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TOPOLOGICAL MIXING OF THE WEYL CHAMBER FLOW

NGUYEN-THI DANG, OLIVIER GLORIEUX

Abstract. In this paper, we study topological properties of the right action by translation of
the Weyl Chamber flow on the space of Weyl chambers. We obtain a necessary and sufficient
condition for topological mixing.

(1)

1. Introduction

Let G be semisimple real, connected, Lie group of non compact type. Let K be a maximal
compact subgroup of G and A a maximal torus of G for which there is a Cartan decomposition.
Let M be the centralizer of A in K. We establish mixing properties for right action by translation
of one parameter subgroups of A on quotients Γ\G/M where Γ is a discrete, Zariski dense
subgroup of G.

The particular case when G is of real rank one is well known. In this case, the symmetric
space X = G/K is a complete, connected, simply connected Riemannian manifold of negative
curvature. The right action by translation of A on G/M coincides with the geodesic flow on
T 1X . Dal’bo [Dal00] proved that it is mixing (on its nonwandering set) if and only if the length
spectrum is non arithmetic. The latter holds when Γ is a Zariski dense subgroup, see Benoist
[Ben00], Kim [Kim06].

We are interested in cases where G is of higher real rank k ≥ 2. When Γ\G/M is of finite
volume, i.e. when Γ is a lattice, it follows from Howe-Moore’s Theorem that the action of any
noncompact subgroup of G is mixing.

We study the general situation of any discrete, Zariski dense subgroup, which of course includes
the case of lattices.

If Γ\G/M has infinite volume, the known results are not as general.
In the particular case of so-called Ping-Pong subgroups of PSL(k + 1,R), Thirion [Thi07],

[Thi09] proved mixing with respect to a natural measure on Ω(X) for a one parameter flow
associated to the "maximal growth vector" introduced by Quint in [Qui02]. Sambarino [Sam15]
did the same for hyperconvex representations.

Finally, Conze-Guivarc’h in [CG02] proved for any Zariski dense subgroup Γ, the topolo-
gical transitivity (i.e. existence of dense orbits) of the right A−action on a natural closed
AM−invariant set Ω(X) ⊂ Γ\G/M .

Let a ≃ Rk be the Cartan Lie subalgebra over A and a++ the choice of a positive Weyl
chamber. For any θ ∈ a++, the Weyl chamber flow (φθ

t ) corresponds to the right action by
translation of exp(tθ). Benoist [Ben97] introduced a convex limit cone C(Γ) ⊂ a and proved
that for Zariski dense semigroups, the limit cone is of non empty interior. We prove topological
mixing for any direction of the interior of C(Γ).
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Theorem 1.1. Let G be a semisimple, connected, real linear Lie group, of non-compact type.
Let Γ be a Zariski dense, discrete subgroup of G. Let θ ∈ a++.

Then the dynamical system (Ω(X), φθ
t ) is topologically mixing if and only if θ is in the interior

of the limit cone C(Γ).

Taking Ω̃ ⊂ G/M to be the universal cover of Ω(X), we remark that this Theorem is a direct
consequence of the following statement, where Γ is a Zariski dense semigroup of G. We insist
that under this hypothesis, Γ is not necessarily a subgroup and can even be non discrete.

Theorem 1.2. Let G be a semisimple, connected, real linear Lie group, of non-compact type.
Let Γ be a Zariski dense semigroup of G. Let θ ∈ a++.

Then θ is in the interior of the limit cone if and only if for all nonempty open subsets Ũ , Ṽ ⊂
Ω̃(X), there exists T > 0 so that for any later time t > T , there exists γt ∈ Γ with

γtŨ ∩ φθ
t (Ṽ ) 6= ∅.

In the first section, we give some background on globally symmetric spaces. We introduce the
space of Weyl chambers, the Weyl chamber flow, give a compactification of the space of Weyl
chambers and present a higher rank generalization of the Hopf coordinates.

In the second section, we introduce the main tools: Schottky semigroups and estimations on
the spectrum of products of elements in G.

In the third section, we introduce the non-wandering Weyl chambers set, it is a closed
AM−invariant subset Ω(X) ⊂ Γ\G/M . Then we study topological transitivity in Proposition
4.7. We prove that if the flow φθ

t is topologically transitive in Ω(X), where θ ∈ a++, then the
direction θ must be in the interior of the limit cone. Since topological mixing implies topological
transitivity, this provides one direction of the main Theorem 1.2.

In the last section, we prove a key Proposition 5.4 using density results that come from non-
arithmeticity of the length spectrum. Then we prove the main theorem.

In the appendix we prove a density lemma of subgroups of Rn needed in the proof of Propos-
ition 5.4.

In the whole article, G is a semisimple, connected, real linear Lie
group, of non-compact type.

2. Background on symmetric spaces

Classical references for this section are [Thi07, Chapter 8, §8.B, 8.D, 8.E, 8,G], [GJT12,
Chapter III, §1–4] and [Hel78, Chapter IV, Chapter V, Chapter VI].

Let K be a maximal compact subgroup of G. Then X = G/K is a globally symmetric space
of non-compact type. The group G is the identity component of its isometry group. It acts
transitively on X , by left multiplication. We fix a point o = K ∈ X . Then K is in the fixed
point set of the involutive automorphism induced by the geodesic symmetry in o (cf. [Hel78,
Chapter VI, Thm 1.1]).

Denote by g (resp. k) the Lie algebra of G (resp. K). The differential of the involutive
automorphism induced by the geodesic symmetry in o is a Cartan involution of g. Then k is the
eigenspace of the eigenvalue 1 (for the Cartan involution) and we denote by p the eigenspace of
the eigenvalue −1. The decomposition g = k⊕ p is a Cartan decomposition.

2.1. Flats, Weyl Chambers, classical decompositions. A flat of the symmetric space X
is a totally geodesic, isometric embedding of a Euclidean space. We are interested in flats of
maximal dimension in X , called maximal flats. One can construct the space of maximal flats
following [Thi07, Chapter 8, §8.D, 8,D] thanks to [Hel78, Chapter V, Prop. 6.1]. Let a ⊂ p be
a Cartan subspace of g i.e. a maximal abelian subspace such that the adjoint endomorphism
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of every element is semisimple. We denote by A the subgroup exp(a). The real rank of the
symmetric space X , denoted by rG, is the dimension of the real vector space a.

Definition 2.1. A parametrized flats is an embedding of a of the form gf0, where g ∈ G and f0
is the map defined by

f0 : a −→ X

v 7−→ exp(v)o .

We denote by W(X) the set of parametrized flats of X.

By definition, the set of parametrized flats is the orbit of f0 under the left-action by mul-
tiplication of G. The stabilizer of f0 is the centralizer of A in K, denoted by M . We deduce
that the set of parametrized flats W(X) identifies with the homogeneous space G/M . For any
parametrized flat f ∈ W(X), there is an element gf in G such that f = gff0. Hence, the map

W(X)
∼
−→ G/M

f 7−→ gfM

is a G−equivariant homeomorphism.
For any linear form α on a, set gα := {v ∈ g|∀u ∈ a, [u, v] = α(u)v}. The set of restricted

roots is Σ := {α ∈ a∗ \ {0}|gα 6= {0}}. The kernel of each restricted root is a hyperplane of
a. The Weyl Chambers of a are the connected components of a \ ∪α∈Σ ker(α). We fix such a
component, call it the positive Weyl chamber and denote it (resp. its closure) by a++ (resp. a+).

We denote by NK(A) the normalizer of A in K. The group NK(A)/M is called the Weyl
group. The positive Weyl chamber of a allows us to tesselate the maximal flats in the symmetric
space X . Indeed, f0(a

+) is a fundamental domain for the action of the Weyl group on the
maximal flat f0(a) and G acts transitively on the space of parametrized flats. Finally, the orbit
G.f0(a

+) identifies with the space of parametrized flats, the image of g.f0(a
+) is a geometric

Weyl chamber. This explains why the set of parametrized flats is also called the space of Weyl
chambers. For any geometric Weyl chamber f(a+) ∈ G.f0(a

+), the image of 0 ∈ a+ is the origin.
Furthermore,

G/M ≃ W(X) ≃ G.f0(a
+).

Definition 2.2. The right-action of a on W(X) is defined by α · f : v 7→ f(v + α) for all α ∈ a

and f ∈ W(X). The Weyl Chamber Flow, is defined for all θ ∈ a++
1 and f ∈ W(X) by

φθ(f) : R −→ W(X)

t 7−→ φθ
t (f) = f(v + θt) = f(v)eθt.

Remark that the Weyl Chamber Flow φθ
t is also the right-action of the one-parameter subgroup

exp(tθ) on the space of Weyl chambers.
The set of positive roots, denoted by Σ+, is the subset of roots which take positive values in the

positive Weyl chamber. The positive Weyl chamber also allows to define two particular nilpotent
subalgebras n = ⊕α∈Σ+gα and n− = ⊕α∈Σ+g−α. Finally, set A+ := exp(a+), A++ := exp(a++),
N := exp(n) and N− := exp(n−). For all a ∈ A++, h+ ∈ N , h− ∈ N− notice that

(1) a−nh±a
n −→

±∞
idG.

Definition 2.3. For any g ∈ G, we define, by Cartan decomposition, a unique element µ(g) ∈ a+

such that g ∈ K exp(µ(g))K. The map µ : G → a+ is called the Cartan projection.
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The Cartan projection allows to define an a+−valued function on X × X , denoted by d
a
+ ,

following [Thi07, Def-Thm 8.38]. For any x, x′ ∈ X , there exists g, g′ ∈ G so that x = gK and
x′ = g′K, we set

d
a
+(x, x′) := µ(g′−1g).

This function is independent of the choice of g and g′. Recall [Hel78, Chapter V, Lemma 5.4]
that a is endowed with a scalar product coming from the Killing form on g, and the norm of
d
a
+(x, x′) coincides with the distance between x and x′ in the symmetric space X .

An element of G is unipotent if all its eigenvalues are equal to 1 and equivalently if it is
the exponential of a nilpotent element. An element of G is semisimple if it is diagonalizable
over C, elliptic (resp. hyperbolic) if it is semisimple with eigenvalues of modulus 1 (resp. real
eigenvalues). Equivalently, elliptic (resp. hyperbolic, unipotent) elements are conjugated to
elements in K (resp. A, N).

Any element g ∈ G admits a unique decomposition (in G) g = geghgu, called the Jordan
decomposition, where ge, gh and gu commute and where ge (resp. gh, gu) is elliptic (resp. hyper-
bolic, unipotent). The element ge (resp. gh, gu) is called the elliptic part (resp. hyperbolic part,
unipotent part) of g.

Definition 2.4. For any element g ∈ G, there is a unique element λ(g) ∈ a+ such that the
hyperbolic part of g is conjugated to exp(λ(g)) ∈ A+. The map λ : G → a+ is called the Jordan
projection.

An element g ∈ G is loxodromic if λ(g) ∈ a++. Since any element of N that commute with a++

is trivial, the unipotent part of loxodromic elements is trivial. Furthermore, the only elements
of K that commute with a++ are in M . We deduce that the elliptic part of loxodromic elements
are conjugated to elements in M . Hence, for any loxodromic element g ∈ G, there exists hg ∈ G

and m(g) ∈ M so that we can write g = hgm(g)eλ(g)h−1
g . For any m ∈ M we can also write

g = (hgm)(m−1m(g)m)eλ(g)(hgm)−1. This allows us to associate to any loxodromic element
g ∈ G, an angular part m(g) which is defined up to conjugacy by M .

The spectral radius formula [BQ16, Corollary 5.34]

λ(g) = lim
n→∞

1

n
µ(gn)

allows to compute the Jordan projection thanks to the Cartan projection.

Definition 2.5. For any g ∈ G, there exists a unique triple (k, v, n) ∈ K × a × N such that
g = k exp(v)n. Furthermore, the map

K × a×N −→ G

(k, v, n) 7−→ kevn

is a diffeomorphism called the Iwasawa decomposition.

2.2. Asymptotic Weyl chambers, Busemann-Iwasawa cocycle. The main references for
this subsection are [Thi07, Chapter 8, §8.D], [GJT12] and [BQ16].

We endow the space of geometric Weyl chambers with the equivalence relation

f1(a
+) ∼ f2(a

+) ⇔ sup
u∈a

++

d(f1(u), f2(u)) < ∞.

Equivalently, f1(a
+) ∼ f2(a

+) if and only if for any v ∈ a++, the geodesics t 7→ f1(tv) and
t 7→ f2(tv) are at bounded distance when t → +∞. Equivalence classes for this relation are
called asymptotic Weyl chambers. We denote by F(X) the set of asymptotic Weyl chambers and
by η0 the asymptotic class of the Weyl chamber f0(a

+).
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Fact 2.6. The set F(X) identifies with the Furstenberg boundary G/P where P = MAN .
Furthermore

G/P ≃ F(X) ≃ K/M ≃ K.η0.

Proof. Since G acts transitively on the space of Weyl chambers, it also acts transitively on the
set of asymptotic Weyl chambers.

We show that P is the stabilizer of η0. For any g ∈ G and u ∈ a++, we compute the distance

d(gf0(u), f0(u)) = ‖d
a
+(gf0(u), f0(u))‖ = ‖µ(e−ugeu)‖.

By Bruhat decomposition (see [Hel78, Chapter IX, Thm 1.4]), there exists an element w in the
normalizer of A in K and elements p1, p2 ∈ P = MAN so that g = p1wp2. Then

e−ugeu =
(
e−up1e

u
)
e−u(weuw−1)w

(
e−up2e

u
)
.

Note that by equation (1), the sets {e−upie
u}u∈a

++,i=1,2 are bounded. Hence, the sets {e−ugeu}u∈a
++

and {e−uweuw−1}u∈a
++ have the same behavior. Remark now that e−uweuw−1 = e−u+Ad(w)u,

which is bounded uniformly in a++ only when w ∈ M . We deduce that {e−ugeu}u∈a
++ is

bounded only when g ∈ P . Hence the subgroup P is the stabilizer of the asymptotic class η0.
The geometric Weyl chambers whose origin is o ∈ X are in the orbit K.f0(a

+). Any equi-
valence class in F(X) admits, by Iwasawa decomposition, a unique representative in K.f0(a

+).
Moreover, K/M identifies with the orbit K.f0(a

+) since M is the stabilizer of f0 in K. �

For any asymptotic Weyl chamber η ∈ F(X) and g ∈ G, consider, by Iwasawa decomposition,
the unique element σ(g, η) ∈ a, called the Iwasawa cocycle, such that if kη ∈ K satisfies η = kηη0,
then

gkη ∈ K exp(σ(g, η))N.

The cocycle relation holds (cf [BQ16, Lemma 5.29]) i.e. for all g1, g2 ∈ G and η ∈ F(X) then

σ(g1g2, η) = σ(g1, g2η) + σ(g2, η).

For any pair of points x, y ∈ X , any asymptotic Weyl chamber η ∈ F(X) and u ∈ a++, we
consider a representative fη(a

+) of η and define the Busemann cocycle by

βfη ,u(x, y) = lim
t→+∞

d
a
+(fη(tu), x)− d

a
+(fη(tu), y).

It turns out that the Busemann cocycle depends neither on the choice of the geometric Weyl
chamber in the class η, nor on the choice of u ∈ a++. We will write βfη ,u(x, y) = βη(x, y). By
[BQ16, Corollary 5.34], the Iwasawa and Busemann cocycle coincide in the sense that for all
g ∈ G, η ∈ F(X) and u ∈ a++,

(2) βfη ,u(g
−1o, o) = σ(g, η).

We associate attractive and repulsive asymptotic geometric Weyl chambers to loxodromic
elements of G as follows.

Recall that for any loxodromic element g ∈ G, there is an element hg ∈ G and an angular

part m(g) ∈ M so that g = hge
λ(g)m(g)h−1

g . We set g+ := [hg.f0(a
+)] and g− := [hg.f0(−a+)].

Then g+ ∈ F(X) (resp. g−) is called the attractive (resp. repulsive) asymptotic Weyl chamber.

Fact 2.7. For any loxodromic element g ∈ G, we have λ(g) = σ(g, g+).

Proof. Let g ∈ G be a loxodromic element. Consider an element hg ∈ G and an angular part

m(g) ∈ M so that g = hge
λ(g)m(g)h−1

g . Denote by fg the parametrized flat fg : v 7→ hge
vo.

Then the geometric Weyl chamber fg(a
+) (resp. fg(−a+)) is a representative of the limit points

g+ (resp. g−).
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Fix any u ∈ a++. Then by equation (2), we deduce

σ(g, g+) = βfg ,u(g
−1o, o) = lim

t→+∞
d
a
+(fg(tu), g

−1o)− d
a
+(fg(tu), o)

= lim
t→+∞

µ(ghge
tu)− µ(hge

tu)

= lim
t→+∞

µ(hge
λ(g)+tum(g))− µ(hge

tu).

By left and right K−invariance of the Cartan projection, we deduce that µ(hge
λ(g)+tum(g)) =

µ(hge
λ(g)+tu). Hence

σ(g, g+) = lim
t→+∞

µ(hge
λ(g)+tu)− µ(hge

tu).

By Iwasawa decomposition on hg, there exists a unique unipotent element n ∈ N so that hg ∈
Keσ(hg,η0)n. Hence, for all t ∈ R+,

µ(hge
λ(g)+tu)− µ(hge

tu) = µ(eσ(hg ,η0)neλ(g)+tu)

− µ(eσ(hg ,η0)netu)

= µ(eσ(hg ,η0)+λ(g)+tue−λ(g)−tuneλ(g)+tu)

− µ(eσ(hg ,η0)+tue−tunetu).

Since u ∈ a++, then for any t ∈ R+ large enough, σ(hg , η0) + λ(g) + tu and σ(hg, η0) + tu are in
a+. Furthermore, by equation (1) , we deduce

lim
t→+∞

e−λ(g)−tuneλ(g)+tu = lim
t→+∞

e−tunetu = idG.

Hence, by continuity of the Cartan projection, when t → +∞,

µ(eσ(hg ,η0)+λ(g)+tue−λ(g)−tuneλ(g)+tu) = µ(eσ(hg ,η0)+λ(g)+tu) + o(1)

µ(eσ(hg ,η0)+tue−tunetu) = µ(eσ(hg ,η0)+tu) + o(1),

and,

d
a
+(fg(tu), g

−1o)− d
a
+(fg(tu), o) = σ(hg, η0) + λ(g) + tu− (σ(hg , η0) + tu) + o(1)

= λ(g) + o(1).

Finally, λ(g) = σ(g, g+). �

2.3. Hopf parametrization. Our main reference for this subsection is [Thi07, Chapter 8,
§8.G.2].

In the geometric compactification of symmetric spaces of non-compact type, any bi-infinite
geodesic defines opposite points in the geometric boundary. In a similar way, we introduce
asymptotic Weyl chambers in general position.

We endow the product F(X) × F(X) with the diagonal left G−action. For any (ξ, η) ∈
F(X) × F(X) and g ∈ G, we set g.(ξ, η) := (g.ξ, g.η). For any parametrized flat f ∈ W(X),
denote by f+ (resp. f−) the asymptotic class of the geometric Weyl chamber f(a+) (resp.
f(−a+)). Then the following map

H(2) : W(X) −→ F(X)×F(X)

f 7−→ (f+, f−)

is G−equivariant and continuous.
Two asymptotic Weyl chambers ξ, η ∈ F(X) are in general position or opposite, if they are in

the image H(2)(W(X)) i.e. if there exists a parametrized flat f ∈ W(X) such that the geometric
Weyl chamber f+ (resp. f−) is a representative of ξ (resp. η).
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We denote by F (2)(X) the set of asymptotic Weyl chambers in general position. The product
topology on the product space F(X)×F(X) induces a natural topology on F (2)(X).

Fact 2.8 (§3.2 [Thi09]). The set F (2)(X) identifies with the homogeneous space G/AM . Fur-
thermore, if we denote by η0 (resp. η̌0) the asymptotic class of the Weyl chamber f0(a

+) (resp.
f0(−a+)), then

G.(η0, η̌0) ≃ F (2)(X) ≃ G/AM.

The Hopf coordinates map is defined by

H :
W(X) −→ F (2)(X)× a

f 7−→
(
f+, f−;βf+(f(0), o)

)
.

We define the left G−action on the skew product F (2)(X)× a as follows. For any g ∈ G and
(ξ, η; v) ∈ F (2)(X)× a, we set

g.(ξ, η; v) = (g.ξ, g.η; v + βg.ξ(g.o, o)).

The right a−action defined for any α ∈ a and (ξ, η; v) ∈ F (2)(X)× a by

α · (ξ, η; v) = (ξ, η; v + α)

is called the right a−action by translation.
Similarly, for any θ ∈ a++

1 , we define the Weyl chamber flow φθ on the skew product, for all

(ξ, η; v) ∈ F (2)(X)× a and t ∈ R+,

φθ
t (ξ, η; v) = (ξ, η; v + θt).

Proposition 2.9 (Proposition 8.54 [Thi07]). The Hopf coordinates map is a (G, a)−equivariant
homeomorphism in the sense that:

(i) The left-action of G on W(X) identifies, via the Hopf coordinates map, with the left
G−action on the skew product F (2)(X)× a;

(ii) The right-action of a on W(X) identifies, via the Hopf coordinates map, with the right
a−action by translation on the skew product F (2)(X)× a.

Furthermore, for any θ ∈ a++
1 and t ∈ R+, for all f ∈ W(X), we obtain

H(φθ
t (f)) = φθ

t (H(f)).

3. Loxodromic elements

We first study loxodromic elements in GL(V ) for V a real vector space of finite dimension
endowed with a Euclidean norm ‖.‖. Then we give some background on representations of
semisimple Lie groups. Finally, we study the dynamical properties of the representations of G
acting on the projective space of those representations.

3.1. Proximal elements of GL(V ). Denote by X = P(V ) the projective space of V . We endow
X with the distance

d(Rx,Ry) = inf{‖vx − vy‖ | ‖vx‖ = ‖vy‖ = 1, vx ∈ Rx, vy ∈ Ry}.

For g ∈ End(V ), denote by λ1(g) its spectral radius.

Definition 3.1. An element g ∈ End(V ) \ {0} is proximal on X if it has a unique eigenvalue
α ∈ C such that |α| = λ1(g) and this eigenvalue is simple (therefore α is a real number). Denote
by V+(g) the one dimensional eigenspace corresponding to α and V−(g) the supplementary g-
invariant hyperplane. In the projective space, denote by x+(g) = P(V+(g)) (resp. X−(g) =
P(V−(g))) the attractive point (resp. the repulsive hyperplane).
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The open ball centered in x ∈ X of radius ε > 0 is denoted by B(x, ε). For every subset
Y ⊂ X , we denote by Vε(Y ) the open ε−neighbourhood of Y . The following definition gives
uniform control over the geometry of proximal elements (parametrized by r) and their contracting
dynamics (parametrized by ε).

Definition 3.2. Let 0 < ε ≤ r. A proximal element g is (r, ε)-proximal if d(x+(g), X−(g)) ≥ 2r,
g maps Vε(X−(g))c into the ball B(x+(g), ε) and its restriction to the subset Vε(X−(g))c is an
ε-Lipchitz map.

We give three remarks that follow from the definition.

1) If an element is (r, ε)-proximal, then it is (r′, ε)-proximal for ε ≤ r′ ≤ r,
2) If an element is (r, ε)-proximal, then it is (r, ε′)-proximal for r ≥ ǫ′ ≥ ε.
3) If g is is (r, ε)-proximal, then gn is also is (r, ε)-proximal for n ≥ 1.

The numbers r and ε depend on the metric of the projective space, which, in our case, depends
on the choice of the norm on the finite dimensional vector space. However, in [Ser16, Remark
2.3] Sert claims the following statement. We provide a proof for completeness.

Lemma 3.3. For every proximal transformation g, there exists r > 0 and n0 ∈ N such that for
all n ≥ n0 large enough, gn is (r, εn)-proximal with εn →

n→∞
0.

Since GL(V ) is endowed with a Euclidean norm, it admits a canonical basis (ej)1≤j≤dim(V ). We

set x0 := P(e1) and H0 := P(⊕
dim(V )
j=2 Rej). Recall that GL(V ) admits a polar decomposition i.e.

for any g ∈ GL(V ), there exists orthogonal endomorphisms kg, lg ∈ O(V ) and a unique symmetric
endomorphism ag of eigenvalues (ag(j))1≤j≤dim(V ) with ag(1) ≥ ag(2) ≥ ... ≥ ag(dim(V )) such
that g = kgaglg. Let us introduce a key [BG03, Lemma 3.4], due to Breuillard and Gelander,
which is needed to obtain the Lipschitz properties.

Lemma 3.4 ([BG03]). Let r, δ ∈ (0, 1]. Let g ∈ GL(V ). If
∣∣ag(2)
ag(1)

∣∣ ≤ δ, then g is δ
r2−Lipschitz

on Vr(l
−1
g H0)

c.

Proof of Lemma 3.3. Let g ∈ GL(V ) be a proximal element. Set r := 1
2d(x+(g), X−(g)). By

proximality, r is positive. Let us prove that for all 0 < ε ≤ r, there exists n0 such that gn is
(r, ε)−proximal for all n ≥ n0.

Denote by πg the projector of kernel V−(g) and of image V+(g). Then

gn

λ1(g)n
= πg +

gn|V−(g)

λ1(g)n
.

By proximality, the highest eigenvalue of g|V−(g) is strictly smaller than λ1(g). It follows imme-

diately by the Spectral Radius Formula that gn

λ1(g)n
−→

n→+∞
πg. Hence for any y ∈ X \ X−(g),

uniformly on any compact subset of X \X−(g),

gn.y −→
n→+∞

x+(g).

It remains to show the Lipschitz properties of gn, for n big enough. For all n ∈ N, we denote
by kn, ln (resp. an) the orthogonal (resp. symmetric) components of gn so that gn = knanln.
We also set xn := knx0 and Hn := l−1

n H0.
For any n ≥ 1, denote by pxn,Hn

the endomorphism of norm 1 such that P(im(pxn,Hn
)) = xn

and P(ker(pxn,Hn
)) = Hn. Then by polar decomposition,

gn

an(1)
= pxn,Hn

+O

(
an(2)

an(1)

)
.
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By the Spectral Radius Formula,
∣∣an(2)
an(1)

∣∣ 1
n −→

n→∞
λ1(g|V−(g))

λ1(g)
< 1. Hence

lim
n→∞

an(2)

an(1)
= 0.

Let (x,H) be an accumulating point of the sequence (xn, Yn)n≥1. Then there is a converging
subsequence xϕ(n), Yϕ(n) −→

n→+∞
x, Y . Denote by px,Y the endomorphism of norm 1 such that

P(im(px,Y )) = x and P(ker(px,Y )) = Y . Then,

gϕ(n)

aϕ(n)(1)
−→

n→+∞
px,Y .

It allows us to deduce in particular, that for any y ∈ X \ {H,X−(g)},

gϕ(n).y −→
n→+∞

x.

However, by proximality of g and uniqueness of the limit, we obtain that x = x+(g).
Similarly, by duality, we obtain that Y = X−(g). Hence (xn, Yn)n≥1 converges towards

(x+(g), X−(g)).
Fix 0 < ε ≤ r. Then for n large enough, the inclusion Vε(X−(g)) ⊃ V ε

2
(Hn) holds. By Lemma

3.4, the restriction of gn to Vε(X−(g))c ⊂ V ε
2
(Hn)

c is then a
∣∣an(2)
an(1)

∣∣ 4
ε2−Lipschitz map. Finally,

for n large enough so that
∣∣an(2)
an(1)

∣∣ 4
ε2 < ε, the restriction of gn to Vε(X−(g))c is ε−Lipschitz. �

The following proximality criterion is due to Tits [Tit71] and one can find the statement under
this form in [Ben00].

Lemma 3.5. Fix 0 < ε ≤ r. Let x ∈ P(V ) and a hyperplane Y ⊂ P(V ) such that d(x, Y ) ≥ 6r.
Let g ∈ GL(V ). If

(i) gVε(Y )c ⊂ B(x, ε),
(ii) g restricted to Vε(Y )c is ε−Lipschitz,

then g is (2r, 2ε)−proximal. Furthermore, the attractive point x+(g) is in B(x, ε) and the repuls-
ive hyperplane X−(g) in a ε−neighbourhood of Y .

Corollary 3.6. Fix 0 < ε ≤ r. Let g ∈ GL(V ) be a (r, ε/2)−proximal element so that
d(x+(g), X−(g)) ≥ 7r.

Then for any h ∈ GL(V ) so that ‖h− idV ‖ ≤ ε/2, the product gh is (2r, 2ε)−proximal, with
x+(gh) ∈ B(x+(g), ε).

Proof. Consider a (r, ε/2)−proximal element g and h ∈ GL(V ) as in the hypothesis.
Remark that gh maps h−1Vε/2(X−(g))c towards the open ball B(x+(g), ε/2). Furthermore,

by proximality of g, the restriction of gh to h−1Vε/2(X−(g))c is ε/2−Lipschitz.

Since h is close to idV , then Vε(h
−1X−(g))c ⊂ h−1Vε/2(X−(g))c. Hence gh restricted to

Vε(h
−1X−(g))c is ε−Lipschitz of image in the open ball B(x+(g), ε). Furthermore, d(x+(g), h

−1X−(g)) ≥
d(x+(g), X−(g))− ε > 7r − ε ≥ 6r.

Finally, by Lemma 3.5, we deduce that gh is (2r, 2ε)−proximal, with x+(gh) ∈ B(x+(g), ε).
�

For all proximal elements g, h of End(V ) such that x+(h) /∈ X−(g), we consider two unit
eigenvectors v+(h) ∈ x+(h) and v+(g) ∈ x+(g) and denote by α(g, h) the unique real number
such that v+(h) − α(g, h)v+(g) ∈ V−(g). A priori, α(g, h) depends on the choice of the unit
vectors. However, its absolute value does not.
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Given g1, ...gl of End(V ), set g0 = gl and assume x+(gi−1) /∈ X−(gi) for all 1 ≤ i ≤ l. We set

ν1(gl, ..., g1) =
∑

1≤j≤l

log |α(gj , gj−1)|.

This product does not depends on the choices of unit eigenvectors for gj .
The following proposition explains how to control the spectral radius λ1(γ) when γ is a product

of (r, ǫ)-proximal elements.

Proposition 3.7 ([Ben00]). For all 0 < ǫ ≤ r, there exist positive constants Cr,ǫ such that for all
r > 0, limǫ→0 Cr,ǫ = 0 and such that the following holds. If γ1, ...γl are (r, ε)-proximal elements,
such that d(x+(γi−1), X−(γi)) ≥ 6r for all 1 ≤ i ≤ l with γ0 = γl, then for all n1, ..., nl ≥ 1,

∣∣∣∣∣log
(
λ1(γ

nl

l ...γn1

1 )
)
−

l∑

i=1

ni log
(
λ1(γi)

)
− ν1(γl, ..., γ1)

∣∣∣∣∣ ≤ lCr,ǫ.

Furthermore, the map γnl

l ...γn1
1 is (2r, 2ε)−proximal with x+(γ

nl

l ...γn1
1 ) ∈ B(x+(γl), ε) and

X−(γ
nl

l ...γn1
1 ) ⊂ Vε(X−(γ1)).

Proof. Taking the logarithm in Benoist’s [Ben00, Lemma 1.4] gives us the first part of the
statement (the estimates). We only give a proof of the proximality and the localisation of the
attractive points and repulsive hyperplane.

Let n1, ..., nl ≥ 1 and assume that 0 < ǫ ≤ r and ǫ < 1. Let us prove that gn := γnl

l ...γn1
1

verifies the assumptions (i) (ii) of the proximality criterion Lemma 3.5. More precisely, we
prove by induction on l that gn restricted to Vε(X−(γ1))c is ε−Lipschitz and gnVε(X−(γ1))c ⊂
B(x+(γl), ε).

By (r, ε)−proximality of γn1
1 , the restriction of γn1

1 to Vε(γ1)
c is ε−Lipschitz and γn1

1 Vε(γ1)
c ⊂

B(x+(γ1), ε).
Assume that for some 1 ≤ i ≤ l that γni

i ...γn1
1 restricted to Vε(X−(γ1))c is ε−Lipschitz

and γni

i ...γn1
1 Vε(X−(γ1))c ⊂ B(x+(γi), ε). Since d(x+(γi), X−(γi+1)) ≥ 6r and 0 < ǫ ≤ r we

obtain B(x+(γi), ε) ⊂ Vε(X−(γi+1))
c. Then using (r, ε)−proximality of γi+1, its restriction

to B(x+(γi), ε) is ε−Lipschitz and γ
ni+1

i+1 B(x+(γi), ε) ⊂ B(x+(γi+1), ε). Hence by induction

hypothesis and using ǫ < 1, the map γ
ni+1

i+1 ...γn1
1 restricted to Vε(X−(γ1))c is ε−Lipschitz and

γ
ni+1

i+1 ...γn1
1 Vε(X−(γ1))c ⊂ B(x+(γi+1), ε).

We conclude the proof. By assumption, d(x+(γl), X−(γ1)) ≥ 6r. Finally, by Lemma 3.5 we
deduce (2r, 2ε)−proximality of gn with x+(gn) ∈ B(x+(γl), ε) and X−(gn) ⊂ Vε(X−(γ1)). �

The previous proposition motivates the next definition.

Definition 3.8. Let 0 < ε ≤ r. A semigroup Γ ⊂ GL(V ) is strongly (r, ε)-Schottky if

(i) every h ∈ Γ is (r, ε)−proximal,
(ii) d(x+(h), X−(h′)) ≥ 6r for all h, h′ ∈ Γ.

We also write that Γ is a strong (r, ε)-Schottky semigroup.

3.2. Representations of a semisimple Lie group G. Let (V, ρ) be a representation of G
in a real vector space of finite dimension. For every character χ of a, denote the associated
eigenspace by Vχ := {v ∈ V | ∀a ∈ a, ρ(a)v = χ(a)v}. The set of restricted weights of V is the
set Σ(ρ) := {χ|Vχ 6= 0}. Simultaneous diagonalization leads to the decomposition V = ⊕

χ∈Σ(ρ)
Vχ.

The set of weights is partially ordered as follows
(
χ1 ≤ χ2

)
⇔

(
∀a ∈ A+, χ1(a) ≤ χ2(a)

)
.
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Whenever ρ is irreducible, the set Σ(ρ) has a highest element χmax which is the highest restricted
weight of V . Denote by Vρ the eigenspace of the highest restricted weight, and by Yρ the
a−invariant supplementary subspace of Vρ i.e. Yρ := ker(V ∗

χmax
) = ⊕

χ∈Σ(ρ)\{χmax}
Vχ.

The irreducible representation ρ is proximal when dim(Vχmax
) = 1. The following Lemma can

be found in [BQ16, Lemma 5.32]. It is due to Tits [Tit71].
Denote by Π ⊂ Σ+ the subset of simple roots of the set of positive roots for the adjoint

representation of G.

Lemma 3.9 ([Tit71]). For every simple root α ∈ Π, there exists a proximal irreducible algebraic
representation (ρα, Vα) of G whose highest weight χmax,α is orthogonal to β for every simple root
β 6= α.

These weights (χmax,α)α∈Π form a basis of the dual space a∗.
Moreover, the map

F(X)
y

−→
∏

α∈Π

P(Vα)

η := kηη0 7−→
(
yα(η) := ρα(kη)Vρα

)
α∈Π

is an embedding of the set of asymptotic Weyl chambers in this product of projective spaces.

We also define a dual map H : F(X) →
∏

α∈Π Grdim(Vα)−1(Vα) as follows. For every η ∈
F(X), let kη ∈ K be an element so that η = kη η̌0 then

F(X)
Y
−→

∏

α∈Π

Grdim(Vα)−1(Vα)

ξ := kξη̌0 7−→
(
Yα(ξ) := ρα(kξ)Yρα

)
α∈Π

.

The maps y and Y provide us two ways to embed the space of asymptotic Weyl chambers
F(X).

Corollary 3.10. The map

F (2)(X) −→
∏

α∈Π

P(Vα)⊕Grdim(V )−1(Vα)

(f+, f−) 7−→
(
yα(f+)⊕ Yα(f−)

)
α∈Π

.

is a G−equivariant embedding of the space of flags in general position into this product of pro-
jective spaces in general position i.e. the associated subspaces are in direct sum.

Now we give an interpretation of the Cartan projection, the Iwasawa cocycle and the Jordan
projection in terms of representations of G. The complete proof can be found in [BQ16].

Lemma 3.11 (Lemma 5.33 [BQ16]). Let α ∈ Π be a simple root and consider (Vα, ρα) the
proximal representation of G given by Lemma 3.9. Then

(a) there exists a ρα(K)−invariant Euclidean norm on Vα such that, for all a ∈ A, the
endomorphism ρα(a) is symmetric.

(b) for such a norm and the corresponding subordinate norm on End(Vα), for all g ∈ G,
η ∈ F(X) and vη ∈ yα(η), one has
(i) χmax,α

(
µ(g)

)
= log

(
‖ρα(g)‖

)
,

(ii) χmax,α

(
λ(g)

)
= log

(
λ1(ρα(g))

)
,

(iii) χmax,α

(
σ(g, η)

)
= log

‖ρα(g)vη‖
‖vη‖ .

The following lemma gives estimations on the Cartan projection of products of any pair of
elements in G.
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Lemma 3.12. There exists a continuous, left and right K−invariant, function h ∈ G 7→ Ch ∈
R+ such that

(i) for any g ∈ G, the Cartan projections µ(gh) − µ(g) and µ(hg) − µ(g) are in the ball

Ba(0, Ch),

(ii) for any η ∈ F(X), the Iwasawa cocycle σ(h, η) ∈ Ba(0, Ch).

Proof. Abusing terminology, we say that a function is K−invariant when it is K−invariant for
both left and right action.

Let us prove the first point. For any α ∈ Π, we consider the proximal irreducible representation
(ρα, Vα) of G given by Lemma 3.9.

Using Lemma 3.11, we endow each vector space Vα with ρα(K)−invariant Euclidean norm.
Classical properties of the norm lead, for all α ∈ Π and every g, h ∈ G, to

‖ρα(g)‖

‖ρα(h−1)‖
≤ ‖ρα(gh)‖ ≤ ‖ρα(g)‖‖ρα(h)‖,

1

‖ρα(h−1)‖
≤

‖ρα(gh)‖

‖ρα(g)‖
≤ ‖ρα(h)‖.

Note that we obtain the same inequalities for hg.s By Lemma 3.11, we deduce

(3) −χmax,α

(
µ(h−1)

)
≤ χmax,α

(
µ(gh)− µ(g)

)
≤ χmax,α

(
µ(h)

)
.

For any α ∈ Π, set hα := max
(
χmax,α

(
µ(h)

)
, χmax,α

(
µ(h−1)

))
. Furthermore, by Lemma 3.9,

the weights (χmax,α)α∈Π form a basis of the dual space a∗. In other word, they admit a dual

basis in a. Denote by Ch > 0 the real number such that Ba(0, Ch) is the smallest closed ball
containing any point of dual coordinates in

(
[−hα, hα]

)
α∈Π

for the dual basis of (χmax,α)α∈Π.

Hence Ba(0, Ch) is compact and contains µ(gh)− µ(g) and µ(hg)− µ(g).
It remains to show that the function h 7→ Ch is continuous and K−invariant. It is due to the

fact that the Cartan projection and the map h 7→ µ(h−1) are both continuous and K−invariant.
Hence, by taking the supremum in each coordinate, the map h 7→ (hα)α∈Π is continuous and
K−invariant. Furthermore, by definition of Ch, we obtain K−invariance and continuity of
h 7→ Ch.

Similarly, the second point is a direct consequence of Lemma 3.11, (i) and (iii) and of the
inequality

(4)
1

‖ρα(h−1)‖
≤

‖ρα(h)(vη)‖

‖vη‖
≤ ‖ρα(h)‖

where η ∈ F(X) and vη ∈ Vα is the associated non trivial vector.
�

3.3. Loxodromic elements. Let us now study the dynamical properties of the loxodromic
elements in the representations of the previous paragraph. [BQ16, Lemma 5.37] states that any
element of G is loxodromic if and only if its image is proximal for every representations given by
Lemma 3.9. This allows to extend the notions and results on proximal elements to loxodromic
elements in G.

Definition 3.13. An element g ∈ G is loxodromic if its Jordan projection λ(g) is in the interior
of the Weyl chamber a++ or (equivalently) if for all α ∈ Π the endomorphisms ρα(g) are proximal.

Let 0 < ε ≤ r. An element g ∈ G is (r, ε)-loxodromic if for all α ∈ Π the endomorphisms
ρα(g) are (r, ε)-proximal.

A semigroup Γ of G is strongly (r, ε)-Schottky if for all α ∈ Π the semigroups ρα(Γ) ⊂
End(Vα) are strongly (r, ε)-Schottky.
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Attractive and repulsive asymptotic Weyl chambers of loxodromic elements were defined in
section 2.2 as follows. For any loxodromic element g ∈ G, then (g+, g−) := hg(η0, η̌0) ∈ F (2)(X)

where hg ∈ G is an element so that there is an angular part m(g) ∈ M with g = hge
λ(g)m(g)h−1

g .

The G−equivariant map (f+, f−) ∈ F (2)(X) →
(
yα(f+)⊕Yα(g−)

)
α∈Π

given by Corollary 3.10

allows to caracterize attractive points and repulsive points in F(X) for loxodromic elements.

Lemma 3.14. For any loxodromic element g ∈ G, the following statements are true.

(i) g−1 is loxodromic, of attractive point g− and repulsive point g+,
(ii) the image of (g+, g−) ∈ F (2)(X) by the above map is the family of attractive points and

repulsive hyperplanes in general position
(
x+(ρα(g))⊕X−(ρα(g))

)
α∈Π

,

(iii) g contracts any point η ∈ F(X) in general position with g−, to g+ i.e. lim
n→+∞

gnη = g+,

(iv) for any nonempty open set O− ⊂ F(X) in general position with g+, for any nonempty
open neighbourhood U− ⊂ F(X) of g−, there exists N ∈ N so that for any n ≥ N , then
O− ∩ gnU− 6= ∅.

Proof. Let g ∈ G be a loxodromic element, consider an element hg ∈ G and an angular part

m(g) ∈ M so that g = hgm(g)eλ(g)h−1
g . Then g−1 = hgm(g)−1e−λ(g)h−1

g . Remark that −λ(g)

is in the interior of the Weyl chamber −a+. Consider the element of the Weyl group NK(A)/M
whose adjoint action on a sends a+ onto −a+. Denote one representative by kι ∈ NK(A). Then
−Ad(kι)(λ(g)) ∈ a++, hence

g−1 = hgkι(k
−1
ι m(g)kι)

−1e−Ad(kι)(λ(g))(hgkι)
−1.

Next, we remark that k−1
ι Mkι is in the centralizer of k−1

ι Akι = A, hence k−1
ι m(g)kι ∈ k−1

ι Mkι =
M . We deduce that λ(g−1) = −Ad(kι)(λ(g)) and set hg−1 = hgkι with the angular part
m(g−1) = (k−1

ι m(g)kι)
−1. Then the pair of attractive and repulsive points of g−1 in F(X)

is (hgkιη0, hgkιη̌0). Since kιη0 = η̌0 and kιη̌0 = η0 we obtain the first statement i.e. that g−

(resp. g+) is the attractive (resp. repulsive) point of g−1.
For the second point, it suffices to prove that for any loxodromic element g ∈ G, for every

α ∈ Π, the vector space ρα(hg)Vρα
= yα(g

+) is the eigenspace associated to the spectral radius
of ρα(g) and that ρα(hg)Yρα

= Yα(g
−) is the direct sum of the other eigenspaces.

Let g ∈ G be a loxodromic element and let α ∈ Π. By Lemma 3.11, the spectral radius of
ρα(g) is exp(χmax,α(λ(g))). We deduce that the eigenspace of the highest eigenvalue is ρα(hg)Vρα

.
Furthermore, by definition of proximality, x+(ρα(g)) = P(ρα(hg)Vρα

) = yα(g
+).

Remark that the other eigenvalues of ρα(g) are given by the other non maximal restricted
weights of the representation (ρα, Vα). Hence ρα(hg)Yρα

is the direct sum of the other eigenspaces
of ρα(hg). The projective space P(ρα(hg)Yρα

) is thus the repulsive hyperplane of ρα(g). Hence
the second statement is true.

For any point η ∈ F(X) in general position with g− and for any α ∈ Π, the point yα(η) is
then in general position with the hyperplane Yα(g

−). Hence lim
n→+∞

ρα(g
n)yα(η) = x+(ρα(g)).

This gives the third statement.
For the last statement, we apply the third statement to g−1. It means that, for any nonempty

open set O− ⊂ F(X) in general position with g+ and for any nonempty open neighbourhood
U− ⊂ F(X) of g−, there exists N ∈ N so that for any n ≥ N , then

(
g−1

)n
O− ∩ U− 6= ∅.

Hence, for any n ≥ N ,
gn

(
g−nO− ∩ U−) 6= ∅,

finally,
O− ∩ gnU− 6= ∅.
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�

Lemma 3.3 and Corollary 3.6 extend to loxodromic elements.

Lemma 3.15. For every loxodromic element g ∈ G, there exists r > 0 and n0 ∈ N such that for
all n ≥ n0 large enough, gn is (r, εn)-loxodromic with εn →

n→∞
0.

Corollary 3.16. Fix 0 < ε ≤ r. Let g ∈ G be a (r, ε/2)−loxodromic element so that d(g+, g−) ≥
7r.

Then for any h ∈ G so that ‖h − idV ‖ ≤ ε/2, the product gh is (2r, 2ε)−loxodromic, with
(gh)+ ∈ B(g+, ε).

Likewise, we generalize estimates of Proposition 3.7 to products of loxodromic elements of G
in general configuration.

Given l loxodromic elements g1, ...gl of G, set g0 = gl and assume that the asymptotic points
g+i−1 and g−i are opposite for all 1 ≤ i ≤ l. Thanks to lemma 3.9, there exists a unique element
ν = ν(g1, ..., gl) ∈ a whose coordinates in the dual basis of (χα,max)α∈Π are

(
χα,max(ν)

)
α∈Π

:=
(
ν1(ρα(g1), ..., ρα(gl))

)
α∈Π

.

This product does not depends on the choices of unit eigenvectors for gj . The product of
projective spaces

∏
α∈Π P(Vα) is endowed with the natural distance.

Proposition 3.17 (Benoist[Ben00]). For all 0 < ǫ ≤ r, there exist positive constants Cr,ǫ such
that for all r > 0, limǫ→0 Cr,ǫ = 0 and such that the following holds. If γ1, ...γl are (r, ε)-

loxodromic elements, such that for all 1 ≤ i ≤ l with γ0 = γl we have d(y(γ+
i−1), H(γ−

i )) ≥ 6r,
then for all n1, ..., nl ≥ 1

λ(γnl

l ...γn1
1 )−

l∑

i=1

niλ(γi)− ν(γl, ..., γ1) ∈ Ba(0, lCr,ǫ).

Furthermore, the map g := γnl

l ...γn1
1 is (2r, 2ε)−loxodromic with y(g+) ∈ B(y(γ+

l ), ε) and

H(g−) ∈ Vε(H(γ−
1 )).

Using Proposition 3.17, one can construct finitely generated, strong (r, ε)-Schottky semigroups
as follows. Let 0 < ε ≤ r.

Let S ⊂ G be a family of (r/2, ε/2)−loxodromic elements such that d(y(h+), H(h′−)) ≥ 7r
for all h, h′ ∈ S. Denote by Γ′ the semigroup generated by S. Then every element g ∈ Γ is a
noncommuting product of proximal elements of the form gnl

l ...gn1
1 with n1, ..., nl ≥ 1 and gi 6=

gi+1 ∈ S for all 1 ≤ i < l. By Proposition 3.17, we deduce d(y(g+), H(g−)) ≥ d(y(g+l ), H(g−1 ))−
ε ≥ 6r and that g is (r, ε)−loxodromic. Thus, Γ′ is strongly (r, ε)-Schottky.

4. Topological transitivity

Recall the definition of topological transitivity. We denote by a+1 (resp. a++
1 ) the intersection

of the unit sphere in a with a+ (resp. a++).

Definition 4.1. Let Ω̃ ⊂ W(X) a Γ-invariant and a-invariant subset of parametric flats W(X).

Let Ω := Γ\Ω̃. Fix a direction θ ∈ a++
1 . The Weyl chamber flow φθ

R
is topologically transitive on

Ω if for all open nonempty subsets U, V ⊂ Ω, there exists tn → +∞ such that for every n ≥ 1,
we have U ∩ φθ

tn(V ) 6= ∅.

It is a standard fact that it is equivalent to one the following properties :

(1) there is a φθ
R
−dense orbit in Ω.
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(2) for all open nonempty subsets Ũ , Ṽ ⊂ Ω̃(X), there exists tn → +∞ such that for every

n ≥ 1, ΓŨ ∩ φθ
tn(Ṽ ) 6= ∅.

(3) for all open nonempty subsets Ũ , Ṽ ⊂ Ω̃, there exists tn → +∞ such that for every

n ≥ 1, there exists γn ∈ Γ with γnŨ ∩ φθ
tn(Ṽ ) 6= ∅.

The equivalence between the definition and property (1) can be found in [Ebe72, Proposition
3.5]. The others equivalences are straightforward.

4.1. Limit set, limit cone of Zariski dense subgroup.

In the remaining parts of this paper, Γ ⊂ G is a Zariski dense
semigroup of G.

Definition 4.2. A point η ∈ F(X) is a limit point if there exists a sequence (γn)n≥1 in Γ such
that (γn[f0(a

+)])n≥1 converges in F(X) towards η.
The limit set of Γ, denoted by L+(Γ), is the set of limit points of Γ. It is a closed subset of

F(X).

Denote by L−(Γ) the limit set of Γ−1 and finally let L(2)(Γ) =
(
L+(Γ) × L−(Γ)

)
∩ F (2)(X)

the subset of F2(X) in general position.

Lemma 4.3 ([Ben97] Lemma 3.6 ). The set of pairs of attractive and repulsive points of loxo-
dromic elements of Γ is dense in L+(Γ)× L−(Γ).

Definition 4.4. We denote by Ω̃(X) the subset of non-wandering Weyl chambers, defined
through the Hopf parametrization by :

Ω̃(X) := H−1(L(2)(Γ)× a).

This is a Γ−invariant subset of W(X). When Γ is a subgroup, we denote by Ω(X) := Γ\Ω̃(X)
the quotient space.

Conze and Guivarc’h proved in [CG02, Theorem 6.4], the existence of dense a−orbits in Ω̃(X).

By duality, it is equivalent to topological transitivity of left Γ−action on Ω̃(X)/AM ≃ L(2)(Γ).
We propose a new simpler proof of this result adapting the one for negatively curved manifolds
of Eberlein [Ebe72].

Theorem 4.5 ([CG02]). For any open nonempty subsets U (2),V(2) ⊂ L(2)(Γ) there exists g ∈ Γ
such that gU (2) ∩ V(2) 6= ∅.

Proof. Whithout loss of generality, we assume that U (2) = U+ × U− and V(2) = V+ × V− where
U+,V+ (resp. U−,V−) are open nonempty subsets of L+(Γ) (resp. L−(Γ)).

We choose an open set W (2) = W+ × W− ⊂ L(2)(Γ) so that V+ and W− (resp. W+ and
U−) are opposite. Such a choice is always possible. If V+ and U− are opposite, we can take
W (2) = V(2). Otherwise, by taking U (2) and V(2) smaller, we can always assume that the subset
of points in L+(Γ) (resp. L−(Γ)) in general position with U− (resp. V+) is non empty. Then we
choose a suitable opposite pair of open nonempty subsets W+ ×W− ⊂ L+(Γ)× L−(Γ).

Since W+ × U− ⊂ L(2)(Γ), then, by Lemma 4.3, there are loxodromic elements in Γ with
attractive point in W+ and repulsive point in U−. By Lemma 3.14, such a loxodromic element
γ1 contracts points that are in general position with γ−

1 ∈ U− towards γ+
1 ∈ W+. Apply now

statement (iv) of Lemma 3.14, to loxodromic element γ1, with W− in general position with γ+
1

and U− containing γ−
1 . Hence for any n large enough, γn

1 U
(2) ∩W (2) 6= ∅.

We take an open subset W(2) of γn
1 U

(2)∩W (2) of the form W(2) = W+×W−. Then V+×W− ⊂
V+×W− ⊂ L(2)(Γ). Likewise, we choose a loxodromic element γ2 ∈ Γ so that γ2W(2)∩V(2) 6= ∅.
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Then (
γ2γ

n
1 U

(2) ∩ γ2W
(2)

)
∩ V(2) ⊃ γ2W

(2) ∩ V(2) 6= ∅.

Finally, the element g = γ2γ
n
1 satisfies gU (2) ∩ V(2) 6= ∅ �

The theorem below describes the set of directions θ ∈ a+1 for which we will show that φθ
t is

topologically mixing.

Theorem 4.6 ([Ben97]). We define the limit cone of Γ by, C(Γ) :=
⋃
γ∈Γ

Rλ(γ). We have

C(Γ) =
⋂

n≥1

⋃

‖γ‖≥n

γ∈Γ

Rµ(γ).

Moreover this set is closed, convex, of non-empty interior.

4.2. Topological transitivity properties. Recall the definition of the subset of non-wandering

Weyl chambers Ω̃(X) = H−1(L(2)(Γ)× a).

Proposition 4.7. Let θ ∈ a++. If the flow (Ω(X), φt
θ) is topologically transitive then θ ∈

◦
C(Γ).

Proof. We assume that the dynamical system (Ω(X), φt
θ) is topologically transitive i.e. there

exists a dense orbit. Let x ∈ Ω(X) be a point of φt
θ−dense orbit and choose gx ∈ G a lift of x in

G.
By density of (φt

θ(x))x∈R, for any yM ∈ Ω̃(X) ⊂ G/M , there exists tn → +∞, εn → idG,
mn ∈ M and γn ∈ Γ so that

φtn
θ (gx) = gxe

tnθ = γnyεnmn.

In particular, since the element y = gxe
−v belongs to Ω̃(X) for all v ∈ a, there exists tn ∈

R, ǫn → IdG, mn ∈ M and γn ∈ Γ such that

(5) gxe
tnθ = γngxe

−vεnmn.

For every n ≥ 1 we set ε′n := gxe
−vεne

vg−1
x . The sequence (ε′n)n≥1 converges towards idG, and

we have:

(6) gxe
v+tnθm−1

n g−1
x = γnε

′
n.

For every n ≥ 1 we set gn := gxe
v+tnθm−1

n g−1
x .

Thanks to Lemma 3.12, we deduce the following estimates

µ(gn) ∈ v + tnθ + Cgx + Cg−1
x

µ(γnε
′
n) ∈ µ(γn) + Cε′n

.

Therefore, µ(γn) is at bounded distance to v+ tnθ and by Theorem 4.6, θ must lie in the (closed)
limit cone. We now show that θ cannot be in its boundary. For this we need to study more
carefully the Jordan projection of gnǫ

′−1
n .

By definition, λ(γn) belongs to the limit cone. By computing λ(gnǫ
′−1
n ), we will show that

λ(γn) also lies in a uniform (with respect to v) neighborhood of v + tnθ. Finally, choosing v far
enough will force θ to be in the interior of the limit cone.

First of all, let us show that gnǫ
′−1
n is a loxodromic element. Since by hypothesis θ is in

the interior of the Weyl chamber a+, there exists n0 ∈ N so that for n ≥ n0 large enough,
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λ(gn) = v + tnθ ∈ a++. Hence gn is loxodromic and (g+n , g
−
n ) = (gxη0, gxη̌0) for all n ≥ n0. We

choose 0 < r ≤ 1
7d(gxη0, gxη̌0).

We apply Lemma 3.15 on the loxodromic elements
(
gxe

θg−1
x

)k
. There is a sequence of ρk →

0 so that
(
gxe

θg−1
x

)k
is (r, ρk)−loxodromic. Then for any n ≥ n0, gn is the product of a

(r, ρkn
)−loxodromic element and a loxodromic element of the form gxe

vnm−1
n g−1

x , where vn ∈ a+

is bounded, and with kn → +∞. Since gxe
vnm−1

n g−1
x and

(
gxe

θg−1
x

)k
have the same attractive

and repulsive point in F(X), we deduce that gn is (r, ρkn
)−loxodromic for n ≥ n0. Take now

ρ′n = max(ρn,
1
2‖ε

′
n − idG‖). Then there exists n1 so that for n ≥ max(n0, n1), then 0 < ρ′n ≤ r,

and gn is (r, ρ′n)−loxodromic. Corollary 3.16 shows that gnε
′−1
n is (2r, 2ρ′n)−loxodromic for n

large enough, and (gnε
′−1
n )+ ∈ B(gxη0, ρ

′
n).

Using Fact 2.7, we compute λ(gnε
′−1
n ):

λ(gnε
′−1
n ) = σ(gnε

′−1
n , (gnε

′−1
n )+)

= σ(gn, ε
′−1
n (gnε

′−1
n )+) + σ(ε′−1

n , (gnε
′−1
n )+)

= σ(gn, gxη0)

+
(
σ
(
gn, ε

′−1
n (gnε

′−1
n )+

)
− σ(gn, gxη0)

)

+ σ(ε′−1
n , (gnε

′−1
n )+).

Remark that, σ(gn, gxη0) = λ(gn) = v + tnθ. hence

(7) λ(gnε
′−1
n )− (v + tnθ) =

(
σ
(
gn, ε

′−1
n (gnε

′−1
n )+

)
− σ(gn, gxη0)

)
+ σ(ε′−1

n , (gnε
′−1
n )+).

We analyze separately the two terms of the right hand side of the last equality.
For the last term, by Lemma 3.12 (ii)

‖σ(ε′−1
n , (gnε

′−1
n )+)‖ ≤ Cε′n .

Now we will bound, independently of v, the term σ(gn, ε
′−1
n (gnε

′−1
n )+)− σ(gn, gxη0).

Let α ∈ Π be a simple root and consider the proximal representation of G associated to α.
By Lemma 3.11 (b)(iii), for any ξ ∈ ε′−1

n B(gxη0, 2ρ
′
n), there exists a non zero vector vξ ∈ Vα so

that

χmax,α(σ(gn, ξ)) = log
‖ρα(gn)vξ‖

‖vξ‖
.

Let ξ = ε′−1
n (gnε

′−1
n )+ and consider a unitary vector vξ ∈ Vα. Since ξ is in a 3ρ′n−neighbourhood

of g+n , we write vξ = v++ v< where v+ ∈ V+(ρα(gn)) and v< ∈ V−(ρα(gn)) with ‖v+‖ > 1− 3ρ′n.
Then

ρα(gn)

λ1(ρα(gn))
(vξ) = v+ +

ρα(gn)

λ1(ρα(gn))
(v<)

By the triangle inequality,

‖v+‖ −
∥∥∥

ρα(gn)

λ1(ρα(gn))
(v<)

∥∥∥ ≤
‖ρα(gn)vξ‖

λ1(ρα(gn))
≤ ‖v+‖+

∥∥∥
ρα(gn)

λ1(ρα(gn))
(v<)

∥∥∥.

Hence

1− 3ρ′n −
∥∥∥

ρα(gn)

λ1(ρα(gn))
(v<)

∥∥∥ ≤
‖ρα(gn)vξ‖

λ1(ρα(gn))
≤ 1 +

∥∥∥
ρα(gn)

λ1(ρα(gn))
(v<)

∥∥∥.

The eigenvalues of ρα(gn)
λ1(ρα(gn))

restricted to X−(gn) are exp(χα(λ(gn))−χmax,α(λ(gn))), where

χα 6= χmax,α is a restricted weight of Σ(ρα). They converge to zero and these endomorphisms
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are all diagonalisable. Hence,
∥∥∥
ρα(gn)|X−(gn)

λ1(ρα(gn))

∥∥∥ →
n+∞

0.

Taking the logarithm and the upper bound of
‖ρα(gn)vξ‖
λ1(ρα(gn))

and its inverse, we obtain for n large

enough,

‖σ(gn, ξ)− σ(gn, gxη0)‖ ≤ 3ρ′n + sup
α∈Π

∥∥∥
ρα(gn)|X−(gn)

λ1(ρα(gn))

∥∥∥.

Finally, for any v ∈ a, there exists tn → +∞, ε′n → idG, so that for any n large enough,

(8) ‖λ(γn)− (v + tnθ)‖ ≤ 3ρ′n + sup
α∈Π

∥∥∥
ρα(gn)|X−(gn)

λ1(ρα(gn))

∥∥∥+ Cε′n .

The three terms converge to zero when n → +∞, so that, for n large enough, λ(γn)− (v + tnθ)
is uniformly bounded.

To conclude, recall that the limit cone is the smallest closed cone containing all the Jordan
projections of Γ. Hence, this implies that for n large enough, the distance d(v + tnθ, C(Γ)) is
uniformly bounded. Now, assume by contradiction that θ is in the boundary of C(Γ). Let H
be a supporting hyperplane of the convex C(Γ) at θ and H+ the half space not containing C(Γ).
Pick v ∈ H+, whose distance to C(Γ) is large. Then d(v+R+θ, C(Γ)) = d(v+R+θ,H) = d(v,H)
is also large. This is contradictory with inequality (8).

Hence, topological transitivity of the dynamical system (Ω(X), φt
θ) implies that θ ∈

◦
C(Γ). �

5. Topological mixing

Recall the definition of topological mixing.

Definition 5.1. Fix a direction θ ∈ a++
1 . The Weyl chamber flow φθ

R
is topologically mixing on

Ω(X) if for all open subsets U, V ⊂ Ω(X), there exists T > 0 such that for all t ≥ T , we have
U ∩ φθ

t (V ) 6= ∅.

It will be sometimes more convenient to make proofs in the cover Ω̃(X), where the topological

mixing takes the following form : for all open subsets Ũ , Ṽ ⊂ Ω̃(X), there exists T > 0 such that

for all t ≥ T there exists γt ∈ Γ with γtŨ ∩ φθ
t (Ṽ ) 6= ∅.

5.1. Non-arithmetic spectrum. Denote by Γlox the set of loxodromic elements of Γ. In [Dal00]
Dal’bo introduced the notion of non-arithmetic spectrum for subgroup of Isom(Hn), meaning
that the length spectrum of such a group is not contained in a discrete subgroup of R.

We generalize this definition for isometry group in higher rank:

Definition 5.2. We say that Γ has non-arithmetic spectrum if the length spectrum λ(Γlox) spans
a dense subgroup of a.

Proposition 5.3. Every Zariski dense semigroup Γ contains loxodromic elements, strong (r, ε)-
Schottky Zariski dense semigroups and has non-arithmetic spectrum.

Proof. For a general semisimple, connected, real linear Lie group, Benoist proves in [Ben00,
Proposition 0] that when Γ is a Zariski dense semigroup of G, then the additive group generated
by the full length spectrum λ(Γ) is dense in a. Thus, this Proposition implies that Zariski
dense semigroups containing only loxodromic elements have non-arithmetic length spectrum. In
particular, strong (r, ε)-Schottky Zariski dense semigroups have non-arithmetic length spectrum.
Finally, the existence of Zariski dense Schottky semigroups in Zariski dense subgroups of G
follows from [Ben97, Proposition 4.3 for θ = Π]. �
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Prasad and Rapinchuk [PR05, Theorem 2] prove that every Zariski dense semigroup of G
contains a finite subset F such that λ(F ) generates a dense subgroup of a.

5.2. A key proposition for mixing. The following proposition is the technical point for prov-
ing the topological mixing of the Weyl chamber flow. Roughly, it shows that among elements of
Γ which do not move too much a flat, (ie. (γ+

t , γ−
t ) ∈ U (2)) for any given x ∈ a, we can find an

element which send 0 to x+ θt for large t (ie. λ(γt) ∈ B(x+ tθ, η))

Proposition 5.4. Fix θ ∈ a++
1 in the interior of the limit cone C(Γ).

Then for every nonempty open subset U (2) ⊂ L(2)(Γ), for all x ∈ a and η > 0 there exists
T > 0 such that for all t ≥ T there exists a loxodromic element γt ∈ Γ with

(9)

{
(γ+

t , γ−
t ) ∈ U (2)

λ(γt) ∈ B(x+ tθ, η)

We will need the following classical density lemma, see for example [Ben00, Lemma 6.2].

Lemma 5.5. Let V be a real vector space of finite dimension. Let l0, l1, ..., lt be vectors of V
and η > 0. Set

L :=
∑

0≤i≤t

R+li, M :=
∑

0≤i≤t

Zli, and M+ :=
∑

0≤i≤t

Nli.

Assume that M is η-dense in V . Then there exists v0 ∈ V such that M+ is η-dense in v0 + L.

Remark that if M+ is η-dense in v0 + L then it is η-dense in v + L for every v ∈ v0 + L.
The following lemma is a consequence of [Ben97, Proposition 4.3].

Lemma 5.6. For all θ in the interior of the limit cone C(Γ), there exists a finite set S ⊂ Γ, a
positive number r > 0 and εn →

+∞
0 such that

(i) θ is in the interior of the convex cone L(S) :=
∑
γ∈S

R+λ(γ),

(ii) the elements of λ(S) form a basis of a,
(iii) for all n ≥ 1, the family Sn := (γn)γ∈S spans a Zariski-dense strong (r, εn)−Schottky

semigroup of Γ.

Proof. Fix θ in the interior of C(Γ).
Let us now construct a family of rG open cones in the limit cone C(Γ). We consider a affine

chart of P(a) centered in Rθ. Since Rθ is in the open set P(
◦
C(Γ)), it admits an open, polygonal,

convex neighborhood with rG distinct vertices centered in Rθ and included in P(
◦
C(Γ)). We denote

by p := (Rpi)1≤i≤rG the family of vertices of that convex neighbourhood, Hp its convex hull.
Without loss of generality we can assume that there exists δ0 > 0 so that the δ0−neighbourhood

of Hp, Vδ0(Hp) is included in P(
◦
C(Γ)).

For any δ > 0, we denote by Vδ(∂Hp) the δ−neighborhood of the boundary ∂Hp. Choose
0 < δ ≤ inf

(
δ0,

1
3d(Rθ, ∂Hp)

)
so that Rθ ∈ Hp \ Vδ(Hp).

Denote by Lp ⊂
◦
C(Γ) (resp. Vδ(∂Lp)) the closed (resp. open) cone whose projective image is

Hp (resp. Vδ(∂Hp)). For all 1 ≤ i ≤ rG, denote by (Ωi)1≤i≤rG the family of open cones such
that P(Ωi) := BP(a)(pi, δ).

By [Ben97, Proposition 4.3] applied to the finite family of disjoint open cones (Ωi)1≤i≤rG

there exists 0 < ε0 ≤ r, a generating set S := {γi}1≤i≤rG ⊂ Γ of a Zariski dense (r, ε)−Schottky
semigroup such that for all 1 ≤ i ≤ rG the Jordan projection λ(γi) is in Ωi. By Lemma 3.3, for
any n ≥ 1, the elements of Sn are (r, εn)−loxodromic. Thus, for n large, condition (iii) holds.
By construction, λ(S) form a family of rG linearly independent vectors of a hence (ii) holds. Set
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L(S) :=
∑
γ∈S

R+λ(γ). The construction of Lp and Vδ(∂Lp) implies that θ ∈ Lp \ Vδ(∂Lp). Since

λ(γi) ∈ Ωi ⊂ Vδ(∂Lp) for all 1 ≤ i ≤ rG, the boundary of the cone ∂L(S) ⊂ Vδ(∂Lp). Hence

Lp \ Vδ(∂Lp) ⊂
◦
L(S) and finally, condition (i) holds, θ is in the interior of the cone L(S). �

Let us give a proof of the key Proposition.

Proof of Proposition 5.4. We fix a point θ in the interior of C(Γ), an open, nonempty set U =
U+ × U− ⊂ L(2)(Γ), a point x ∈ a and η > 0.

Consider S as in the previous Lemma 5.6. Denote by Γn the semigroup spanned by Sn.
By Lemma 3.7, one can pick h ∈ Γlox such that (h+, h−) ∈ U (2) \ (γ−

1 , γ+
rG). Choose r > 0 so

that

r ≤ inf

(
ρ,

1

6
d(h+, h−),

1

6
d(γ+

rG , h
−),

1

6
d(h+, γ−

1 )

)
.

In particular, Proposition 3.17 holds for elements of the form hγ
nrG
rG gγn1

1 h where g ∈ Γn.
Choose 0 < ε ≤ r small enough so that

(10)

{
(3rG + 2)Cr,ε ≤ η/2

B(h+, ε)×B(h−, ε) ⊂ U (2)

where (Cr,ε)ε≥0 are constants given by the Proposition.
We use Lemma 3.3 and choose n large so that hn, Sn are (r, εn)−loxodromic elements with

εn ≤ ε.
By Proposition 5.3, the subgroup generated by λ(Γn) is dense in a. By Lemma 6.1 applied to

λ(Γn), there exists a finite subset F ⊂ Γn containing at most 2rG elements so that λ(Sn)∪λ(F )
spans a η/2−dense subgroup of a. We denote by l the number of elements in S′ := Sn ∪ F and
we enumerate the elements of Sn ∪F by (g1, ..., gl), where g1 := γn

1 and gl := γn
rG . A crucial fact

is that l ≤ 3rG is bounded independently of λ(Γn).
The additive subgroup generated by λ(S′) is η/2−dense in a. Furthermore, θ is still in the

interior of the convex cone L(S′) :=
∑
g∈S′

R+λ(g) by (i). Lemma 5.5 gives the existence of v0 ∈ a

such that M+(S
′) :=

∑
g∈S′

Nλ(g) is η/2− dense in v0 + L(S′).

The interior of L(S′) contains θ. Hence for any v ∈ a, the intersection
(
v+R+θ

)
∩
(
v0+L(S′)

)

is a half line.
Consider such a half line x− ν(hn, gl, ..., g1, h

n)− 2λ(hn) + θ[T,+∞) contained in v0 +L(S′),
for some T ∈ R. For all t ≥ T , there exists nt := (nt(1), ..., nt(l)) ∈ N

l such that

(11)

∥∥∥∥
l∑

i=1

nt(i)λ(gi)− x+ ν(hn, gl, ..., g1, h
n) + 2λ(hn)− θt

∥∥∥∥ ≤ η/2.

Furthermore, Proposition 3.17 applied to γt := hng
nt(l)
l ...g

nt(l)
1 hn gives

(12)

∥∥∥∥λ(γt)−
l∑

i=1

nt(i)λ(gi)− 2λ(hn)− ν(hn, gl, ..., g1, h
n)

∥∥∥∥ ≤ (l + 2)Cr,ε

and (γ+
t , γ−

t ) ∈ B(h+, ε)×B(h−, ε) ⊂ U (2) by (10).
Finally, we have (3rG + 2)Cr,ε ≤ η/2 by the choice of n, Sn, hn. Once again, remark it is

necessary for l to be bounded independently of Γ and n. We get the following bound using the
triangle inequality,

(13) ‖λ(γt)− x− θt‖ ≤ η.

This concludes the proof. �
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Note that it is possible to use the density [PR05, Theorem 2] of Prasad and Rapinchuk instead
of our density Lemma 6.1. Start by following our proof, choose S ⊂ Γ as in the Lemma 5.6.
Use now Prasad and Rapinchuk’s density Theorem, there is a finite subset F of the semigroup
generated by S so that 〈λ(F )〉 is dense in a. Remark that for any n ∈ N, the subset S′′

n := Fn∪Sn

is finite, has at most |F |+ rG elements and the subgroup generated by λ(S′′
n) is also dense in a.

It suffices then to follow the end of the proof by taking S′ = S′′
n for n large enough so that S′ is

a (r, εn)−Schottky semigroup with (|F |+ rG + 2)Cr,εn ≤ η/2.

5.3. Proof of the main Theorem 1.2. We end the proof of the main theorem with Proposition
5.4 and Theorem 4.5.

Proof of Theorem 1.2. If (Ω(X), φθ
t ) is topologically mixing, it is in particular topologically trans-

itive. Therefore by Proposition 4.7 if (Ω(X), φθ
t ) is topologically mixing θ is in the interior of the

limit cone.

Let us prove that if θ ∈
◦
C(Γ) ∩ a++

1 then (Ω(X), φθ
t ) is topologically mixing.

Let Ũ , Ṽ be two open subsets of Ω̃(X). Without loss of generality, we can assume that

Ũ = H−1(U (2) ×B(u, r)) (resp. Ṽ = H−1(V(2) ×B(v, r))) where U (2) and V(2) are open subsets
of L(2)(Γ), and B(u, r), B(v, r) open balls of a.

Recall that for all g ∈ Γ, using Hopf coordinates

(14)

{
H(2)

(
g(U (2))×B(u, r)

)
= gU (2)

H(φθ
t (V

(2))×B(v, r))) = V(2) ×B(v + θt, r)

We begin by transforming the coordinates in L(2)(Γ) to recover the setting of Proposition 5.4.
By Theorem 4.5, there exists g ∈ Γ such that gU (2) ∩ V(2) 6= ∅. For such an element g ∈ Γ, the
subset gU (2) ∩ V(2) is a nonempty open subset of L(2)(Γ). Let O(2) := O+ ×O− ⊂ gU (2) ∩ V(2)

be a nonempty open subset, such that r := d(O+,O−) > 0.

Remark that gŨ ∩
(
H(2)

)−1
(O(2)) is open and non empty. Thus it contains an open box

H−1(O(2) ×B(u′, r′)) with u′ ∈ a and r′ > 0. Set η := min(r, r′).
By Proposition 5.4 applied to O(2), x = v− u′ ∈ a and η > 0, there exists T > 0 such that for

all t ≥ T there exists γt ∈ Γ with

(15)

{
(γ+

t , γ−
t ) ∈ O(2)

λ(γt) ∈ B(v − u′ + tθ, η)

Remark that every loxodromic element γ ∈ Γ fixes its limit points in L(2)(Γ). Thus for all
such γ ∈ Γ with (γ+, γ−) ∈ O(2), the subset γO(2) ∩ O(2) is open and non empty (it contains
(γ+, γ−)). Furthermore, λ(γ) = σ(γ, γ+) by Fact 2.7. Hence

(16)

{
γtO

(2) ∩ O(2) 6= ∅

u′ + σ(γt, γ
+
t ) ∈ B(v + tθ, η)

The subset γtgŨ ∩
(
H(2)

)−1
(γtO(2)∩O(2)) is open, non empty and contains the point of coordin-

ates (γ+
t , γ−

t , u′ + σ(γt, γ
+
t )) ∈ H−1(φθ

t (Ṽ )). Finally, γtgŨ ∩ φθ
t (Ṽ ) 6= ∅, as Ũ , Ṽ are arbitrary, it

proves that φθ
t is topological mixing. �

6. Appendix: a density lemma

The following density lemma is crucial for the proof of proposition 5.4.
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Lemma 6.1. Let d ∈ N, let V be a real vector space of dimension d. For all E ⊂ V that spans a
dense additive subgroup of V , for all ǫ > 0, for any basis B ⊂ E of V , there exists a finite subset
F ⊂ E of at most 2d elements so that B ∪ F spans a ǫ−dense additive subgroup of V .

Proof. We show the lemma by induction.
Let E ⊂ R1 = V be a subset that generates a dense additive subgroup of R. Let x ∈ R a

basis, ie. a non zero element. Any element y in E so that 〈y, x〉 is dense is a solution. We assume
that E contains no such element. Consider the quotient R/xZ and p : R → R/xZ the projection.
The set E projects to a infinite subset of R/xZ, therefore it has an accumulation point. Let
f1 6= f2 ∈ E be two elements such that |p(f1)−p(f2)| < ǫ. Then 〈x, f1, f2, 〉, generates a ǫ−dense
additive subgroup of R, the Lemma is proved for dim(V ) = 1, where F = {f1, f2}.

Now consider a vector space V of dimension d. Let E be a a subset of V such that 〈E〉 = V
and B = (b1, . . . , bd) ⊂ E a basis of V . Without loss of generality we suppose that the basis
is the standard basis and the norm is the sup norm : these only affect computations up to a
multiplicative constant.

Suppose that we have f1, f2 ∈ E such that the additive group 〈f1, f2,B〉 contains a non zero
vector u of norm ‖u‖ ≤ ǫ/2. We will show that it is enough to conclude and then prove the
existence of such elements.

Consider V ′ = u⊥, the decomposition V = u⊕V ′ and p′ the projection on V ′. Let E ′ = p′(E)
and B′ a basis of V ′ included in p′(B). By induction, there is a finite subset F ′ ⊂ E ′ of at
most 2(d− 1) elements such that 〈F ′,B′〉 generates an ǫ/2−dense additive subgroup of V ′. For
all f ′ ∈ F ′ there is f ∈ E and λf ∈ R such that f ′ = f + λfu. A similar result holds for
elements of B′. We denote by F ⊂ E a choice of lifts for elements of F ′. We claim that the set
F = F ∪ {f1, f2} ∪ B generates a ǫ−dense additive subgroup of V .

Let x ∈ V , x = x′ + λxu. By hypothesis, there is (nf ′)f ′∈F ′ ∈ Z|F ′|, and (nb′)b′B′ ∈ Zd−1 and
α ∈ V ′ satisfying ‖α′‖ < ǫ/2 such that :

x′ =
∑

f ′∈F ′

nf ′f ′ +
∑

b′∈B′

nb′b
′ + α′.

Therefore,

x′ =
∑

f∈F
nf ′f +

∑

b∈B
nbb+

( ∑

f∈F
nf ′λf +

∑

b∈B
nbλb

)
u+ α′.

Finally we get :

x =
∑

f∈F
nf ′f +

∑

b∈B
nbb+ [k]u+ (k − [k])u+ α′

where k =
(∑

f∈F nf ′λf +
∑

b∈B nb +λx

)
and [k] ∈ Z denotes the integer part of k. The vector

∑
f∈F nf ′f +

∑
b∈B nbb + [k]u is in the additive group generated by F and |(k − [k])u + α| ≤ ǫ.

This proves the claim.
To finish the proof we need to show that for any ǫ > 0, there are elements f1, f2 ∈ E such that

〈f1, f2,B〉 contains a non zero vector of norm less than ǫ.
Consider the natural projection p : Rd → Rd/⊕d

k=1 Zbk into the torus Rd/⊕d
k=1 Zbk. If there

is an element f ∈ E so that p(Zf) contains accumulation points, we choose u, non zero and small
in 〈B, f〉. We assume now that there is no such element in E. Choose an integer N so that

N > 2
√
d

ε . By the pigeon hole principle on Nd+1 distinct elements of E , we deduce the existence
of f1, f2 ∈ E with 0 < |p(f1 − f2)| <

ǫ
2 . The unique representative of the projection p(f1 − f2) in

the fundamental domain
∑d

i=1(0, 1]bi is a suitable choice for u. Indeed, it is an element of the
subgroup 〈f1, f2,B〉 and it is of norm at most ǫ

2 .
�
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