : each time it meets an obstacle the walk is killed with probability
1 − e−β , where β is a positive and fixed parameter. The positions of the obstacles are
sampled independently from the walk and according to a renewal process. The increments
between consecutive obstacles, or gaps, are assumed to have a power-law decaying tail
with exponent γ > 0. We prove convergence in law for the properly rescaled logarithm of
the quenched survival probability as time goes to infinity. The normalization exponent is
γ/(γ + 2), while the limiting law writes as a variational formula with both universal and
non-universal features. The latter involves (i) a Poisson point process that emerges as the
universal scaling limit of the properly rescaled gaps and (ii) a function of the parameter β
that we call asymptotic cost of crossing per obstacle and that may, in principle, depend on
the details of the gap distribution. Our proof suggests a confinement strategy of the walk
in a single large gap. This model may also be seen as a (1 + 1)-directed polymer among
many repulsive interfaces, in which case β corresponds to the strength of repulsion, the
survival probability to the partition function and its logarithm to the finite-volume free
energy.

Disclaimer. In this paper we denote by N the set of positive integers and N0 = N ∪ {0}.
The letter C is used for the constants whose values are irrelevant and may change from
line to line.

1. Introduction and model

We consider a one-dimensional simple random walk surviving among a random field of
static soft obstacles : each time it meets an obstacle the walk is killed with probability
1 − e−β or survives with probability e−β, where β is a positive and fixed parameter, see
Section 1.1 for a precise definition. The increments between consecutive obstacles, or gaps,
are assumed to be mutually independent and independent from the walk, with a power-
law decaying tail. This is what we refer to as power-law renewal obstacles in the title, see
Section 1.3 for a precise definition. To be more precise, we deal with the quenched version
of the model, meaning that the positions of the obstacles are frozen and the survival
probability is computed only with respect to the law of the random walk. Our main result,
Theorem 2.2, states a convergence in law for the properly rescaled logarithm of the quenched
survival probability, seen as a random variable with respect to the field of obstacles, as time
goes to infinity. The limiting law writes as a variational formula involving (i) a Poisson point

Key words and phrases. Random walks in random obstacles, polymers in random environments, parabolic
Anderson model, survival probability, FKG inequalities, Ray-Knight theorems.
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process that emerges as the universal scaling limit of the properly rescaled gaps and (ii)
a function of the parameter β that we call asymptotic cost of crossing per obstacle and
that may, in principle, depend on the details of the gap distribution, see the definition of
λ(β) in Proposition 2.1. Even if we offer no path statement for the walk conditioned on
surviving, our proof strongly suggests a confinement strategy according to which the walk
remains in a large gap with an appropriate scale. Path localization could be considered as
future work.

As we will see in Section 1.2, our model may also been seen as a (1+1)-directed polymer
among many repulsive interfaces, in which case β corresponds to the strength of repulsion.
We will take advantage of this connection by using and revisiting some estimates obtained
by Caravenna and Pétrélis [4, 5] in the case of periodic obstacles. We point out that the
logarithm of the survival probability is the finite-volume free energy of the corresponding
polymer model.

Outline. Section 1 contains the mathematical definition of the model and a discussion
on the relation with other models, such as the directed polymer among multiple interfaces.
In Section 2 we state our main result, Theorem 2.2, as well as some auxiliary results. We
conclude this section with a list of comments and related open questions. Sections 3 to 6
constitute the proof of the theorem. Key tools are gathered in Section 3. The rest of the
proof is split into a lower bound part (Section 4), an upper bound part (Section 5) and a
conclusion (Section 6). The more technical proofs are deferred to an appendix.

1.1. A random walk in Z among soft obstacles. We consider S = (Sn)n∈N0 a simple
random walk on Z in presence of obstacles. We recall that the increments (Sn − Sn−1)n∈N
are independent and identically distributed (i.i.d.) random variables which are uniformly
distributed on {−1, 1}, and we shall write Px for the law of the walk started at S0 = x, for
x ∈ Z, with the notational simplification P0 = P. The positions of the obstacles are integers
and they will be denoted by τ = {τn}n∈N0 with τ0 = 0. The increments (τn+1− τn)n≥0 may
be referred to as gaps.

Let β > 0 be a parameter of the model. Informally, each time the walk meets an obstacle,
it is killed with probability 1 − e−β or survives with probability e−β independently from
the past. The obstacles are called soft, by opposition to hard obstacles, because the walk
has a positive chance to survive when sitting on an obstacle. For a precise mathematical
definition let us first introduce (θn)n∈N, the clock process recording the times when the
random walk visits τ , that is

(1.1) θ0 = 0, θn+1 = inf{k > θn : Sk ∈ τ}, n ∈ N0.

We enlarge the probability space so as to include a N-valued geometric random variable N
with success parameter 1 − e−β. This plays the role of the clock that kills the walk after
its N -th meeting with the set of obstacles. We now define σ the death time of the walk by

(1.2) σ = θN .

Note that our probability law now depends on the parameter β. We shall write Pβx when
we want to stress this dependence or omit the superscript when no confusion is possible.

Again we may write Pβ instead of Pβ0 . We also point out that σ depends on τ through θ
even if it is not explicit in the notations.
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The hitting times of the walk are defined by

(1.3) Hx = inf{n ≥ 1: Sn = x}, x ∈ Z,
and

(1.4) HZ− = inf{n ≥ 1: Sn ≤ 0}.
In this paper we study the limiting behaviour of the probability that the walk survives

up to time n ∈ N, as n gets large. For convenience, we consider walks that do not visit
Z− = −N0. This extra condition allows to consider obstacles that are indexed by N0 instead
of Z and does not hide anything deep nor change the main idea of the paper. Thus, our
survival probability writes

(1.5) Zn = Pβ(σ ∧HZ− > n), n ∈ N.
We stress again that Zn is a function of the environment of obstacles (τn)n≥0.

1.2. (De)pinning of a (1 + 1)-directed polymer by multiple interfaces. By inte-
grating on N in (1.5), we obtain

(1.6) Zn = E
[

exp
(
− β

n∑
k=1

1{Sk∈τ}

)
1{HZ−>n}

]
.

This expression links the survival probability to a certain polymer model from statistical
mechanics. More precisely, the expression above is the partition function of a (1 + 1)-
directed polymer above an impenetrable wall and among many repulsive interfaces. Here,
(k, Sk)0≤k≤n plays the role of a polymer with n monomers and the parameter n, which is
initially a time parameter, becomes the size of the polymer, see Figure 1. Whenever the
polymer touches one of the interfaces, located at the levels τ = {τn}n∈N0 , it is penalized by
a factor e−β. Finally, the event {HZ− > n} reflects the presence of a hard wall at level 0.

0

(τi)i≥0

N
τ1

τi

τi+1

Ti+1

Figure 1. Example of a polymer among repulsive interfaces. The dashed
lines correspond to the interfaces, the thick one to the polymer and the
shaded area to the hard wall.

The pinning phenomenon in polymer models has been studied both in the physics and
mathematics literature. We refer to [6, 10, 11] for a mathematical account including also
various references in physics. In general, the parameter β can have any sign (thus β < 0
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corresponds to the attractive case with our notations) and in the simplest case of a unique
interface at level zero without wall, one observes a localization transition at β = 0. The case
β < 0 is known as the repulsive or delocalized phase as the polymer typically touches the
interface only finitely many times. The case β > 0 is called instead the attractive or localized
phase as the polymer typically touches the interface a positive fraction of time. Caravenna
and Pétrélis studied the case of multiple interfaces periodically located at levels tnZ, where
the period tn ∈ N depends on the size of the polymer n, both in the attractive [5] and
repulsive case [4]. In contrast, the positions of our interfaces are random, but do not vary
in n. However, the size of the relevant gaps does depend on n, which explains why we use
(and extend) some estimates from [4]. Note also the difference between our results, since
Caravenna and Pétrélis obtained results at the level of paths, which means information on
the (de)localization of the path of the random walk under the polymer measure

(1.7)
dPβn
dP
∝ exp

(
− β

n∑
k=1

1{Sk∈τ}

)
,

(where ∝ means “proportional to”) while this is not the purpose of the present paper,
see Comment 8 in Section 2.3. Our work can thus be viewed as a natural extension of
Caravenna and Pétrélis’ model by considering layers with random widths. This direction
was actually already suggested in the monograph [6, Chap. 7].

From the physics literature, let us also mention the article [1] where the authors consider
a random polymer in a layered environment with two types of solvant.

1.3. Assumption on the obstacles. We now put a probability measure P on the envi-
ronment of obstacles. We denote by Tk = τk − τk−1, for k ∈ N, the increments, that is
the size of the intervals between two consecutive obstacles, which we call gaps. We assume
that, under P, τ is a discrete renewal process, that is the (Tk)’s are i.i.d. N-valued ran-
dom variables. We further assume that τ0 = 0 and that the increments have a power-tail
distribution:

(1.8) P(T1 = n) ∼ cτ n−(1+γ), γ > 0, n→∞,
where cτ is a positive constant and throughout the paper, un ∼ vn means un = [1+o(1)]vn
as n → ∞. We recall the following standard limit theorem, see e.g. Petrov [14, Theorem
14, p. 91].

Proposition 1.1. If γ ∈ (0, 1], the sequence (τn/n
1/γ)n∈N converges in law to a (to-

tally skewed to the right) γ-stable random variable with scale parameter cτ . If γ > 1 then
(τn/n)n∈N converges almost-surely to E(T1).

1.4. Parabolic Anderson model with a correlated potential. Our model is also
connected to a discrete analogue of the parabolic Anderson model (PAM) with potential
V (x) = −β1{x∈τ} −∞1{x≤0}, that is the heat equation with random potential V ,

(1.9) ∂tu = ∆u+ V u.

There is a rich literature and intense activity around the PAM. We refer to König [13] for
a recent survey on this topic. Note that the potential is usually chosen as a sequence of
random variables that are independent in the space parameter. In contrast, our potential
exhibits long-range spatial correlations, that is one of the research direction suggested
in [13, Section 7.2]. Such models have been also considered by physicists. Let us mention
for instance the Aubry-André model [3] in which the potential, defined by an irrational
rotation, is ergodic but not even mixing. Interestingly this model is known for exhibiting a
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phase transition even in dimension one. For a review of potentials in discrete and continuous
space, we refer to [13, Section 1.5].

Let us end this section with a reference to the classical monograph by Sznitman [18] on
random motions in random media. Chapter 6 is of particular interest to us as it highlights
the link with directed polymers in the presence of columnar defects and introduces the
concept of pinning effect of quenched path measures, see again Comment 8 in Section 2.3.

2. Results

Before we can state our main theorem, we need Proposition 2.1 below, which gives the
existence of an asymptotic cost of crossing per obstacle. Let us define, for ` ∈ N, the random
variable (with respect to τ)

(2.1) λ(`, β) = −1

`
log Pβ(Hτ` < H0 ∧ σ).

Note that in the above definition H0 could be safely replaced by HZ− .

Proposition 2.1. For all β > 0 there exists a positive constant λ(β) = λ(β,P) such that,
P-a.s. and in L1(P),

(2.2) lim
`→∞

λ(`, β) = λ(β),

with

(2.3) 0 ≤ λ(β)− β ≤ E(log T1) + log 2.

Note that log T1 is integrable because of (1.8).

From now on we set

(2.4) N = N(n) = n
γ
γ+2 , Fn = − 1

N
logZn, n ≥ 1.

We now have all tools and notations in hand to state our main theorem:

Theorem 2.2. The sequence of random variables (Fn)n∈N converges in P-distribution to
the random variable

(2.5) F := inf
(x,y)∈Π

{
λ(β)x+

π2

2y2

}
,

where Π is a Poisson point process on R+ × R+
∗ with intensity p = dx⊗ cτγ y−(1+γ)dy.

With a slight abuse of notation we write (x, y) ∈ Π to mean that (x, y) is in the support
of Π. As a slight but not substantial improvement of this result, we also establish a func-
tional version of this theorem, see Comment 10 in Section 2.3 for a precise statement and
Appendix B for its proof.

Before going further, let us first of all give an explanation, at a heuristic level, of the
choice of the normalization in (2.4). The argument is of the type one uses to find volume
exponents in some polymer models and is sometimes referred to as a Flory argument. We
assume that at a large time n the walk has visited at most N obstacles and has remained
confined in the largest visible gap, and we find the value of N with the best energy-entropy
balance. By basic extreme-value theory, the size of that gap is of order N1/γ , and by a
standard small-ball estimate (see Proposition 3.1 below for a precise statement) the en-

tropic cost of being confined in that gap during time n is of order nN−2/γ . Also, the cost
of crossing N obstacles is of order N , see Proposition 2.1 above. Finally, by equating these
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two costs, one finds the optimal choice N = n
γ
γ+2 . As a consequence, the walk has travelled

a distance of order n
1∨γ
γ+2 from the origin (see Proposition 1.1). This confinement strategy

will be justified during the proof of our theorem. The Poisson point process appears when
one tries to make explicit the limit law of the environment after this renormalisation, see
Section 2.2.

Outline of the section. We first prove Proposition 2.1 and provide properties of the
function λ(·) in Section 2.1. Then, in Section 2.2, we consider the environment as a point
process and investigate some properties of its limit, which turns out to be the Poisson point
process that appears in Theorem 2.2. We conclude with some comments in Section 2.3.

2.1. Asymptotic cost of crossing obstacles.

Proof of Proposition 2.1. Let us define a collection of random variables indexed by:

(2.6) Z(i, j) = − log Pβτi(Hτj < Hτi ∧ σ), 0 ≤ i < j.

Thus, we are interested in the limit of (Z(0, `)/`)`∈N. Let 1 ≤ i < j < k. To go from τi to
τk without being killed, one strategy is to go first from τi to τj and survive, then from τj
to τk and survive without coming back to τj , which, by the Markov property, leads to the
inequality

(2.7) Z(i, k) ≤ Z(i, j) + Z(j, k).

By stationarity of the sequence (Tk)k∈N, Z(i, j) has the same law as Z(0, j − i). Moreover,
by using the standard result

(2.8) P1(Ht < H0) = 1/t (t ≥ 2),

we obtain

(2.9) Z(i− 1, i) ≤ β + log Ti + log 2, i ∈ N.

We get by (2.7) and (2.9)

(2.10) β` ≤ Z(0, `) ≤ (β + log 2)`+
∑

1≤i≤`
log Ti

(the lower bound follows simply from the fact that surviving to a newly visited obstacle
costs at least e−β). We may now conclude with Kingman’s sub-additive ergodic theorem
(see Theorem 7.4.1 in [8]) and the law of large numbers. �

Proposition 2.3. The function β → λ(β) is continuous on R∗+.

Proof of Proposition 2.3. We prove that the function is concave on (0,+∞): as it is finite,
it implies continuity. We observe by integrating over N that

(2.11) λ(`, β) = −1

`
log E

(
exp

(
− β

Hτ∑̀
k=1

1{Sk∈τ}

)
1{Hτ`<H0}

)
.

A basic interchange theorem allows us to write

(2.12) ∂2
βλ(`, β) = −1

`
Var

P̃β

( Hτ∑̀
k=1

1{Sk∈τ}

)
≤ 0,
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where P̃β is absolutely continuous with respect to P, with Radon-Nikodym derivative:

(2.13)
dP̃β
dP
∝ exp

(
− β

Hτ∑̀
k=1

1{Sk∈τ}

)
1{Hτ`<H0}.

We deduce thereby that β 7→ λ(`, β) is concave. Therefore λ is concave as the almost-sure
limit of concave functions. �

2.2. Convergence of the environment. In this section we recall a few elements from
the theory of point processes, see [16] for more background on this topic.

Define the quadrant E := [0,+∞)× (0,+∞) and consider E the Borel σ−algebra on E.
We say a measure µ on (E, E) to be a point measure if µ can be written

(2.14) µ :=
∞∑
i=1

δzi

where, for any a in E, δa denotes the Dirac measure in a and (zi)i≥1 is a family of points
in E. If µ can be written as in (2.14) we say that zi ∈ µ (i ≥ 1) even if we should say that
zi is in the support of µ.

We call Mp(E) the set of all Radon point measures on E, that are the point measures
µ such that µ(K) <∞ for all compact sets K ⊂ E. We endow Mp(E) with the σ−algebra
Mp(E) defined as the smallest σ−algebra that makes applications µ 7→ µ(F ) measurable
for all F ∈ E . Let C+

K(E) be the set of continuous non-negative functions on E with
compact support. A sequence (µn)n≥1 in Mp(E) is said to converge vaguely to µ, which we

note µn
v→ µ, if for any f in C+

K(E)

(2.15)

∫
f dµn →

∫
f dµ, n→∞.

This provides a topology on Mp(E) that turns out to be metrisable, separable, and com-
plete. In this context, a sequence of probability measures (Pn)n≥1 on Mp(E) converges

weakly to P , which we note Pn
w→ P , if for every Θ vaguely continuous and bounded on

Mp(E),

(2.16)

∫
Θ dPn →

∫
Θ dP, n→∞.

We now come back to our context. For n ≥ 1 we define

(2.17)

(Xn
i , Y

n
i ) :=

( i− 1

n
,
Ti

n1/γ

)
for all i ≥ 1,

and Πn =

∞∑
i=1

δ(Xn
i ,Y

n
i ).

We observe that Πn is a random variable that takes values in Mp(E). Recall the definition
of cτ in (1.8) and define Π to be a Poisson point process on E with intensity

(2.18) p := dx⊗ cτγ

yγ+1
dy,

that is, for all finite families of disjoint events (Ai)1≤i≤n ∈ En, (Π(Ai))1≤i≤n are independent
Poisson random variables with respective parameters (p(Ai))1≤i≤n.

Proposition 2.4. It holds that Πn
w→ Π.
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Proof. The proof follows from [16, Proposition 3.21 p. 154] once noticed that for all y > 0,

the sequence (nP(T1 > yn1/γ))n≥1 converges to cτ/y
γ when n goes to infinity. �

We define for any λ > 0,

(2.19)
ψλ : E → R+

(x, y) 7→ λx+ π2

2y2
,

and for any µ in Mp(E),

(2.20) Ψλ(µ) := inf
(x,y)∈µ

ψλ(x, y).

Let us stress that

(2.21) F = inf
(x,y)∈Π

{
λ(β)x+

π2

2y2

}
= Ψλ(β)(Π).

We shall write F β instead of F when we want to stress the dependence on this parameter.
The rest of the section is devoted to various results relative to the environment Π.

Proposition 2.5. For all λ > 0, Ψλ(Π) is almost surely well defined and positive. Moreover
the infimum in the definition of Ψλ is almost surely achieved at a unique point (x∗, y∗) in
E.

Proof of Proposition 2.5. As there is almost surely at least one point in Π, the infimum
is well defined. Moreover, there are almost surely finitely many points in [0, 1] × [1,+∞).
We define Ȳ as the maximal second coordinate among these points if [0, 1]× [1,+∞) ∩ Π
is not empty, otherwise we set Ȳ = 1. Note that Ȳ is almost surely finite and ψλ(x, y) ≥
min{π2/(2Ȳ 2), λ} for any (x, y) ∈ Π, which proves that Ψλ(Π) is almost surely positive.

For λ > 0 and u > 0, we introduce the set

(2.22) Aλu := {(x, y) ∈ E such that ψλ(x, y) ≤ u},

and note that Π(Aλu) <∞ almost surely.
Let us denote by C the event that the minimum in the definition of Ψ is achieved. We

observe that for any u > 0,

(2.23) P (Ψ(Π) < u) = P (Ψ(Π) < u,Π(Aλu) <∞) ≤ P (Ψ(Π) < u,Π ∈ C).

As limu→+∞ P (Ψ(Π) < u) = 1 and limu→+∞ P (Ψ(Π) < u,Π ∈ C) = P (Π ∈ C), we obtain
that P (Π ∈ C) = 1.

It remains to prove that the infimum is almost surely achieved at only one point. For
u > 0, let Du be the event that two points of Π ∩ Aλu have the same image by ψλ and D
be the event that two points of Π have the same image by ψλ. For n ∈ N and conditional
on {Π(Aλu) = n}, the restriction of Π to Aλu has the same law as

∑n
i=1 δXi , where the

(Xi)1≤i≤n’s are i.i.d. with continuous law p restricted to Aλu and renormalised to a prob-
ability measure. This implies that P (Π ∈ Du|Π(Aλu)) = 0 and thus P (Π ∈ Du) = 0. We
obtain

(2.24) P (Ψ(Π) < u) = P (Ψ(Π) < u,Π ∈ Dc
u).

The first term converges to 1 while the second one converges to P (Π ∈ D) when u goes to
infinity. This proves P (Π ∈ D) = 1 and concludes the proof. �
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Unfortunately, it is difficult to work directly with Ψλ as it appears not to be a vaguely
continuous function on Mp(E). For this reason, we introduce the function Ψλ

K , for any
compact set K ⊂ E, defined by

Ψλ
K(µ) := inf

(x,y)∈µ∩K
ψλ(x, y), µ ∈Mp(E).

The advantage of restricting the infimum to a compact set lies in the following lemma.

Lemma 2.6. For any compact set K ⊂ E and λ > 0, the function Ψλ
K is vaguely continuous

on Mp(E).

Proof. Consider a sequence (µn)n≥1 in Mp(E) that converges vaguely to µ. Due to Proposi-

tion 3.14 in [16], µ ∈Mp(E). Suppose µ(K) = k, that is µ(· ∩K) writes
∑k

i=1 δ(xi,yi) where
(xi, yi)1≤i≤k is a family in K. By Proposition 3.13 in [16] there exists for all n larger than

some n(K) a family (xni , y
n
i )1≤i≤k such that µn(· ∩ K) =

∑k
i=1 δ(xni ,y

n
i ). Moreover, for all

1 ≤ i ≤ k, the sequence (xni , y
n
i )n≥1 converges to (xi, yi) as n goes to infinity. This implies

that Ψλ
K(µn) converges to Ψλ

K(µ). �

We conclude this section with the following technical lemma:

Lemma 2.7. The family (F β−ε)ε≥0 (seen as functions of the random measure Π) converges
non-decreasingly to F β when ε→ 0, almost surely.

Proof. Using Proposition 2.5 we can define almost surely a random point (X∗(β), Y ∗(β))
such that

(2.25) ψλ(β)(X∗(β), Y ∗(β)) = Ψλ(β)(Π).

We first prove that (X∗(β−ε), Y ∗(β−ε)) = (X∗(β), Y ∗(β)) almost surely if ε > 0 is chosen

small enough. Let ε0 ∈ (0, β). Consider some x ≥ x0 := 2Ψλ(β)(Π)
λ(β−ε0) and any y > 0. As λ(·)

and Ψλ(·) are non-decreasing functions of β it holds that

(2.26) ψλ(β−ε)(x, y) ≥ λ(β − ε)x ≥ 2Ψλ(β−ε)(Π)

for all ε < ε0, and we conclude that X∗(β − ε) < x0 for any ε < ε0.
Consider now some y ≤ y0 := π

2
√

Ψλ(β)(Π)
and any x > 0. We thus obtain

(2.27) ψλ(β−ε)(x, y) ≥ π2

2y2
≥ 2Ψλ(β−ε)(Π),

and we conclude that Y ∗(β− ε) > y0 for any ε < ε0. We deduce thereof that almost surely

(2.28) F β−ε = inf
(x,y)∈Π∩{x<x0,y>y0}

ψλ(β−ε)(x, y).

Finally, observe that Π(x < x0, y > y0) <∞ almost surely, so that there are only finitely
many candidates for (X∗(β− ε), Y ∗(β− ε)). Pick (X,Y ) ∈ Π∩{x < x0, y > y0} that is not
(X∗(β), Y ∗(β)) (if there is no such point there is nothing more to prove as (X∗(β), Y ∗(β))

is then the only candidate). The function ε 7→ λ(β − ε)X + π2

2Y 2 is (i) strictly larger than

λ(β)X∗(β)+ π2

2(Y ∗(β))2
at ε = 0 due to Proposition 2.5 and (ii) continuous due to Proposition

2.3. Therefore,

(2.29) λ(β − ε)X +
π2

2Y 2
> λ(β)X∗(β) +

π2

2(Y ∗(β))2
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for ε > 0 small enough. As Π({x < x0, y > y0}) <∞ almost surely, we can choose ε small
enough so that the last inequality holds for all points in Π ∩ {x < x0, y > y0} different
from (X∗(β), Y ∗(β)). Therefore, we may from now on consider ε > 0 small enough so that
(X∗(β − ε), Y ∗(β − ε)) = (X∗(β), Y ∗(β)).

From what precedes, we get

(2.30) |Ψλ(β−ε)(Π)−Ψλ(β)(Π)| ≤ |λ(β − ε)− λ(β)|X∗(β).

Again, as λ is continuous, Ψλ(β−ε)(Π) converges almost surely to Ψλ(β)(Π) when ε goes to
0. Finally,

(2.31) F β−ε →
ε→0

F β a.s.

Moreover, as λ is non-decreasing with β, the convergence is monotone:

(2.32) F β−ε ↗
ε→0

F β a.s.

�

2.3. Comments. We collect here a number of comments and remarks about our result.

1. We do not consider the annealed survival probability, which decreases at most polyno-
mially fast since

(2.33) EP(σ ∧HZ− > n) ≥ 1

2
P1(H0 ≥ n)P(τ1 > n) ∼ 1

2
cτ n

−γ− 1
2 ,

as n→∞, and thus has a completely different behaviour than the quenched probability.

2. Note that we cannot hope for better than weak convergence. Indeed, if Fn would con-
verge to F almost-surely, then F would be measurable with respect to the tail σ-algebra of
the family (Ti)i∈N. As the increments are independent, the latter is trivial due to the 0− 1
law, and F would be deterministic.

3. In the case γ ≤ 1, the variational formula in (2.5) admits an alternative representation
in terms of a subordinator, which reads

(2.34) F = inf
t≥0

{
λ(β)t+

π2

2(∆St)2

}
,

where (St)t≥0 is a γ-stable subordinator and ∆St = St − S−t = St − limu→t− Su.

4. We can compute explicitly the tail distribution function of the limiting law F = Ψλ(β)(Π)
in Theorem 2.2. Recall (2.18), (2.19) and (2.22). For any u ≥ 0 (we write λ instead of λ(β)
to lighten notations),

(2.35) P(F ≥ u) = P(Π(Aλu) = 0) = exp(−p(Aλu)).

Since Aλu =
{

(x, y) : 0 ≤ x < u/λ, y ≥ π√
2(u−λx)

}
, we get by a straightforward computation

that

(2.36) P(F ≥ u) = exp
(
− cτ
λ(β)πγ(γ + 2)

(2u)
γ
2

+1
)
, u ≥ 0.

5. The case γ = 0 is left open. In this case, a gap distribution of the form (1.8) is no
longer appropriate and one should instead assume that P(T1 = n) ∼ L(n)/n, where L is
a non-negative slowly varying function such that

∑
L(n)/n is finite. Complications may
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arise at two levels : (i) the normalization of max1≤i≤n Ti, that we use to guess the value
of N , and (ii) the integrability of log T1, that we use in Proposition 2.1. For instance, if
L(n) = (log n)−2 then E(log T1) = ∞ and max1≤i≤n Ti has a completely different type
of renormalization since, as one can readily show, (1/

√
n) log max1≤i≤n Ti converges to a

non-trivial probability law with cumulative distribution function x 7→ exp(−x−2)1{x>0}, as
n→∞.

6. We state without proof an alternative expression for λ(β) based on ergodic theory
considerations. To this end, let τ̃ be an independent copy of τ , as defined in Section 1.3.
Suppose that the random walk is now free to visit Z− but is killed by the set −τ̃ (note the
minus sign), with the same probability 1 − exp(−β), and denote by σ̃ the corresponding
killing time. Then,

(2.37) λ(β) = −EẼ log Pβ(Hτ1 < σ̃).

Assuming this last equality, we could readily prove using the dominated convergence the-
orem that λ is also continuous at 0.

7. Equation (2.3) does not give much information about the behaviour of λ(β) at 0, that
remains an open question. We expect however that β = o(λ(β)) as β → 0 and we now
explain why. To this end, recall (2.37) and the related notations above. By integrating over
N and differentiating in β we obtain

(2.38) lim
β→0

λ′(β) = ẼEE
( Hτ1∑
k=1

1{Sk∈−τ̃}

)
,

that we expect to be infinite. Indeed, by first restricting the walk to make its first step to
the left and then using the symmetry of the random walk,

(2.39) ẼEE
( Hτ1∑
k=1

1{Sk∈−τ̃}

)
≥ 1

2
ẼE−1

( H0∑
k=1

1{Sk∈−τ̃}

)
=

1

2
ẼE1

( H0∑
k=1

1{Sk∈τ̃}

)
.

We now interchange integrals and use the renewal theorem to obtain, at least for γ 6= 1,

(2.40) lim
β→0

λ′(β) ≥ 1

2
E1

( H0∑
k=1

P̃(Sk ∈ τ̃)
)
≥ C

2
E1

( H0∑
k=1

(1 + Sk)
(γ−1)∧0

)
.

Since, by Ray-Knight’s theorem, the mean number of visits to x ∈ N0 between time 1 and
H0 equals 1 under P1, we get

(2.41) lim
β→0

λ′(β) ≥ C
∑
x∈N0

(1 + x)(γ−1)∧0 =∞.

8. Note that we offer no path statement. In other words, we do not prove anything about
the behaviour of the walk conditioned to survive for a long time n. However, as it is often
the case with this type of model, our result and the method of proof suggest a path strategy,
which in our context corresponds to a confinement (or localization) strategy. To be more
precise, we roughly expect that as n is large, the walk reaches the obstacle labelled X∗(β)N

and then remains in the corresponding gap, of size Y ∗(β)N1/γ , where (X∗(β), Y ∗(β)) is
distributed as the unique minimizer of the random variational problem in Theorem 2.2. In
other words, the path (or polymer) gets stuck in a slab which is large enough and not too far
from the origin. Surprisingly, the repulsive interaction between the path and the obstacles
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leads to a pinning effect on the quenched path measures, as explained by Sznitman [18,
Chapter 6]. Proving such a result should demand substantial additional work, as one would
most likely need sharper bounds on the survival probability (partition function) and fine
controls on the ratio of survival probabilities restricted to suitable events. Nevertheless, this
can be considered as an interesting direction of research. Let us mention that Ding and
Xu [7] recently obtained a path confinement result in the case of quenched hard Bernoulli
obstacles for d ≥ 2.

9. Let us stress that the scaling tγ/(γ+2) that appears in our Theorem 2.2 is different from
the scaling of the PAM in a bounded i.i.d. potential. In this case [13, Example 5.10] states
that the correct scaling is t up to a logarithmic correction. Hence we are in a case where
the correlations of the potential have a drastic effect on the asymptotic behaviour of the
survival probability.

10. With a few additional efforts, we can actually upgrade Theorem 2.2 to a functional
version. Define, for n ≥ 1, the random process (Fn(s))s≥0 as the linear interpolation of

s ∈ N
n 7→ −

1
N logZns.

Theorem 2.8. Let T > 0. Under P, the sequence of random processes (Fn(s))s∈[0,T ], n ∈
N, converges in law, in the space of continuous functions on [0, T ] endowed with the uniform
topology, to the random process

(2.42) F (s) := inf
(x,y)∈Π

{
λ(β)x+

π2s

2y2

}
, s ∈ [0, T ].

Let us note that, even if this result is stronger than Theorem 2.2, we learn only little
from its proof, that requires only minor modifications with respect to that of Theorem 2.2.
That is why we choose to expose Theorem 2.2 as our main result and defer the proof of
Theorem 2.8 to Appendix B.

Organisation of the paper. The rest of the article is devoted to the proof of Theorem 2.2.
The general strategy is the following. In Section 3 we first establish several results for
the killed random walk that are valid for any deterministic sequence of obstacles. Let
us mention in particular the existence of a limiting survival rate for a periodic sequence
of obstacles, which is interesting by itself (see Proposition 3.3). Then, we introduce the
notion of good environments, that are environments for which we can provide suitable
bounds on the survival probability Zn, see (3.71). In Sections 4 and 5 we successively prove
lower and upper bounds, assuming only that the environment is good. We complete the
proof in Section 6: first we show that we can adjust parameters so that environments are
asymptotically good, with a probability arbitrarily close to one; then we use the two bounds
obtained in the previous sections to relate the quantity of interest to an explicit functional
Ψ of the properly renormalized environment, see (2.20). Finally we let n tend to infinity to
prove that F has the same law as Ψ applied to the limiting environment, that is a Poisson
point process (see Proposition 2.4).

3. Key tools

In this section we introduce several tools which we will use to prove our result. For
convenience, various notations are gathered together in Section 3.1, to which the read may
refer. In Section 3.2 we remind the reader of the so-called small ball estimate and establish
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a rough upper bound on the probability that the walker stays confined in a fixed gap
until time n, see Proposition 3.4. Section 3.3 contains Proposition 3.6, which states that
a walk conditioned to hit a given point x before coming back to 0 does it faster when it
is also conditioned on survival until its first visit to x. In Section 3.4 we state the two
technical Lemmas 3.7 and 3.8 that we will use in Section 5 while proving the upper bound
on Zn. Finally we introduce the key notion of good environment in Section 3.5. Informally,
good environments are those for which we are able to efficiently bound Zn. We thus give
a list of events, see (3.71), that are essentially the technical conditions we will need in
Proposition 5.1 and 4.1.

3.1. Notations. Let us introduce notations that will be necessary in what comes next.

Killing clock. We recall the definition of the N-valued geometric random variable N with
success parameter 1− e−β that plays the role of the killing clock.

Records. As we already hinted in the heuristics, only the largest gaps matter. To be more
precise, a particular attention is given to record values of the sequence (T`). Therefore, for
any increasing sequence of integers (τi)i∈N0 with τ0 = 0, and defining ti = τi − τi−1 for all
i ∈ N, we let

(3.1) i(0) = 0, i(k) = inf{i > i(k − 1) : ti+1 > ti(k−1)+1}, k ∈ N,

be the sequence of record indexes, while

(3.2) τ∗k = τi(k) and t∗k = ti(k)+1, k ∈ N0.

We also define

(3.3) R(a, b) = {k ∈ N : a ≤ i(k) ≤ b}, R(a, b) = i(R(a, b)), a, b ∈ N, a < b,

and

(3.4) Rε(n) = R(εN, ε−1N), Rε(n) = R(εN, ε−1N), n ∈ N, ε > 0.

Finally we write

(3.5) R = R(1,∞),

for the set of all records. Later in the paper we will apply these notations to the random se-
quence (T`), in which case t∗k writes T ∗k and all quantities introduced above become random.

Auxiliary random walk. We remind that the clock process (θn)n∈N is defined by

(3.6) θ0 = 0, θn+1 = inf{k > θn : Sk ∈ τ}, n ∈ N0.

The process that chronologically keeps track of the obstacles visited by the walk will be
denoted by X = (Xn)n∈N0 and is uniquely determined by τXn = Sθn . It is not difficult to
see that X is a Markov chain on N0, the hitting times of which are denoted by

(3.7) ζx = inf{n ∈ N : Xn = x}, x ∈ N0,

and

(3.8) ζ∗k = inf{n ∈ N : Xn = i(k)}, x ∈ N0.

Transition matrices and their moment-generating functions. Let us define

(3.9) qij(n) = Pτi(Sk /∈ τ, 1 ≤ k < n, Sn = τj), i, j ∈ N0, n ∈ N,
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and the associated family of matrices {Q(φ)}φ≥0 by

(3.10) Qij(φ) =
∑
n∈N

eφnqij(n) = Eτi

(
eφθ11{Sθ1=τj}

)
, i, j ∈ N0, φ ≥ 0.

Note that the matrix {Qij(0)}i,j∈N0 is nothing but the transition matrix of the Markov
chain X defined above. These quantities will appear in Lemma 3.7 below and are zero as
soon as |j − i| > 1. Finally, we will also use the following notations for the gap associated
to an non-oriented edge {i, j} with |j − i| ≤ 1:

(3.11) tij =

 ti+1 if j = i+ 1,
ti if j = i− 1,
ti+1 ∨ ti if i = j,

where (ti) is a sequence of integers.

3.2. Confinement estimates. One of the key standard estimates in our arguments are
the so-called small-ball estimates, that control the probability that a simple random walk
stays confined in an interval:

Proposition 3.1. There exist T0, c1, c2, c3, c4 > 0 such that for all t > T0, the following
inequalities hold for all n ∈ N such that n ∈ 2N or n− t ∈ 2N:

(3.12)
c1

t ∧ n1/2
e−g(t)n ≤ P(Ht ∧H0 ∧H−t > n) ≤ c2

t ∧ n1/2
e−g(t)n

(3.13)
c3

t3 ∧ n3/2
e−g(t)n ≤ P(Ht ∧H0 ∧H−t = n) ≤ c4

t3 ∧ n3/2
e−g(t)n,

where

(3.14) g(t) = − log cos
(π
t

)
=
π2

2t2
+O

( 1

t4
)
, t→ +∞.

This proposition is taken from Lemma 2.1 in Caravenna and Pétrélis [4]. A crucial point
here is the uniformity of the constants, which gives the uniformity of the constant C in
Proposition 3.4.

Caravenna and Pétrélis [4] treated the case of equally spaced obstacles, which we refer
to as the homogeneous case, in the sense that increments of τ are all equal. We summarize
their results here.

Proposition 3.2 (Homogeneous case, see Eq. (2.1)-(2.3) in [4]). Let t ∈ N and τ = tZ.
There exists a constant φ(β, t) such that

(3.15) φ(β, t) = − lim
n→∞

1

n
log P(σ > n),

with

(3.16) φ(β, t) =
π2

2t2

(
1− 4

eβ − 1

1

t
+ o
(1

t

))
.

Moreover, it is the only solution of the equation:

(3.17) E(exp(φ inf{n ∈ N : Sn ∈ τ}))) = exp(β), β ≥ 0.

Note that the first order term in the expansion of φ does not depend on β. It turns out
that we are able to extend (3.15), at the price of additional technical work, to deal with
the weakly-inhomogeneous case, that is when increments of τ follow a periodic pattern. We
obtain the following:
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Proposition 3.3 (Weakly-inhomogeneous case). Let p ≥ 2, t1, . . . , tp positive integers and
τ be the periodic set {τi : 0 ≤ i < p} + τpZ, where τ0 = 0 and τi =

∑
1≤j≤i tj for all

0 < i ≤ p. There exists a constant φ = φ(β; t1, . . . , tp) such that

(3.18) φ(β; t1, . . . , tp) = − lim
n→∞

1

n
log P(σ > n).

Moreover,

(3.19) P(σ > n) ≤ Cn2p exp(−φ(β; t1, . . . , tp)n), n ≥ 1,

and

(3.20) φ(β, tmax) ≤ φ(β; t1, . . . , tp) < g(tmax), tmax = max
1≤i≤p

ti.

The proof is deferred to Appendix A. Remark that both inequalities in (3.20) are intu-
itive: the first one asserts that it is easier to survive in a homogeneous environment with
gap tmax than in the original environment. The second one states that one of the strategy
to survive is to stay confined in the largest gap. With this estimate in hand, we get our
first building block, that is an upper bound on the probability to survive in-between two
obstacles, for a general environment τ .

Proposition 3.4. Let (τi)i∈N0 be an increasing sequence of integers with τ0 = 0 and let
ti = τi − τi−1 for all i ∈ N. There exists a constant C > 0 such that for all 0 ≤ k < r < `,
one has

(3.21) Pτr(σ ∧Hτk ∧Hτ` > n) ≤ Cn2(`− k) exp(−φ(β; max{ti : k < i ≤ `})n),

where φ(β; ·) is defined in Proposition 3.2.

Proof of Proposition 3.4. The proof relies on periodization. Since the random walk does
not leave the interval (τk, τ`) on the event considered, we may as well replace the renewal
τ by a periodized version, and by translation invariance, consider that the random walk
starts at zero. Finally, everything is as if the walk evolves in a new environment τ̃ , with
periodic increments, defined by

(3.22) τ̃ = {τi : k ≤ i ≤ `} − τr + (τ` − τk)Z,
and we now have to bound from above Pτ̃ (σ∧Hτ̃k−r∧Hτ̃`−r > n), where we put a superscript
on P to stress that the walk evolves among τ̃ . This probability is certainly smaller than
Pτ̃0(σ > n), and we may now conclude thanks to Proposition 3.3. �

In the following Proposition 3.4 appears to be one of the key estimates in our proof, see
(5.12) and (5.9). It is actually possible to obtain this proposition (with a different polyno-
mial correction) without (3.18). We propose hereafter an alternative proof by comparing
the survival probability in the weakly-inhomogeneous environment considered in Propo-
sition 3.3 with the same probability in a periodic environment where all gaps have size
tmax = max1≤i≤p ti. Yet we choose to keep Proposition 3.3 as it gives a stronger result and
is interesting by itself.

Proposition 3.5. We consider the same notations and environment as in Proposition 3.3.
Define moreover τ (max) = tmaxZ. For all n ∈ N0, for all β ≥ 0,

(3.23) Pτ (σ > n) ≤ Pτ
(max)

(σ > n).

As a consequence, there exists a constant C > 0 such that for all n ∈ N0 and t1, . . . , tp ∈ N,

(3.24) Pτ (σ > n) ≤ Ct3max exp(−φ(β, tmax)n).
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Proof of Proposition 3.5. Let us start with (3.23). Recall (1.1) and the definition of X
above (3.7). From (1.2), it is enough to prove that for all k ∈ N,

(3.25) Pτ (θk ≥ `) ≤ Pτ
(max)

0 (θk ≥ `), ` ∈ N0,

which we prove by induction on k. To that end, note that, by a standard coupling argument,

(3.26) sup
x∈τ

Pτx(θ1 ≥ `) ≤ Pτ
(max)

0 (θ1 ≥ `), ` ∈ N0.

The inequality above serves both as the initialization step and in the induction step in the
proof of (3.25). Indeed, suppose that (3.25) is true for some k ∈ N (for all ` ∈ N0). By
applying the strong Markov property at time θk,

(3.27) Pτ (θk+1 ≥ `) = Eτ (u(`− θk, τXk)),

where

(3.28) u(m, y) = Pτy(θ1 ≥ m)1{m∈N0}, y ∈ τ.

By using (3.26), we obtain

(3.29) Pτ (θk+1 ≥ `) ≤ Eτ (ũ(`− θk)),

where

(3.30) ũ(m) = Pτ
(max)

(θ1 ≥ m)1{m∈N0},

Finally, by using (3.25) at rank k, we get for all ` ∈ N0,

(3.31) Eτ (ũ(`− θk)) ≤ Eτ
(max)

(ũ(`− θk)) = Pτ
(max)

(θk+1 ≥ `).

To obtain (3.24), we combine the renewal representation of the survival probability,
see [5, Equation (2.11)] with the expansion of φ in (3.16). �

3.3. A decoupling inequality. The next building block is a control on the probability
that the walk reaches a given point before a certain fixed time, conditional on survival and
not coming back to 0. In essence, the following proposition tells us that the walk reaches
this point stochastically faster in the presence of obstacles:

Proposition 3.6. Let (τi)i∈N0 be an increasing sequence of integers with τ0 = 0. For all
β > 0, x ∈ N and n ∈ N,

(3.32) Pβ(Hx ≤ n | σ ∧H0 > Hx) ≥ P(Hx ≤ n | H0 > Hx).

Let us stress that this proposition is general, as it does not depend on the position of
the obstacles.

Proof of Proposition 3.6. Let x ∈ N. We first remark that the stopped process (Sk∧Hx)k∈N0

is still a Markov chain under Pβ(·|σ ∧ H0 > Hx), with 0 as initial state, x as absorbing
state, and transition probabilities given by

(3.33) Q̄β(a, b) :=


e
−β1{b∈τ}Pβb (σ∧H̃0>H̃x)

e
−β1{a+1∈τ}Pβa+1(σ∧H̃0>H̃x)+e

−β1{a−1∈τ}Pβa−1(σ∧H̃0>H̃x)
if |b− a| = 1

0 otherwise,
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where 1 ≤ a < x and H̃z := inf{n ∈ N0 : Sn = z}. By applying the strong Markov property
at Ha+1, observe that
(3.34)

Q̄β(a, a− 1)

Q̄β(a, a+ 1)
=
e−β1{a−1∈τ}Pβa−1(σ ∧ H̃0 > H̃x)

e−β1{a+1∈τ}Pβa+1(σ ∧ H̃0 > H̃x)
= e−β1{a−1∈τ}Pβa−1(σ ∧ H̃0 > Ha+1),

and note that this ratio is non-increasing in β, for all 1 ≤ a < x. We may deduce by a
standard coupling argument that Hx is stochastically smaller under Pβ(·|σ∧H0 > Hx) than
under P(·|H0 > Hx), which corresponds to the case β = 0. This concludes the proof. �

3.4. Two technical lemmas. Recall the notations in (3.10) and (3.11).

Lemma 3.7. Let (τi)i∈N0 be an increasing sequence of integers with τ0 = 0 and let ti =
τi − τi−1 for all i ∈ N. Define the function f : z ∈ (0, π) 7→ z/ sin(z). Let n ∈ N. For
ε > 0 small enough, there exist α = α(ε) > 0, C > 0 and T0(ε) ∈ N such that for

t > T0(ε) ∨max0≤i≤n ti and φ = π2

2t2
,

(3.35)
Qij(φ)

Qij(0)
≤

{
exp(ε) if i 6= j and tij ≤ αt, or i = j

2f
(
π

max0≤i≤n ti
t (1 + C

t2
)
)

else.

The ratio in (3.35) is the positive Laplace transform of the hitting time of τ for the walk
conditioned to go from τi to τj . As we will consider large values of t and thus small values
of φ, Lemma 3.7 can be understood as a control of this transform near 0.

Proof of Lemma 3.7. We consider ε > 0 small enough (it will appear in the following how
small it has to be). Let us start with the case i 6= j. From the explicit expressions of the
Laplace transforms, see e.g. (A.5) in Caravenna and Pétrélis [5], we get

(3.36) Qij(φ) =
tan ∆

2 sin(tij∆)
, where ∆ = ∆(φ) = arctan(

√
e2φ − 1),

and we note that

(3.37) Qij(0) =
1

2tij
.

Let us notice that (3.36) is well-defined if tij∆ < π, which occurs as soon as t is large
enough. Indeed, by expanding ∆ we see that there exists a constant C > 0 and T1 ∈ N
such that for t ≥ T1,

(3.38) ∆ ≤ π

t

(
1 +

C

t2

)
.

If we assume moreover that t > tij , we obtain, as t and tij are integers,

(3.39)
tij∆

π
≤ t− 1

t

(
1 +

C

t2

)
= 1− 1 + o(1)

t
<

1

1 + ε
,

provided t is larger than some T1(ε) ∈ N. For the rest of the proof, we assume that
t > T1 ∨ T1(ε) ∨max{ti : 0 ≤ i ≤ n}.

By combining (3.36) and (3.37), we now obtain

(3.40)
Qij(φ)

Qij(0)
=
tij tan(∆)

sin(tij∆)
.

By using (3.38) and expanding tan to first order, there exists T2(ε) such that for t ≥ T2(ε),

(3.41) tan(∆) ≤ (1 + ε)∆.
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By adding this latter condition on t, we get, since f is increasing,

(3.42)

Qij(φ)

Qij(0)
≤ (1 + ε)

tij∆

sin(tij∆)

= (1 + ε)f(tij∆)

≤ (1 + ε)f

(
π
tij
t

(
1 +

C

t2

))
.

As ε < 1, that concludes the proof of the second inequality in our statement. To get the
first inequality when i 6= j, notice first that, as f(z)→ 1 when z → 0, there exists zε such
that (1 + ε)f(z) ≤ exp(ε) for z ≤ zε. Therefore, it is enough to define

(3.43) α(ε) =
zε

π(1 + ε)
,

assume that t > T3(ε) := (C/ε)1/2 and use (3.42) to get what we need.
We are left with the case i = j. Again, with the help of (A.5) in Caravenna and Pétrélis [5],

(3.44) Qii(φ) = 1− 1

2

tan(∆)

tan(ti−1,i∆)
− 1

2

tan(∆)

tan(ti,i+1∆)
,

where ∆ is defined as in (3.36). We thereby retrieve the standard formula:

(3.45) Qii(0) = 1− 1

2ti−1,i
− 1

2ti,i+1
.

Note that it is enough to treat the case ti,i+1 = ti−1,i since

(3.46) Qii(φ) =
1

2

(
1− tan(∆)

tan(ti−1,i∆)

)
+

1

2

(
1− tan(∆)

tan(ti,i+1∆)

)
.

We may now consider the ratio

(3.47)
Qii(φ)

Qii(0)
=

1− tan(∆)
tan(ti,i+1∆)

1− 1
ti,i+1

.

By choosing t ≥ T2(ε) and expanding tan to first order, we obtain

(3.48) 1− tan(∆)

tan(ti,i+1∆)
≤

{
1− ∆

tan(ti,i+1∆) if ti,i+1∆ ≤ π
2 ,

1− (1 + ε) ∆
tan(ti,i+1∆) if π

2 < ti,i+1∆ < π.

We remind that our conditions on t guarantee that ti,i+1∆ < π. The reason why we split
cases above is that tan changes sign at the value π. We further make a dichotomy : (i) t is
large and ti+1 is at least εt and (ii) t is large and ti+1 less than εt. Let us start with (i). If
actually ti,i+1∆ < π/2, we may simply bound the denominator in (3.47) by 1. Otherwise, we
note that z 7→ −z/ tan(z) is increasing on (π/2, π), so we may write, as ti,i+1∆ < π/(1 + ε)
by (3.39),

(3.49) 1− (1 + ε)
∆

tan(ti,i+1∆)
≤ 1− 1

ti,i+1

π

tan(π/(1 + ε))
.

Thus, if we define

(3.50) t4(ε) =
3

ε2

( π

| tan(π/(1 + ε))|
∨ 1
)
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and assume that t > T4(ε), we obtain

(3.51)
Qii(φ)

Qii(0)
≤

1− 1
ti,i+1

π
tan(π/(1+ε))

1− 1
ti,i+1

≤ 1 + ε/3

1− ε/3
= 1 +

2

3
ε+ o(ε), ε→ 0,

which is smaller than exp(ε) when ε is small enough. We now deal with (ii) and to this end
we assume t ≥ T2(ε) and ti,i+1 ≤ εt, in which case we expand tan(ti,i+1∆). By using (3.38)
and assuming that t > T3(ε) we get ti,i+1∆ ≤ ε(1 + ε)π. Thus, there exists a constant
C = C(ε) > 0 such that
(3.52)

tan(ti,i+1∆) ≤ ti,i+1∆ + C(ti,i+1∆)3, so 1− ∆

tan(ti,i+1∆)
≤ 1− 1

ti,i+1
(1− Ct2i,i+1∆2).

Finally, since ti,i+1 ≥ 2 necessarily,

(3.53)
Qii(φ)

Qii(0)
≤ 1 + 2Cti,i+1∆2 ≤ 1 + 2Cε(1 + ε)∆.

Now we pick t ≥ T5(ε) such that ∆ ≤ [2C(1 + ε)]−1 and we get the claim.
We conclude the proof by setting T0(ε) = max(T1, T1(ε), T2(ε), T3(ε), T4(ε), T5(ε)). �

Recall the notations in (3.2) and (3.11). Given α > 0 and k ∈ N, we define a set of bad
edges as

(3.54) Bk,α = {1 ≤ x, y ≤ i(k) : x 6= y, tx,y > αt∗k}.
and its cardinal

(3.55) Lk,α = |Bk,α|.
These bad edges correspond to the second case in Lemma 3.7. Recall also (3.7) and (3.8).
The following lemma controls the visits to the bad edges:

Lemma 3.8. Let (τi)i∈N0 be an increasing sequence of integers with τ0 = 0 and let ti =
τi − τi−1 for all i ∈ N. There exists a function h such that, for any A > 0, k ≥ 0, and
α > 0, if t∗k > h(A,Lk,α, α) then

(3.56) Eβ
(
A]{i≤ζ

∗
k : {Xi−1,Xi}∈Bk,α}1{ζ∗k<ζ0∧N}

)
≤ 2ALk,ατ∗kPβ(ζ∗k < ζ0 ∧N ).

Proof of Lemma 3.8. We start with the case Lk,α = 1 and denote by (s, s + 1) the bad
edge. By using the geometric nature of N and applying the Markov property at ζs+1, we
get
(3.57)

Eβ
(
A]{i≤ζ

∗
k : {Xi−1,Xi}∈Bk,α}1{ζ∗k<ζ0∧N}

)
= Eβ

(
A]{i≤ζs+1 : {Xi−1,Xi}={s,s+1}}1{ζ∗k<ζ0∧N}

)
≤ Pβ(ζs+1 < ζ0 ∧N )A Eβτs+1

(
A]{i≤ζs+1 : {Xi−1,Xi}={s,s+1}}1{ζ∗k<ζ0∧N}

)
,

and we now focus on the last factor in the line above. By considering the consecutive visits
of X to s+ 1, we may write

(3.58) Eβτs+1

(
A]{i≤ζs+1 : {Xi−1,Xi}={s,s+1}}1{ζ∗k<ζ0∧N}

)
= E(vG)Pτs+1(ζ∗k < N|ζ∗k < ζs+1),

where G is a N0-valued geometric random variable with parameter Pτs+1(ζ∗k < ζs+1) and

(3.59) v = Eτs+1

(
A]{i≤ζs+1 : {Xi−1,Xi}={s,s+1}}1{ζs+1<N}|ζs+1 < ζ∗k

)
.
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We are going to show now that v ≤ 1 when t∗k ≥ h0(A,α) where

(3.60) h0(A,α) =
A2

2αeβ(eβ − 1)
.

To this end, note that

(3.61) v ≤ 1

2
e−β +

1

2

(
1− 1

ts,s+1

)
e−β +

1

2ts,s+1
A2e−2β.

Indeed, the first term is given by walks which make their first step to the right. The second
term comes from those who make their first step to the left but come back to τs+1 before
hitting τs, whereas the third term comes from the walks who hit τs before coming back to
τs+1. Then, as ts,s+1 ≥ αt∗k,

(3.62) v ≤ e−β +
A2e−2β

2αt∗k
,

which, by (3.60), proves that v ≤ 1. To complete the proof in this case, we write

(3.63)

r.h.s(3.57) ≤ A Pβ(ζs+1 < ζ0 ∧N )Pτs+1(ζ∗k < N|ζ∗k < ζs+1)

≤ A Pβ(ζs+1 < ζ0 ∧N )
Pβτs+1(ζ∗k < N ∧ ζs+1)

Pτs+1(ζ∗k < ζs+1)

≤ 2A(τ∗k − τs+1)Pβ(ζs+1 < ζ0 ∧N )Pβτs+1
(ζ∗k < N ∧ ζs+1)

≤ 2A τ∗k Pβ(ζ∗k < ζ0 ∧N ).

Let us now conclude the proof in the general case Lk,α ≥ 1. Our strategy is to decouple
the contribution of each bad set by Holdër’s inequality and reduce the problem to the case
Lk,α = 1 with A replaced by AL. Indeed, if we note

(3.64) Bk,α = {(s`, s`+1) : 1 ≤ ` ≤ L, 1 ≤ s` < i(k)},

and suppose that t∗k ≥ h(A,Lk,α, α), where

(3.65) h(A,L, α) := h0(AL, α) =
A2L

2αeβ(eβ − 1)
,

we get

(3.66)

Eβ
(
A]{i≤ζ

∗
k : {Xi−1,Xi}∈Bk,α}1{ζ∗k<ζ0∧N}

)
≤

Lk,α∏
i=1

Eβ
(

(ALk,α)]{i≤ζ
∗
k : {Xi−1,Xi}={s`,s`+1}}1{ζ∗k<ζ0∧N}

)1/Lk,α

≤ 2ALk,ατ∗kPβ(ζ∗k < ζ0 ∧N ).

This concludes the proof. �

3.5. Good environments. We define here a notion of good environments, that are envi-
ronments where it is possible to give a good control on the survival probability. We will
show in Section 6.1 that these environments are typical, meaning that by tuning some
parameters and considering n large enough, their probability of occurence can be made
arbitrarily close to one.
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Additional notations. Beforehand, we remind of the functions f and h introduced in Lemma
3.7 and Lemma 3.8. We define

(3.67) fk := 2f

(
π
T ∗k−1

T ∗k

[
1 +

C

(T ∗k )2

])
,

that appears in the events A
(6)
n and A

(7)
n below. The constant C above is the same as the

one in (3.35) in Lemma 3.7. From (3.14) and (3.16), there exists (for a fixed β) a constant
C1 > 0 so that

(3.68) 1/(C1t
2) ≤ g(t) ∧ φ(β, t) ≤ g(t) ∨ φ(β, t) ≤ C1/t

2, t ≥ 1.

This constant appears in the event A
(9)
n . Finally, we define the exponent

(3.69) κ =


γ
4 if γ ≤ 1
1

2γ −
1
4 if 1 < γ < 2

1
2γ if γ ≥ 2,

which appears in the event A
(1)
n .

Definition. Let δ, ε0, ε, η > 0. The set of good environments, denoted by Ωn(δ, ε0, ε, η),
is defined as the intersection of the events defined below (we stress that α(ε) and T0(ε)
appearing here are the same as in Lemma 3.7 and T0 comes from Proposition 3.1):

(3.70) Ωn(δ, ε0, ε, η) =
11⋂
i=1

A(i)
n (δ, ε0, ε, η),

with

(3.71)

A(1)
n =

{τ2
N1+κ < n

1− γ∧(2−γ)
4(γ+2) } if γ < 2

{τ2
N1+κ < n

1+ 2γ−1
2(γ+2) } if γ ≥ 2,

A(2)
n (ε0) := {Tk ≤ ε

1
2γ

0 N
1
γ , ∀k ≤ ε0N}

A(3)
n (ε0) := {τN/ε0 < n}

A(4)
n (δ) := {∃` ∈ {N, . . . , 2N} : T` ≥ T0 ∨ δN

1
γ }

A(5)
n (ε0, ε) := {∀k ∈ Rε0(n), T ∗k > T0(ε) ∨ ε

3
2γ

0 N
1
γ }

A(6)
n (ε0, ε) := {∀k ∈ Rε0(n), fLkk ≤ exp(n

γ
2(γ+2) )}

A(7)
n (ε0, ε) := {∀k ∈ Rε0(n), T ∗k > h(fk, Lk,α(ε), α(ε))}

A(8)
n (ε0) := {|R(1, N/ε0)| ≤ [log(N/ε0)]2}

A(9)
n (δ) := {|λ(2N, β)− λ(β)| ≤ C1

2δ2
}

A(10)
n (ε0, ε, η) := {|λ(`− 1, b)− λ(b)| ≤ ε0η

2 , ∀` ≥ ε0N, b ∈ {β, β − ε}}

A(11)
n (ε0) := {ΠN ({y > 1/ε0}) = 0}.

We might omit some or all parameters of Ωn when no confusion is possible to alight

notations. Event A
(1)
n and A

(4)
n (δ) are used to provide a lower bound on Zn, see Proposition

4.1. Events from A
(2)
n to A

(9)
n are used to establish the upper bound, see Proposition 5.1.
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Finally, the events A
(10)
n and A

(11)
n are used in the conclusion of the proof, see (6.58) and

(6.56) in Section 6.2.

4. Lower bound

In this section we prove a lower bound on Zn that is an upper bound on Fn.
Let us set for β ≥ 0, n ∈ N and ` > 1,

(4.1) Gβn(`) = − 1

N
log Pβ(σ ∧H0 > Hτ`−1

) + g(T`)
n

N
= λ(`− 1, β)

`− 1

N
+ g(T`)

n

N
,

where λ(`, β), N and g(·) have been respectively defined in (2.1), (2.4) and (3.14). Recall
the definition of κ in (3.69). Our goal in this section is to prove

Proposition 4.1. On Ωn(δ),

(4.2) Fn ≤ min
1<`≤N1+κ

Gn(`) + o(1)

where o(1) denotes a deterministic function that goes to 0 when n goes to ∞.

Actually, only A
(1)
n and A

(4)
n (δ) are necessary in Proposition 4.1. In order to prove this

proposition we need the following lemma, that states that the exponential cost of reaching
level N1+κ (and so any level ` ≤ N1+κ) before time n is negligible in front of N .

Lemma 4.2. There exists a function k : N 7→ (0,∞) satisfying k(x) = o(x) as x→∞ and
for all 1 < ` < N1+κ and n ∈ N, on Ωn,

(4.3) P(Hτ` ≤ n|Hτ` < H0) ≥ exp(−k(N)).

Proof of Lemma 4.2. Observe that

(4.4)

P(Hτ` ≤ n|Hτ` < H0) ≥ P(Sn ≥ τ`, Sk > 0, 0 < k ≤ n)

≥ P(Sn ≥ τ`)P(Sk > 0, 0 < k ≤ n)

≥ P(Sn ≥ τN1+κ)P(Sk > 0, 0 < k ≤ n).

To go from the first to the second line we use the FKG inequality, since both events are
non-decreasing coordinate-wise in the family of i.i.d. increments (Si−Si−1)1≤i≤n. As there
exists some constant C > 0 such that P(Sk > 0, 0 < k ≤ n) ≥ C/

√
n we only focus on

P(Sn ≥ τN1+κ).

Assume first that γ < 2. Then, we notice that, on A
(1)
n , τN1+κ = o(

√
n) when n goes to

infinity so that

(4.5) P(Sn ≥ τN1+κ) = P(Sn ≥ 0)− P(0 ≤ Sn < τN1+κ) = 1/2 + o(1).

Assume now that γ ≥ 2. In this case, τN1+κ is not anymore negligible in front of
√
n.

However, on A
(1)
n , a standard large deviation estimate for the simple random walk yields

(4.6) P(Sn ≥ τN1+κ) ≥ exp
(
− Cn

2γ−1
2(γ+2)

)
.

We may conclude by setting k(N) = CN
1− 1

2γ . �

Proof of Proposition 4.1. We provide a lower bound on Zn by computing the cost of various
strategies. Here is an informal description of the tested strategies: for 1 < ` ≤ N1+κ, the
walk reaches τ`−1 before time n and before its death, which has a probability of order e−λ`.
Then, it remains confined in the gap (τ`−1, τ`) until time n, with a probability of order

e−g(T`)n. We finally optimise on 1 < ` ≤ N1+κ.
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We may thus write for all ` > 1,

(4.7) Zn ≥ Z [`]
n := P(Hτ` ∧ σ ∧H0 > n ≥ Hτ`−1

),

and then optimize over 1 < ` ≤ N1+κ. Recall the definition of T0 in Proposition 3.1. By
decomposing on the value of Hτ`−1

, we have on Ωn(δ), for n large enough and 1 ≤ ` ≤ N1+κ

such that T` ≥ T0,

(4.8)

Z [`]
n ≥

∑
0≤k≤n

P(σ ∧H0 > Hτ`−1
= k)Pτ`−1

(Hτ` ∧Hτ`−1
> n− k)

≥
∑

0≤k≤n
P(σ ∧H0 > Hτ`−1

= k)Pτ`−1
(Hτ` ∧Hτ`−1

> n)

≥ P(σ ∧H0 > Hτ`−1
, Hτ`−1

≤ n)× c1

2
√
n
e−g(T`)n

≥ P(σ ∧H0 > Hτ`−1
)P(Hτ`−1

≤ n|H0 > Hτl−1
)× c1

2
√
n
e−g(T`)n

≥ c1

2
√
n

P(σ ∧H0 > Hτ`−1
)e−g(T`)n−k(N).

Note that we have used Proposition 3.1 to go from the second to the third line and Propo-
sition 3.6 to go from the third to the fourth line. Finally, to go from the fourth to the fifth
line we use Lemma 4.2 and the fact that the environment is in Ωn(δ). Therefore,

(4.9) Fn ≤ −
1

N
log
( c1

2
√
n

)
+
k(N)

N
+ inf

1<`≤N1+κ

T`≥T0

Gβn(`),

where Gβn is defined in (4.1).
From this definition we observe that the infimum above may actually be restricted to

the values of ` in R(1, N1+κ), which includes R(N, 2N) for n large enough. In turn, on

A
(4)
n (δ), we may remove the condition T` ≥ T0 in the infimum. Finally, since

(4.10) − 1

N
log
( c1

2
√
n

)
+
k(N)

N
= o(1),

as N →∞, the proof is complete.
�

5. Upper bound

In this section we prove an upper bound on Zn or, equivalently, a lower bound on Fn.
Recall the definitions in (3.4).

Proposition 5.1. Let ε, δ > 0. There exists ε0 > 0 such that, on Ωn(δ, ε0, ε),

(5.1) Fn ≥ min
`∈Rε0 (n)

Gβ−εn (`) + o(1).

where o(1) denotes a deterministic function that goes to 0 when n goes to ∞ and Gβn is
defined in (4.1).

Before starting the proof of this proposition we need additional notations. Recall (3.1).
We define the hitting time of the k-th record

(5.2) H∗k = Hτi(k) , k ∈ N0.
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We also define

(5.3) H̃0 = 0, H̃i = inf{n > θi−1 : Sn ∈ τ} − H̃i−1, i ∈ N.

For all n ≥ 1 and k ≥ 1, we define

(5.4) Z(k)
n = Zn(H∗k ≤ n < H∗k+1)

where Zn(A) = Pβ(σ ∧HZ− > n,A) for any event A. The quantity above corresponds to
the survival probability restricted to the event that the walker has reached the k-th record
but not the (k + 1)-th one. These events are clearly incompatible for different values of k.

Proof of Proposition 5.1. Let ε, δ > 0. We choose ε0 small enough so that

(5.5)

β

ε0
> 2(C1δ

−2 + λ(β)),

ε
−1/γ
0 > 4C1(C1δ

−2 + λ(β)),

(these technical conditions will become clear soon).
We have to prove that (5.1) is satisfied on Ωn. We thus consider until the end of this

proof an environment that is in Ωn.
Step 1. We first prove that we can actually consider only the records in Rε0(n), that

are the ones lying in the window {ε0N, · · · , N/ε0}, see (5.10) for a precise formulation. As

the environment is in A
(1)
n ∩ A(4)

n (δ), using (4.8) and (3.68), we obtain for n large enough,
a rough lower bound on Zn:

(5.6)

Zn ≥ max
N≤`≤2N

Z [`]
n

≥ max
N≤`≤2N
T`≥T0

c1

2
√
n

P(σ ∧H0 > Hτ`−1
)e−g(T`)n−k(N)

≥ c1

2
√
n

exp
(
−
{
C1δ

−2N + k(N) + 2Nλ(2N, β)
})
.

As the environment is in A
(9)
n (δ), we finally get

(5.7) Zn ≥
c1

2
√
n

exp
{
−N

(
2C1δ

−2 + 2λ(β) + o(1)
)}
,

where the o(1) holds as n→∞. Observe that

(5.8)
∑

k∈R(N/ε0,∞)

Z(k)
n ≤ e−βN/ε0 ,

while due to Proposition 3.4 and the fact that the environment is in A
(2)
n (ε0), we have for

n large enough,

(5.9)

∑
k∈R(0,ε0N)

Z(k)
n ≤ Zn(Hτε0N

> n) ≤ Cn2(ε0N) exp(−φ(β,max{Ti, i ≤ ε0N})n)

≤ Cn2(ε0N) exp(− n

C1(ε
1/2γ
0 N1/γ)2

)

≤ exp
(
−ε
−1/γ
0 N

2C1

)
.
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Combining (5.7), (5.8) and (5.9) and due to the choice of ε0 in (5.5), we easily get that
for n large enough

(5.10) Zn ≤ 2
∑

k∈Rε0 (n)

Z(k)
n .

Step 2. The main work is thus to derive an upper bound on Z
(k)
n for k ∈ Rε0(n) (see

(5.21) for a precise formulation).
Using the Markov property at time H∗k we observe that for k ∈ Rε0(n)

(5.11)

Z(k)
n = Pβ

(
σ ∧HZ− > n,H∗k ≤ n < H∗k+1

)
=

n∑
m=0

Pβ (σ ∧HZ− > m,H∗k = m) Pβτi(k)
(
σ ∧H∗k+1 ∧HZ− > n−m

)
.

For all m ≥ 0, by Proposition 3.4, we have on A
(3)
n (ε0), for n large enough,

(5.12)

Pβτi(k)
(
σ ∧H∗k+1 ∧HZ− > n−m

)
≤ C(n−m)2i(k + 1)e−φ(β;max{Ti : 0≤i<i(k+1)})(n−m)

≤ C n3 e−φ(β,T ∗k )(n−m).

It remains to bound Pβ (σ ∧HZ− > m,H∗k = m) for 0 ≤ m ≤ n. Recall (3.7) and (3.8).
By using Tchebychev’s inequality in the first line and then conditioning on X, we obtain

for φ := π2

2(T ∗k )2
,

(5.13)

Pβ (σ ∧HZ− > m,H∗k = m) = Pβ(ζ∗k < ζ0 ∧N , H∗k = m)

≤ e−φmEβ(eφH
∗
k1{ζ∗k<ζ0∧N})

≤ e−φmEβ(E(eφH
∗
k |X)1{ζ∗k<ζ0∧N})

≤ e−φmEβ
( ∏

1≤i≤ζ∗k

E(eφH̃i |Xi−1, Xi)1{ζ∗k<ζ0∧N}

)
.

Next, by integrating on N we obtain

(5.14) Eβ
( ∏

1≤i≤ζ∗k

E(eφH̃i |Xi−1, Xi)1{ζ∗k<ζ0∧N}

)
= E

( ∏
1≤i≤ζ∗k

e−β
QXi−1,Xi(φ)

QXi−1,Xi(0)
1{ζ∗k<ζ0}

)
with notations similar to (3.10).

On A
(5)
n (ε0, ε) the assumptions of Lemma 3.7 are valid (with T ∗k playing the role of t),

which provides α > 0. Recall the definition of Bk,α in (3.54). We obtain

(5.15)

E
( ∏

1≤i≤ζ∗k

e−β
QXi−1,Xi(φ)

QXi−1,Xi(0)
1{ζ∗k<ζ0}

)

≤ Eβ−ε
(

2f

(
π
T ∗k−1

T ∗k
(1 +

C

(T ∗k )2
)

)]{i≤ζ∗k : {Xi−1,Xi}∈Bk,α}
1{ζ∗k<ζ0∧N}

)
.
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Recall the definition of fk in (3.67). On A
(7)
n (ε0, ε) the assumptions of Lemma 3.8 (with fk

playing the role of A) are satisfied and from (5.15) we obtain that on A
(3)
n (ε0)

(5.16)
E
( ∏

1≤i≤ζ∗k

e−β
QXi−1,Xi(φ)

QXi−1,Xi(0)
1{ζ∗k<ζ0}

)
≤ Eβ−ε

(
f
]{i≤ζ∗k : {Xi−1,Xi}∈Bk,α}
k 1{ζ∗k<ζ0∧N}

)
≤ 2f

Lk,α
k n Pβ−ε(ζ∗k < ζ0 ∧N ).

Finally, combining (5.11), (5.12), (5.13) and (5.16) we obtain for k ∈ Rε0(n)

(5.17)

Z(k)
n ≤ 2C n4 f

Lk,α
k e−φ(β,T ∗k )n Pβ−ε(ζ∗k < ζ0 ∧N )

n∑
m=0

e
−
(

π2

2(T∗
k
)2
−φ(β,T ∗k )

)
m

≤ 2C n4f
Lk,α
k e−G

β−ε
n (i(k))Ne−(φ(β;T ∗k )−g(T ∗k ))n

n∑
m=0

e
−
(

π2

2(T∗
k
)2
−φ(β,T ∗k )

)
m
.

On A
(5)
n (ε0, ε) we control both the errors φ(β;T ∗k ) − g(T ∗k ) and φ(β, T ∗k ) − π2

2(T ∗k )2
. Indeed

due to (3.14) and (3.16) there exists some constant C(β) such that for t large enough
(depending on β),

(5.18) |φ(β; t)− π2

2t2
| ∨ |φ(β; t)− g(t)| < C(β)

t3
,

and we obtain that on A
(5)
n (ε0, ε) and for n large enough

(5.19) |φ(β;T ∗k )− π2

2(T ∗k )2
| ∨ |φ(β;T ∗k )− g(T ∗k )| ≤ C(β)

ε
9/2γ
0 N3/γ

.

From (5.17) we thus obtain for n large enough and k ∈ Rε0(n)

(5.20) Z(k)
n ≤ 2C n5f

Lk,α
k exp

{
−N min

`∈Rε0 (n)
Gβ−εn (`) + C(β)ε

−9/2γ
0 n

γ−1
γ+2

}
.

We also remind that on A
(6)
n (ε0, ε), f

Lk,α
k ≤ en

γ
2(γ+2)

so that finally for k ∈ Rε0(n), and for
n large enough,

(5.21) Z(k)
n ≤ 2C n5 exp

(
−N min

`∈Rε0 (n)
Gβ−εn (`) + o(N)

)
.

Step 3. It remains to sum this last equation for k ∈ Rε0(n). As the environment is in

A
(8)
n (ε0), we finally obtain that for n large enough

(5.22) Zn ≤ ε−1
0 2C n6 exp

(
−N min

`∈Rε0 (n)
Gβ−εn (`) + o(N)

)
and

(5.23) Fn ≥ min
`∈Rε0 (n)

Gβ−εn (`) + o(1),

where the o(1) holds as n→∞. �
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6. Proof of Theorem 2.2

This section is divided in two parts. In the first one we establish that, for n large enough,
environments are good with probability arbitrary close from 1. The second one is devoted
to the proof our main result Theorem 2.2. Due to the control on the environment we
can actually restrict our analysis to the event of good environments so that results of
Proposition 4.1 and 5.1 are in force and provide a precise control on Zn.

6.1. Environments are good with high probability. The aim of this part is to prove
the following proposition that assures a control of the probability that an environment is
good:

Proposition 6.1. For all θ > 0 there exists δ and ε1(δ) small enough such that for all
ε0 < ε1(δ), for all ε, η > 0

(6.1) lim inf
n→∞

P (Ωn(δ, ε0, ε, η)) ≥ 1− θ.

We first establish various results on the records of the sequence (Ti)i≥1.

Preliminaries on records. We say that n ∈ N is a record if n = 1 or n ≥ 2 and Tn >
max{T1, . . . , Tn−1}. Let us define

(6.2) In =

{
1 if n is a record

0 otherwise,

the indicator of a record, and

(6.3) Rn =

n∑
k=1

Ik = |R(1, n)|

the number of records between 1 and n. It was noticed (see Rényi [15]) that when T1 is
a continuous random variable, the In’s are independent Bernoulli random variables with
mean E(In) = 1/n. However, we deal here with the discrete case, where this simple structure
breaks down because of the possibility of ties. Actually, this case seems to have attracted
relatively little attention (see however [12] and references therein). In this section, we
provide some results in the discrete case (moments and deviations from the mean for the
number of records) that will be useful later, though we do not aim for optimality. We start
with:

Proposition 6.2. For all p ∈ N and 1 ≤ n1 < n2 < . . . < np,

(6.4) E(In1 . . . Inp) ≤ (1/n1) . . . (1/np).

As a consequence we obtain:

Proposition 6.3. For b > 1 there exists a positive constant c = c(b) (which we may choose
smaller but arbitrarily close to supλ>0{bλ+ 1− eλ} = 1 + b(ln b− 1) > 0) such that for n
large enough,

(6.5) P(Rn ≥ b log n) ≤ n−c.

Proof of Proposition 6.2. We prove it by iteration on p ≥ 1 and thus start with the case
p = 1. Let n ≥ 2 (the statement is trivial for n = 1). Let Jn be the indicator of the event
that there is a strict maximum among the n first variables, meaning that

(6.6) Jn = 1{∃1≤i≤n : ∀1≤j≤n, j 6=i, Ti>Tj}.
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By exchangeability of the n first variables we get that

(6.7) E(In) =
1

n
E(Jn) ≤ 1

n
.

Suppose now that the statement is true for p ≥ 1 and let 2 ≤ n1 < . . . < np+1 (if n1 = 1,
we can safely remove it). Again, by exchangeability of (T1, . . . , Tn1) we have

(6.8) E(In1 . . . Inp+1) =
1

n1
E(Jn1In2 . . . Inp+1) ≤ 1

n1
E(In2 . . . Inp+1),

and the result follows by using the induction hypothesis. �

Proof of Proposition 6.3. Let λ > 0 to be specified later. By Chernoff’s bound,

(6.9) P(Rn ≥ b log n) ≤ e−bλ lognE[eλRn ].

Since Rn =
∑n

k=1 Ik and the Ik’s are {0, 1}valued random variables, we get

(6.10) eλRn =

n∏
k=1

(1 + [eλ − 1]Ik) = 1 +
∑

J⊆{1,...,n}
J 6=∅

[eλ − 1]|J |
∏
j∈J

Ij .

By taking the expectation and using Proposition 6.2, we get

(6.11) E[eλRn ] ≤
n∏
k=1

(
1 + [eλ − 1]

1

k

)
≤ exp([eλ − 1][1 + o(1)] log n),

where the o(1) holds as n→∞. Finally, we obtain

(6.12) P(Rn ≥ b log n) ≤ exp({[eλ − 1][1 + o(1)]− bλ} log n),

which concludes the proof. �

Proof of Proposition 6.1. We will use notations from the previous subsection during the
proof, and sometimes write R(n) instead of Rn for the sake of readability. We consider the

events A
(i)
n for 1 ≤ i ≤ 11 and conclude by combining the results obtained in each cases.

Along the proof we will use that, by (1.8), there exists c1, c2 > 0 such that for all m ∈ N,

(6.13) 1− c1m
−γ ≤ P(T1 ≤ m) ≤ 1− c2m

−γ ≤ exp(−c2m
−γ).

Case i = 1. Assume first that γ ≤ 1, so that κ = γ
4 . Since

(6.14) N
(1+ γ

4
) 2
γ = o(n

1− γ
4(γ+2) ),

one has limn→∞ P(A
(1)
n ) = 0 from Proposition 1.1. Assume now that γ > 1. Then,

(6.15) N2(1+κ) =

{
o(n

1− 2−γ
4(2+γ) ) if γ ∈ (1, 2)

o(n
1+ 2γ−1

2(γ+2) ) if γ ≥ 2,

and again limn→∞ P(A
(1)
n ) = 0 from Proposition 1.1.

Case i = 2. Note that, by (6.13),
(6.16)

P
(
A(2)
n (ε0)

)
= P

(
T1 ≤ ε

1
2γ

0 N1/γ

)ε0N
≥

1− c1

ε
1
2
0N

ε0N

= e−c1ε
1/2
0 + o(1) n→∞.
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We obtain limε0→0 lim infn→∞ P(A
(2)
n (ε0)) = 1.

Case i = 3. Here we note that N1/γ = o(n) when γ ≤ 1 and N = o(n) when γ > 1, and we
conclude using Proposition 1.1 that for all ε0 > 0

(6.17) lim
n→∞

P(A(3)
n (ε0)) = 0.

Case i = 4. By independence of the T`’s, one has

(6.18) P(A(4)
n (δ)c) ≤ P(T1 < T0(ε) ∨ δN

1
γ )N .

Therefore,

(6.19) P(A(4)
n (δ)c) ≤ exp(−c(NT0(ε)−γ ∧ δ−γ)),

from which we deduce that for all ε > 0

(6.20) lim
δ→0

lim inf
n→∞

P(A(4)
n (δ)) = 1.

Case i = 5. Recall the definitions of Rε0(n) and T ∗k in (3.2) and (3.4). We get

(6.21) P(A(5)
n (ε0, ε)

c) ≤ P(∀` ≤ ε0N, T` ≤ T0(ε) ∨ ε
3
2γ

0 N
1
γ ) ≤ P(T1 ≤ T0(ε) ∨ ε

3
2γ

0 N
1
γ )ε0N .

By using again (6.13), we obtain

(6.22) P(A(5)
n (ε0, ε)

c) ≤ exp(−c2(ε0T0(ε)−γN ∧ ε−1/2
0 )),

from which we get for all ε > 0

(6.23) lim
ε0→0

lim inf
n→∞

P(A(5)
n (ε0, ε)) = 1.

Case 6 ≤ i ≤ 8. Let us first prove that for ε0 > 0,

(6.24) lim
n→∞

P(A(8)
n (ε0)) = 1.

Indeed, since |R(1, N/ε0)| = R(N/ε0), it is enough to prove that

(6.25) P(Rn ≤ (log n)2)→ 1, n→∞,
which can be easily deduced from Proposition 6.3. We now deal with the event correspond-
ing to i = 7. Fix ε0, ε > 0, and note that
(6.26)

P(A(7)
n (ε0, ε)

c) ≤ P(A(8)
n (ε0)c) + P(A(5)

n (ε0, ε)
c)

+ P
(
∃k ≤ [log(N/ε0)]2 : ε

3
2γ

0 N
1
γ ≤ T ∗k ≤ h(fk, Lk, α(ε)), i(k) ≤ N/ε0

)
.

By a union bound we are left to prove that

(6.27) pk(n, ε0) = o([log n]−2),

where

(6.28) pk(n, ε0, ε) := P(ε
3
2γ

0 N
1
γ ≤ T ∗k ≤ h(fk, Lk, α(ε)), i(k) ≤ N/ε0).

From (3.65) in the proof of Lemma 3.8, we have for n large enough,

(6.29) pk(n, ε0, ε) ≤ P(fLkk ≥ C(ε0, ε)N
1
2γ , T ∗k ≥ ε

3
2γ

0 N
1
γ , i(k) ≤ N/ε0).

Let us first show that

(6.30) P
(
fk > A, T ∗k ≥ ε

3
2γ

0 N
1
γ

)
≤ C

[
A ∧ ε

3
γ

0 N
2
γ

]−1
.
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To this end, our first ingredient is the following upper bound, which holds for u ∈ (0, 1)
and k ∈ N:

(6.31) P
( T ∗k
T ∗k+1

≥ 1− u
)
≤ Cu.

We show this inequality at the end of the proof, in order not to disrupt the main line of
ideas. We will also use the following elementary bound:

(6.32) f(u) =
u

sin(u)
≤ C

π − u
, u ∈ (0, π).

Coming back to (6.30), we have by using (6.32),

(6.33)

P
(
fk > A, T ∗k ≥ ε

3
2γ

0 N
1
γ

)
≤ P

(T ∗k−1

T ∗k

[
1 +

C

(T ∗k )2

]
≥ 1− C

A
, T ∗k ≥ ε

3
2γ

0 N
1
γ

)
≤ P

(T ∗k−1

T ∗k
≥ 1− C

A
− C

ε
3
γ

0 N
2
γ

)
,

and we obtain (6.30) thanks to (6.31). In view of (6.27), we choose A = An = [log n]3. For
k ≥ 1, from (6.29),
(6.34)

pk(n, ε0, ε) ≤ P
(
fk ≥ An, T ∗k ≥ ε

3
2γ

0 N
1
γ

)
+P
(
Lk ≥ C

log n

log logn
, T ∗k ≥ ε

3
2γ

0 N
1
γ , i(k) ≤ N/ε0

)
.

Using (6.30), the first term in the sum above is o[(log n)−2]. We now deal with the second
one. On the corresponding event, we have

(6.35) card
{

1 ≤ j ≤ N/ε0 : Tj ≥ αε
3
2γ

0 N
1
γ

}
≥ C log n

log log n
.

Furthermore, the random variable in the l.h.s. of the inequality follows a binomial law with

parameters N/ε0 and P(T1 ≥ αε
3
2γ

0 N
1
γ ) ≤ α−γε

−3/2
0 N−1 (up to a harmless constant). By

using a standard binomial-to-Poisson approximation (cf. end of the proof)

(6.36) P(Bin(`, q) ≥ m) ≤
(q`
m

)m
em−q`, ` ∈ N, q ∈ (0, 1), m ∈ N : q` < m,

with q = ε
−3/2
0 N−1, ` = N/ε0 and m = C log n/ log log n, we get that

(6.37) P((6.35)) = o(n−C/2),

which is enough to conclude. From what precedes we finally obtain that for all ε0, ε > 0,

(6.38) lim
n→∞

P(A(7)
n (ε0, ε)

c) = 0.

The event corresponding to i = 6 can be readily treated with the same idea, since the N
1
2γ

in (6.29) is less than exp(n
γ

2(γ+2) ). Finally,

(6.39) lim
n→∞

P(A(6)
n (ε0, ε)

c ∪A(7)
n (ε0, ε)

c) = 0.

Case 9 ≤ i ≤ 10. From the almost-sure convergence in Proposition 2.1, we readily get that
for any choice of δ, ε0, ε, η,

(6.40) lim
n→∞

P(A(9)
n (δ) ∩A(10)

n (ε0, ε, η)) = 1.
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Case i = 11. Note that by (6.13),

(6.41) P
(
A(11)
n (ε0)

)
= P

(
T1 ≤

N1/γ

ε0

)N
≥ e−c1ε

γ
0 + o(1) n→∞.

We obtain limε0→0 lim infn→∞ P(A
(11)
n (ε0)) = 1.

Proof of (6.31). By writing 1 + v = (1− u)−1 for convenience, one has

(6.42) P
(
T ∗k+1 ≤ (1 + v)T ∗k

∣∣∣ T ∗k = `
)

=

{
0 if v < 1/`

P(T1 ≤ b(1 + v)`c | T1 > `) otherwise.

From our assumption on the tail of T1 and with the help of a standard comparison between
series and integrals, the probability in the second case is bounded from above by

(6.43) C`γ
b(1+v)`c∑
n=`+1

n−(1+γ) ≤ C`γ
∫ b(1+v)`c−1

`
t−(1+γ)dt.

In turn, the integral above is controlled by

(6.44)

∫ (1+v)`

`
t−(1+γ)dt = C[1− (1 + v)−γ ]`−γ ≤ Cu`−γ ,

which completes the proof of (6.31).

Proof of (6.36). By Chernoff’s bound, one has for x > 0,

(6.45) P(Bin(`, q) ≥ m) ≤ e−xmE(exBer(q))` ≤ exp(−xm+ q(ex − 1)`).

Since m > q`, we may choose x = log(m/(q`)) to minimize the r.h.s. in the line above and
get the result.

6.2. Conclusion : proof of Theorem 2.2. To prove Theorem 2.2, we establish that for
all u ∈ R which is a continuity point of the distribution function of F ,

(6.46) lim
n→∞

P(Fn ≤ u) = P(F ≤ u).

By (2.36) all real numbers are continuity points of F . Moreover since Fn is positive, we
only have to prove (6.46) for u > 0.

We start with the upper bound in (6.46)

(6.47) lim sup
n→∞

P(Fn ≤ u) ≤ P(F ≤ u).

Fix θ > 0 that we will let go to 0 only at the very end of the proof. Fix also ε, η > 0. From
Proposition 6.1, there exists δ > 0 and ε1(δ) so that for ε0 < ε1(δ)

(6.48) lim inf
n

P(Ωn(δ, ε0, ε, η)) > 1− θ.

Fix ε0 < ε1(δ) small enough so that the conclusion of Proposition 5.1 is satisfied. Thus we
obtain that for n large enough

(6.49) P(Fn ≤ u) ≤ P( min
`∈Rε0 (n)

Gβ−εn (`) ≤ u+ η,Ωn) + P(Ωc
n).
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From Proposition 6.1 and the choices of δ and ε0, P(Ωc
n) < θ for n large enough. Thus we

just have to focus on the first term in the last equation. We introduce for n, ` ≥ 1 and
β > 0, the random variable

(6.50) G̃βn(`) =
λ(β)(`− 1)

N
+

π2n

2T 2
` N

= ψλ(β)

(
`

N
,
T`
N1/γ

)
.

We replace G by G̃ in (6.49) and control the probability that both processes are not close
(6.51)

P( min
`∈Rε0 (n)

Gβ−εn (`) ≤ u+ η,Ωn)

≤ P(min
`∈R

G̃β−εn (`) < u+ 2η,Ωn) + P( max
`∈Rε0 (n)

|G̃β−εn (`)−Gβ−εn (`)| ≥ η,Ωn).

The first term in the sum gives the main contribution. Let us first prove that the second
one is zero for n large enough. For ` ≥ 1 we define

(6.52) ∆1(n, `) :=
`− 1

N
|λ(β − ε)− λ(`− 1, β − ε)|

and

(6.53) ∆2(n, `) :=
n

N
|g(T`)−

π2

2T 2
`

|

so that

(6.54) max
`∈Rε0 (n)

|G̃β−εn (`)−Gβ−εn (`)| ≤ max
`∈Rε0 (n)

∆1(n, `) + max
`∈Rε0 (n)

∆2(n, `).

We first deal with ∆2. According to (3.14) there exists some C > 0 such that for all `,

|g(T`)− π2

2T 2
`
| ≤ C

T 4
`

. We can thus deduce that

(6.55) P( max
`∈Rε0 (n)

∆2(n, `) ≥ η,Ωn) ≤ P

 C n

N(ε
3
2γ

0 N1/γ)4

≥ η,A(5)
n (ε0, ε)

 ,

and this last term is 0 for n large enough. We turn to the control of ∆1. For n ∈ N,

(6.56) P( max
`∈Rε0 (n)

∆1(n, `) ≥ η,Ωn) ≤ P( max
`∈Rε0 (n)

∆1(n, `) ≥ η,A(10)
n (ε0, ε, η)),

and again the last term is 0 for n large enough. Let us come back to the first term in (6.51),

P(min`∈R G̃
β−ε
n (`) < u+ 2η,Ωn). As ` ranges R we may write

(6.57) min
`∈R

G̃β−εn (`) = Ψλ(β−ε) (ΠN ) .

We thus obtain

(6.58)
P(min

`∈R
G̃β−εn (`) < u+ 2η,Ωn) ≤ P(Ψλ(β−ε) (ΠN ) < u+ 2η,A(11)

n (ε0))

≤ P(Ψ
λ(β−ε)
K (ΠN ) < u+ 2η),

where K := A
λ(β−ε)
u+2η ∩ {y ≤ 1/ε0} with the set A defined in (2.22). As K is compact,

Proposition 2.4 and Lemma 2.6 assure that

(6.59) P(Ψ
λ(β−ε)
K (ΠN ) < u+ 2η)→ P(Ψ

λ(β−ε)
K (Π) < u+ 2η)
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when n goes to infinity (we recall that Ψ
λ(β−ε)
K (Π) is continuous). Using that Ψλ(β−ε) ≤

Ψ
λ(β−ε)
K we obtain

(6.60)
P(Ψ

λ(β−ε)
K (Π) < u+ 2η) ≤ P(Ψλ(β−ε)(Π) < u+ 2η)

= P(F β−ε < u+ 2η).

Finally, we have proven

(6.61) lim sup
n→∞

P(Fn ≤ u) ≤ P(F β−ε < u+ 2η) + θ.

As u 7→ P(F β−ε ≤ u) is right-continuous,

(6.62) lim
η→0

P(F β−ε < u+ 2η) = P(F β−ε ≤ u).

From Lemma 2.7, F β−ε↗F β almost surely when ε goes to 0 so that

(6.63) P(F β−ε ≤ u)→P(F β ≤ u) ε→ 0.

Finally,

(6.64) lim sup
n→∞

P(Fn ≤ u) ≤ P(F β ≤ u) + θ,

and, as θ can be chosen arbitrarily small, we obtain the upper bound

(6.65) lim sup
n→∞

P(Fn ≤ u) ≤ P(F β ≤ u).

We turn now to the lower bound in (6.46):

(6.66) lim inf
n→∞

P(Fn ≤ u) ≥ P(F ≤ u),

or, equivalently,

(6.67) lim sup
n→∞

P(Fn > u) ≤ P(F > u).

The proof works essentially in the same way as for the upper bound. Again fix θ, ε, η > 0
and, using Proposition 6.1, δ > 0 and ε1(δ) so that for ε0 < ε1(δ)

(6.68) lim inf
n

P(Ωn(δ, ε0, ε, η)) > 1− θ.

We choose ε0 < ε1(δ) small enough so that

(1) the conclusion of Proposition 4.1 is satisfied;

(2) the following inequality holds

(6.69)
λ(β)

ε0
> 2λ(β) +

π2

2δ2
.

Using Proposition 4.1, for n large enough,
(6.70)

P(Fn > u) ≤ P( min
1<`≤N1+κ

Gβn(`) > u− η,Ωn) + P(Ωc
n)

≤ P( min
`∈Rε0 (n)

Gβn(`) > u− η,Ωn) + P(Ωc
n)

≤ P( min
`∈Rε0 (n)

G̃βn(`) > u− 2η,Ωn) + P( max
`∈Rε0 (n)

|G̃βn(`)−Gβn(`)| ≥ η,Ωn) + P(Ωc
n).
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The second term in this last equation is treated exactly in the same way as the second term
in (6.51) and is thus zero for n large enough. The third one is smaller than θ by (6.68) for
n large enough. We thus focus on the first one. The choice of ε0 in (6.69) implies that

(6.71) Ωn ⊂ {argmin G̃n < N/ε0}.

Indeed, as Ωn ⊂ A(4)
n (δ), it holds that, on Ωn,

(6.72) min
N≤`≤2N

G̃βn < 2λ(β) +
π2

2δ2
<
λ(β)

ε0
< min

`>N/ε0
G̃βn(`).

Therefore, for any compact set K in E,

(6.73)

P( min
`∈Rε0 (n)

G̃βn(`) > u− 2η,Ωn) = P(min
`∈R

G̃βn(`) > u− 2η,Ωn)

= P(Ψλ(β)(ΠN ) > u− 2η,Ωn)

≤ P(Ψ
λ(β)
K (ΠN ) > u− 2η).

By Lemma 2.6, P(Ψ
λ(β)
K (ΠN ) > u − 2η) converges to P(Ψ

λ(β)
K (Π) > u − 2η) when N goes

to infinity. Finally,

(6.74) lim sup
n→∞

P(Fn > u) ≤ P(Ψ
λ(β)
K (Π) > u− 2η) + θ.

By letting K increase to E, we obtain

(6.75) lim sup
n→∞

P(Fn > u) ≤ P(Ψλ(β)(Π) > u− 2η) + θ,

and we conclude as for the upper bound by letting η and θ go to 0.

Appendix A. Proof of Proposition 3.3

The proof is divided into several steps. In the following, we partition τ into p disjoint
subsets τ (i) = τi + τpZ, for 0 ≤ i < p.

Step 1. Decomposition of the probability. We first consider the event {σ > n, Sn ∈
τ} instead of {σ > n} and will come back to the original event at the final step. By
decomposing according to the visits to τ and by using the Markov property, we obtain

(A.1) P(σ > n, Sn ∈ τ) =

n∑
m=1

∑
0<u1<...<um=n

∑
x1,...,xm

m∏
i=1

(
qxi−1,xi(ui − ui−1)e−β

)
,

where u0 = 0, x0 = 0, x1, . . . , xm ∈ Z/pZ, and the qij(n)’s are a slight modification of the
ones defined in (3.9), namely

(A.2) qij(n) = Pτi(Sk /∈ τ, 1 ≤ k < n, Sn ∈ τ (j)), i, j ∈ Z/pZ, n ∈ N.
It will be helpful later in the proof to know the asymptotic behaviour of qij(n), as n→∞:

(A.3) lim
1

n
log qij(n) = −g(tij), n→∞,

where g has been defined in (3.14) and tij in (3.11).

Step 2. Definition of φ(β; t1, . . . , tp). Recall the definition of Qij(φ) in (3.10) (with
qij defined in (A.2)), which is now restricted to i, j ∈ Z/pZ. For all i, j, Qij(φ) is finite
and increasing on [0, g(tij)), infinite on [g(tij),∞) and its limit at g(tij) is infinite, by
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Proposition 3.1. Let Λ(φ) be the Perron-Frobenius eigenvalue of Q(φ), defined as infinity
when one of the entry is infinite, that is for φ ≥ min g(tij) = g(tmax). We recall that

(A.4) Λ(φ) = sup
v 6=0

min
i

(Q(φ)v)i
vi

.

From what precedes, Λ is increasing on [0, g(tmax)) and tends to ∞ as φ ↗ g(tmax).
Therefore, the equation

(A.5) Λ(φ) = exp(β)

has a unique positive solution on this interval, that we denote by φ(β; t1, . . . , tp). As
φ(β; t1, . . . , tp) ∈ [0, g(tmax)), this proves the second inequality in (3.20). In the sequel of
the proof, for the sake of conciseness, we use the notation φ(β) = φ(β; t1, . . . , tp). Coming
back to (A.1), we get
(A.6)

r.h.s(A.1) = e−φ(β)n
n∑

m=1

∑
0<u1<...<um=n

∑
x1,...,xm

m∏
i=1

(
qxi−1,xi(ui − ui−1)e−β+φ(β)(ui−ui−1)

)
.

Step 3. Spectral decomposition and a first upper bound. The key idea in this step
is a spectral decomposition, which is a technique used also in the context of the parabolic
Anderson model, see [13, Section 2.2.1]. Let us define a matrix Qβ by

(A.7) Qβij = Qij(φ(β))e−β, i, j ∈ Z/pZ,

which is symmetric (by symmetry of the simple random walk) with positive entries. From
what precedes, its top eigenvalue is one. Therefore, we may denote by 1 = λ0 ≥ λ1 ≥
. . . ≥ λp−1 its eigenvalues by decreasing order (with possible repetitions), with |λk| < 1 for
k > 1 (Theorem 1.1 in Seneta [17]) and (νi)0≤i<p an associated basis of orthonormal left

eigenvectors. Note that for all 0 ≤ x < p, we have δx =
∑p−1

i=0 νi(x)νi, that is the element
of Rp which is 1 at coordinate x and 0 elsewhere. Let us now define, for 0 ≤ a < p,

(A.8) Zn(a) =
n∑

m=1

∑
x0=a,x1,...,xm

m∏
i=1

Qβxi−1,xi .

By removing the condition {um = n} in (A.6), we get the upper bound

(A.9) r.h.s.(A.6) ≤ e−φ(β)nZn(0).

Moreover,

(A.10) Zn(0) = 〈δ0, Zn(·)〉 =

p−1∑
i=0

p−1∑
j=0

νi(0)νi(j)Zn(j),

(with the usual scalar product) which yields

(A.11) Zn(0) =

p−1∑
i=0

p−1∑
j=0

n∑
m=1

νi(0)νi(j)
∑

x0=j,x1...,xm

m∏
k=1

Qβxk−1,xk
.

By definition of the νi’s we get for 0 ≤ i < p,

(A.12)

p−1∑
j=0

νi(j)
∑

x0=j,x1,...,xm

m∏
k=1

Qβxk−1,xk
= νi(Q

β)m1 = λmi

p−1∑
j=0

νi(j),
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where 1 is the vector with all one. Therefore,

(A.13) Zn(0) =

p−1∑
i=0

p−1∑
j=0

n∑
m=1

νi(0)νi(j)λ
m
i ≤ n

p−1∑
i=0

p−1∑
j=0

|νi(0)||νi(j)| ≤ np,

where in the first inequality we use that |λi| ≤ 1 and the triangular inequality, while in the
second inequality we use the Cauchy-Schwarz inequality and the fact that

(A.14)

p−1∑
j=0

νi(j)
2 = ‖νi‖22 = 1,

p−1∑
i=0

νi(0)2 = ‖δ0‖22 = 1.

Finally, we have obtained

(A.15) P(σ > n, Sn ∈ τ) ≤ npe−φ(β)n.

Step 4. Lower bound in (3.15). The components of a Perron-Frobenius eigenvector being

all positive (or all negative), we may consider the matrix {Qβij
ν0(j)
ν0(i) }ij , which turns out to

be stochastic. This actually defines a Markov renewal process ρ on Z/pZ (see e.g. Section
VII.4 in Asmussen [2]) with law Pβ determined by the kernel

(A.16) qβij(n) = exp(φ(β)n− β)qij(n)
ν0(j)

ν0(i)
, n ≥ 1, i, j ∈ Z/pZ,

and starting from state 0. Therefore, we may write

(A.17)

P(σ > n, Sn ∈ τ) ≥ P(σ > n, Sn ∈ τ (0))

= e−φ(β)n
n∑

m=1

∑
0<u1<...<um=n

∑
x1,...,xm−1
x0=xm=0

m∏
i=1

(
qxi−1,xi(ui − ui−1)e−β+φ(β)(ui−ui−1)

)

= e−φ(β)n
n∑

m=1

∑
0<u1<...<um=n

∑
x1,...,xm−1
x0=xm=0

m∏
i=1

qβxi−1,xi(ui − ui−1)

= e−φ(β)nPβ(n ∈ ρ0),

where ρ0 is the subset of ρ formed by the Markov renewal points with state 0. It turns
out that it is a renewal process. By the second inequality in (3.20) (that we have already

proven in Step 2) qβij decays exponentially in n for all i, j ∈ Z/pZ. This implies (as the

modulating Markov chain has finite state space) that the inter-arrival law of ρ0 also de-
cays exponentially in n, which implies integrability. Therefore, by the renewal theorem,
Pβ(n ∈ ρ0) converges to some constant (that is the inverse of the mean inter-arrival time).
This concludes this step.

Step 5. Proof of (3.20). The second inequality has already been established in Step 2,
so let us prove the first inequality. A standard coupling argument yields

(A.18)
∑
j

Qij(φ) = Eτi(e
φθ1) ≤ E(eφθ

max
1 ), i ∈ Z/pZ,

where θ1 = inf{n ∈ N : Sn ∈ τ} and θmax
1 = inf{n ∈ N : Sn ∈ tmaxZ}. By Proposition

3.2, we get that
∑

j Qij(φ(β, tmax)) = eβ. Thanks to Lemma A.1 below, it means that

Λ(φ(β, tmax)) ≤ eβ and we get the desired bound, as Λ is non-decreasing.



THE SIMPLE RANDOM WALK IN POWER-LAW RENEWAL OBSTACLES 37

Step 6. Final upper bound. We now conclude by removing the condition {Sn ∈ τ} in
the upper bound. To this end, we decompose according to the last visit to τ before n:

(A.19) P(σ > n, Sn /∈ τ) =

n−1∑
m=0

p−1∑
j=0

P(σ > m, Sm ∈ τ (j))Pτj (Sk /∈ τ, k ≤ n−m).

By using Proposition 3.1, we get that there exists C such that for all 0 ≤ j < p and n ∈ N,

(A.20) Pτj (Sk /∈ τ, k ≤ n) ≤ Ce−min g(tij)n = Ce−g(tmax)n,

provided tij larger than T0. To deal with the values of tij smaller than T0, we may use an
explicit expression of the small-ball probability provided in Chapter XIV of Feller [9]. By
using (3.20), we get

(A.21)

P(σ > n, Sn /∈ τ) ≤ C
n∑

m=0

p−1∑
j=0

P(σ > m, Sm ∈ τ (j))e−φ(β)(n−m)

= C
n∑

m=0

P(σ > m, Sm ∈ τ)e−φ(β)(n−m)

≤ Cn2p exp(−φ(β)n),

where we have used (A.15) to go from the second to the last line.

Lemma A.1. If the sums over lines of a non-negative matrix A are less than one, then
its Perron-Frobenius eigenvalue is less than one.

Proof of Lemma A.1. Let λ be an eigenvalue of A and v an associated eigenvector such
that vi∗ = maxi vi > 0. Then

(A.22) λvi∗ = (Av)i∗ ≤
∑
j

Ai∗,jvi∗ ≤ vi∗ ,

and that is enough to conclude as vi∗ > 0. �

Appendix B. Proof of Theorem 2.8

For simplicity, we only treat the case T = 1 as the case of a general T > 0 is simi-
lar. We use the standard two-step proof: convergence of the finite-dimensional marginal
distributions and tightness.

Finite-dimensional marginal distributions. Let k ∈ N and 0 ≤ s1 < . . . < sk ≤ 1.
By the Portmanteau theorem, it is enough to prove convergence of the joint cumulative
distribution function of (Fn(s1), . . . , Fn(sk)) to that of (F (s1), . . . , F (sk)). This is done
by adapting what we have done for the one-dimensional distribution. For each coordinate
1 ≤ i ≤ k denote by Ωn(i) the corresponding good environment, that is Ωbsinc, and consider

Ω̄n := Ωn(1)∩ . . .∩Ωn(k). By a union bound, Proposition 6.1 holds with Ω̄n instead of Ωn.
From here, it is possible to follow the proof in Section 6.2, with the cylinders ]−∞, u1]×
. . .×] −∞, uk] instead of ] −∞, u] in (6.46). This proves the convergence in distribution

of (Fn( bs1ncn ), . . . , Fn( bskncn ). Finally, as Fn(s)− Fn( bsncn ) converges to zero as n→∞ (for
any s ∈ [0, 1] and P-almost-surely), we get the convergence of (Fn(s1), . . . , Fn(sk)).

Tightness. Proving tightness of the family (Fn(·))n≥1 actually reduces to proving that
for all ε, η > 0, there exists δ > 0 such that for n large enough,

(B.1) P
[
∃t ∈ [0, 1− δ] : P(σ ∧HZ− > n(t+ δ)|σ ∧HZ− > nt) ≤ exp(−ηN)

]
≤ ε.
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Let us first admit that

(B.2) lim
C→∞

lim sup
n→∞

P[B1(C, n)c] = 0

where

(B.3) B1(C, n) = {∀t ∈ [0, 1] : P(HτCN ≤ nt|σ ∧H0 > nt) ≤ 1
2},

so that we can fix some C > 0 such that P[B1(C, n)] ≥ 1− ε for n large enough. For ν > 0,
we define a = νη

λ and consider the event

(B.4) B2(ν, n) = {∀x ≤ CN, ∃y : |y − x| ≤ aN, Ty ≥ (a2N)1/γ}.
Let us also admit for the moment that

(B.5) lim
ν→0

lim inf
n→∞

P[B2(ν, n)] = 1.

We can thus fix ν ∈ (0, 1
4) such that P[B2(ν, n)c] < ε for n large enough. Finally, define

(B.6) B3(n) :=
{
∀0 ≤ i ≤ C/a, − 1

N log PτaiN (Hτa(i+1)N
< σ ∧HτaiN ) < 2aλ

}
By Proposition 2.1 P(B3(n)) > 1− ε for n large enough. Therefore for n large enough, the
left-hand side of (B.1) is smaller than
(B.7)

P
[
∃t ∈ [0, 1−δ] : P(σ∧HZ− > n(t+δ)|σ∧HZ− > nt) ≤ e−ηN , B1(C, n)∩B2(ν, n)∩B3(n)

]
+3ε.

On B1(C, n)∩B2(ν, n)∩B3(n), for all t ∈ [0, 1− δ], we get by the Markov property applied
at time nt that

(B.8) P(σ ∧HZ− > n(t+ δ)|σ ∧HZ− > nt) ≥ 1
2 inf
x∈{0,...,τCN}

Px(σ ∧HZ− > δn).

By reproducing the strategy used in (4.8), we obtain for all x ∈ {0, . . . , τCN}

(B.9) Px(σ ∧HZ− > δn) ≥ exp
[
−N

(
2νη +

δπ2

2(νη)4/γ
+ o(1)

)]
.

As 2ν < 1, we obtain by choosing δ > 0 small enough that

(B.10) P(σ ∧HZ− > n(t+ δ)|σ ∧HZ− > nt) > e−ηN .

It remains to prove (B.2) and (B.5).
Proof of (B.2). As

(B.11) P (HτCN ≤ nt, σ ∧HZ− > nt) ≤ exp(−βCN)

and

(B.12) P (σ ∧HZ− > nt) ≥ P (σ ∧HZ− > n),

for all t ∈ [0, 1],

(B.13) P (HτCN ≤ nt|σ ∧HZ− > nt) ≤ exp[−N(βC − Fn(1)].

As a consequence,

(B.14) lim sup
n→∞

P
(
∃t ∈ [0, 1] : P (HτCN ≤ nt|σ ∧HZ− > nt) > 1

2

)
≤ P(F ≥ βC),

and this last quantity goes to 0 as C → +∞.
Proof of (B.5). For n large enough,

(B.15) P(∃k ≤ aN : Tk ≥ (a2N)1/γ) ≥ 1− exp
(
− cτ

2a

)
.



THE SIMPLE RANDOM WALK IN POWER-LAW RENEWAL OBSTACLES 39

We cut the CN first obstacles into C/a disjoint intervals, each of them containing aN
obstacles, so that, by independence,

(B.16) P[B2(ν, n)] ≥
[
1− exp

(
− cτ

2a

)]C/a
,

and this last quantity goes to 1 if a (or equivalently ν) goes to 0.
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