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Abstract: In the contemporary period, significant attention has been focused on the prospects of 
innovative personal recognition methods based on palm print biometrics. However, diminished 
local consistency and interference from noise are only some of the obstacles that hinder the most 
common methods of palm-print imaging such as the grey texture and other low-level of the palm. 
Nevertheless, the development of the process and tackling of the obstacles faced have a potential 
solution in the form of high-level characteristic imaging for palm-print identification. In this 
study, Zernike Moments are used for acquiring superpixel features that are spiral scanned images, 
which is an innovative recognition method. By using the extreme learning machine, the inter- and 
intra-similarities of the palm-print feature maps are determined. Our experiments yield good 
results with an accuracy rate of 97.52 and an equal error rate of 1.47 % on the palm-print PolyU 
database. 

Keywords: palm-print recognition, image segmentation, feature extraction, ELM, image 
matching. 
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1 Introduction 

As a means of enhancing palm-print recognition precision, the development of strong algorithms has 
been the focus of biometric analysts over the last twenty years. Varying degrees of user tolerability, 
effectiveness, and precision have been observed with the use of palm-print, hand, face, voice, iris, and 
fingerprint biometric modalities. Owing to the recently reduced expenditure required for the sensors and 
high user tolerability of palm-print identification methods, the current biometric modalities are now 
being increasingly considered for supplementation with this original and promising biometric 
mechanism. Fingerprinting is often found to be more disconcerting for individuals than palm printing. 
Furthermore, individuals have been perceived to be concerned when an identification device requires that 
the eyeball of a user be scanned and iris calculations be performed. An additional advantage of palm 
printing is that a myriad of significant textures, ridges, creases, and lines that make for distinct 
characteristics exist on a palm, and it also presents a large surface for identifying such characteristics in 
contrast with various other biometric modalities. 

 
 
The prospects for various biometric systems that make use of palm prints have been explored 

contemporarily; appearance-based and structural-based systems are the two primary types of biometric 
systems that have been identified. In the case of the structural-based systems, an array of edge 
identification mechanisms can be adopted to acquire a palm-print scan’s distinctive lines and ridges 
(Wua et al. 2004;Han et al. 2003). Owing to the typical characteristics of a palm of having ridges and 
wrinkles that intersect and the difficulty in producing an image of such features, the precision of the 
characteristic identification method is a highly significant aspect of performance according to existing 
studies. The efficiency of the use of palm-print lines for identifying a user, on having extracted its 
features by using an amended Radon transform, was confirmed in the contemporary research performed 
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by (Huan et al. 2008). However, in order to resolve the issue of the deficient abstraction of the palm-print 
line features in the region of interest (ROI), an amended finite Radon transform with a larger training 
array for acquiring the orientation code was proposed by ( Jai et al. 2008). 

In the case of appearance-based systems, a high-dimensional issue is regularly produced owing to the 
two-dimensional intensity variation features being treated and evaluated as a sole dataset in relation to 
the palm print. Therefore, the identification procedure should be improved in terms of precision through 
a crucial stage that involves transforming the high-dimensional palm-print information into a low-
dimensional image. The primary statistical consistencies of the image can be determined and quantified 
as a means of conducting palm-print identification using such methods; both unsupervised and 
supervised classifications can be distinguished in this manner. The local binary pattern (LBP) 
(Hanmandlu et al. 2010) and principal component analysis (PCA) (Lu et al. 2003; Zhao et al. 2007; 
Ribaric et al. 2005) are two approaches that can be adopted to acquire the necessary data without the use 
of data label indexing for the unsupervised classifications. In the case of the supervised classifications, 
linear discriminant analysis and other common statistical means can be adopted for high-dimensionality 
reduction of the training phase’s characteristic vectors while cataloguing on the basis of the pre-
determined class labels (Wue et al. 2003;Jing et al. 2004). Maintaining the information’s local structure 
through low-dimensional imaging has been contemporarily attempted using the LBP approach. However, 
the importance of the discriminant data, which is crucial to the identification phase, is reduced with the 
use of this method.  

Individual pixel processing of representations within the spatial dimension has largely characterized 
appearance-orientated systems. However, if flaws exist, several disadvantages are posed by such 
methods. The enhancement of the discernment capabilities is possible by altering a basic characteristic 
selection data in the frequency domain through the use of common transform methods (Laadjel et al. 
2008; Naani et al.2008). The defining characteristic data was acquired by using an enhanced form of 
LDA (Linear discriminant analysis) and choosing the DCT (discrete cosine transform) frequency bands 
using a two-dimensional separability judgment algorithm with the use of a 3040 palm-print scan database 
showing positive outcomes in Xiao et al.’s research (Jing et al.2004). In order to enhance the 
identification precision and reduce the expenditure on computation methods, an LDA was used for 
characteristic discernment across five representation levels of the palm print in Xiangqian et al.’s study 
using a Gaussian pyramid to produce the five levels and reduce the resolution (Wue et al. 2003). 
Furthermore, the high-dimensionality reduction of the characteristic space was also undertaken by 
implementing 2DPCA+PCA in Xin et al.’s study after acquiring the local characteristics by using Gabor 
filters, which decomposed the palm-print representations into various orientations and scales. However, 
the implementation of the Gabor filter bank causes the problem of exploding dimensionality, which is the 
major disadvantage of this approach (Pan et al. 2008). Furthermore, by incorporating independent 
component analysis (FASTICA) with radial basis probabilistic neural networks (RBPNN), an innovative 
palm-print identification method was devised by Li-Shanga et al. However, the larger the database, the 
greater the decline observed in terms of magnitude and severity in identification precision, while the 
computational requirements are significant (Shang et al. 2006). Individual identification on the basis of 
degraded palm-print images has not been an issue in any of the researches outlined above, where 
algorithms were analyzed using clean palm-print databases. Overall, the identification success is most 
likely to be undermined by the degradation of the palm-print images as a result of distortion or noise 
interference.  
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An array of obstacles is faced in LLF-based approaches despite various studies providing satisfactory 
experimental outcomes on this subject (Wua et al. 2004;Jai W et al.2008). For example, the local 
consistency features of palm prints cannot be defined using low-level characteristics. Furthermore, 
representation discrepancies typically affect the corresponding algorithms, such as the Hamming distance 
algorithm, while low-level characteristic palm-print systems are vulnerable to pixel noise (Shang et 
al.2006). 

Therefore, implementing Zernik moments in relation to the superpixel region is the novel approach 
presented in this research in order to overcome the aforementioned obstacles. The palm-print PolyU 
database showed a mere 1.47% equal error rate (EER), and thus, some excellent results were obtained in 
this research. 

The ability of the aforementioned approach of acquiring all the palm data associated with the palm 
surface in order to produce a superpixel-based characteristic acquisition algorithm is the primary 
contribution of this study. Section 2 provides an in-depth explanation of the method adopted in this 
research. The experimental outcomes are outlined and evaluated in section 3, while section 4 presents the 
conclusions.

 
 

2 Methodology 

Figure 1 introduces the SPC (superpixel scheme)-based original palm-print identification system. 
Having provided an overall summary of the devised system in figure 1, the distinct stages of the system 
can be identified. First, pre-processing of the representation occurs, which includes image normalization, 
ROI extraction, and image alignment. Second, in order to produce the superpixels, the simple linear 
iterative clustering (SLIC) technique (Achanta et al. 2012) was adopted during the superpixel over-
segmentation stage. Third, superpixel feature (SPF) extraction is performed using Zernike moments in 
order to acquire the superpixel characteristics (Kal et al.2 013). Fourth, feature normalization is 
performed (Aksoy et al. 2000). The final stage comprises the matching score calculation with template 
palm-print representations, and the input’s standardized characteristics are used to calculate the matching 
score by using an extreme learning machine (ELM) (Huang et al. 2006). 

 

 

Fig. 1 Palm-print identification system summary 
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2.1  Extraction of the Region of Interest 

As a means of straightening the palm-print representation, the key points were identified based on the 
technique explained for key point identification in (Zhang et al. 2003). The acquisition of a 128 × 128-
size ROI was possible after the palm-print representation had been aligned. Figure 2 presents the 
extracted ROI and a palm-print example. 

 

Fig. 2 Extraction of the ROI 

 

2.2 Over-segmentation of Superpixels 

Superpixels are typically acquired through superpixel over-segmentation. The production of 
superpixels via finger-vein representation over-segmentation was undertaken using the SLIC technique 
(Achanta et al. 2012)  . The location data and local intensity are merged to produce small areas of the 
representation that were identified using SLIC. The advantages of using this technique are the reduced 
computational requirements and the requisite superpixel amount being produced based on a single 
particular parameter. There are two crucial points of departure from the k-means of the superpixel 
generation in the case of SLIC. Firstly, the superpixel size is equal to the constraints of the search area, 
thus considerably diminishing the total distance measurements of the optimization. Furthermore, the 
complexity is independent of the number of superpixels while also having linearity with the amount of 
pixels. Secondly, the regulation of superpixel density and size is possible, in addition to an amalgamation 
of the spatial and color closeness, by using the weighted distance measure. 
If the requisite amount of superpixels is represented by k, while the amount of pixels in the representation 
area is represented by n, then a superpixel-size equivalent area will be restricted for search in the SLIC. 
Thus, /s n k� , and s s�  is the rough size of the superpixel area, while the grid interval is represented 
by s . Ultimately, as shown in Eq. (1), the weighted distance measure D is used to determine the 
amalgamation of the image plane and color space for the pixel grouping via SLIC. This produces 
superpixels that are dense and almost standardized.  
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   Region of interest extraction 
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With the normalized factors being  CN and SN , the space proximity is represented by sd , the color 

proximity is represented by dc, the cluster centers are represented by  �k k kl x y� � , the pixel location is 

represented by  �x y�� , and colored regions of the greyscale representations are represented by Tl . 
 

 

 

Fig. 3 Over-segmentation of superpixels 

 
2.3   Characteristics Extraction using Zernike Moments 

The irregular partitions of the representation are indicated by the region adjacency graph (RAG), 
which has E edges and V vertices and is an undirected graph G. The feature vector F(v) is present for 
every participation while also possessing a vertex (v).  

A precise characteristic descriptor was produced and an array of invariants devised by means of two-
dimensional Zernike moments (2DZMs). Inside unit disk D, the polar coordinates (ρ, θ) are adopted to 
characterize the 2DZMs of the pth order possessing repetition q. 


 �� �, 0 , ,D p q p q p p q is even�� � � � � �            (4) 
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The definition of the Zernike polynomials can be represented as follows: 
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The complex conjugate is denoted by the asterisk. 
The vector’s length from origin to pixel ( , )x y  forms the radius 2 2x y� � � , while the angle formed 

by the x-axis and the vector is represented by
 

arctan( / )y x� � . The Zernike radial polynomial’s path 
order is pqR , which can be determined as follows: 
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In order to describe the representation, it is essential that the maximum order of the 2DZMs is 
selected. When presented in the form of geometric movements, the second- and third-order Zernike 
invariants were found to be equal to the Hu invariants (Kale et al. 2013). 

2.4 The Region Adjacency Graph’s spiral order traversal 

In this section, the results obtained when the superpixel area is subjected to spiral scanning are 
presented

 As a means of forming a spiral path of successive vertices, the central partition was selected as 
the initial point for spiral scanning (Trémeau and colantoni. 2000) (see figure 4). 

The idea of the algorithm is simple: the regions in the image are first numbered in spiral order from 
the center of the image. Each node (region) of the graph (i.e., RAG) that is represented by its barycenter 
corresponds to a number (in spiral order) in the image. This list is then sorted in alphanumeric order 
starting with the index 1. Thus, all the nodes of the graph are labeled in ascending order in the spiral 
direction. 

       
(a)                                    (b)                  (c) 

Fig. 4 (a). Palm-print representation, (b). Superpixel region, and (c). Spiral order of super-pixel region 

 

2.5   Feature Vector Normalization 

Feature vectors are irreconcilable owing to the distribution and range variability across them. 
However, feature vector normalization can be implemented using a normalization system (Aksoy and 
haralick. 2000) such as the median, z-score, or min-max system in order to remedy the aforementioned 
issue. The feature vectors across the range  �0,1  were normalized using the min-max system. On 

applying the min-max normalization, the normalized feature vector 'X  can be denoted as shown below 
when the feature vector is  �1 2 3, , ,....., nX x x x x� . 

 

( )'
( ) ( )
ix Min XX

Max X Min X
�

�
�

                                                                 (8) 

2.6 Extreme Learning Machine 

Single-hidden-layer feedforward neural networks have often been learnt using ELM (Huang et al. 
2006) . The iterative tuning of obscured nodes is not necessary following the random initialization 
through ELM. Thus, learning is required to occur just for the input weight parameters. If 
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 �( , ), 1,...,j jx y j q�  indicates A as the training sample, with M
jx R� and M

jy R� , then the formula 

below can be provided for the ELM’s output function with L obscured neurons: 


 �
1

( ) ( )
L

l i i
i

f x g w x x G
�

� � ��                                                             (9) 

The 1m �  output nodes are associated with L  hidden nodes with the output weight vector 
 �1,..., LG g g� . The nonlinear activation function is represented by  �1( ) ( ),..., ( )Lx w x w x� �  [14]. 

The following formula is a variation of the explicit form of the system ( )i x� : 

( ) ( . ), ,d
i i i i ix x R R� � � �� � � � � �                                                 (10) 

The obscured layer parameters ( , )� � have the activation function (.)� . The following least square 
norm was used in order to resolve the output weight �  and minimize the training data error during the 
second phase of the ELM learning: 

2 *min , N MH G R� � �                                                                           (11) 

The hidden-neurons layer system is identified by � : 
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While the training data matrix H can be presented as follows: 
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N
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h
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The training set ( . ., )i e L Q$  values are greater than the amount of hidden neurons L, which is assumed 
to be the case in reality, in order for the training error in Eq. (11) to be reduced in the optimal solution. 
(Huang et al. 2006) presents the optimal solution for Eq. (11), in the form of the Moor–Penrose 
generalized inverse matrix, where the inverse of � is *� . 

3.  Experimental results 

The PPDB (PolyU Palm-print database)  is an open domain, vast-scale database that was used as the 
basis of the comprehensive experiments undertaken in order to confirm the system’s validity (). 
Alongside the statistical legitimacy, the recognition rate and EER are the two terms used to present the 
outcomes. 
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3.1 PolyU palm-print database 

For the PolyU palm-print database, two distinct sessions were held to obtain 20 palm-print images 
from 352 people. The test samples were those obtained during the second stage and comprised 10 
images, while the control samples were those that were obtained during the initial session with 10 images 
per individual ( Zhang et al. 2010). 

3.2 Critical Evaluation in Relation to Existing Methods 

In this study, the SPF extraction is conducted by using Zernike moments from the last feature vector. 
To obtain the best results, superpixels of various sizes were selected. The degree of accuracy versus the 
superpixel number is shown in figure 5. 
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Fig. 5 Average accuracy for various superpixel numbers 

 

Table 1 lists the PolyU PPDB database results obtained on applying the superpixel descriptor 
technique, and the effectiveness of this technique can thus be determined. With an EER of 2.76%, this 
experimental technique was found to be superior to other feature extraction mechanism (Kong et 
al.2004;Kumar an Shen.2004;Sun et al.2005;Kong et al. 2006).  

Table.1. PolyU palm-print databank and the proposed technique for measuring effectiveness 
EERs Competitive 

code 
Palm 
code 

Fusion  
code 

Ordinal  
code RLOC BOCV Half -

orientation  Proposed 

PolyU 0.0261 0.0931 0.0899 0.0272 0.0360 0.0469 0.0204 0.0147 
 

The known class labels of a restricted number of palm-print images are used as training samples for 
the palm-print identification, while the remainder were unknown and were used as probe samples. The 
aim of the process is to predict the probe-image class labels by comparing images with the training 
samples using a one-against-many comparison. The EER (equal error rate) in the identification process is 
used to estimate the performance of the palm-print identification.  

The probe samples are classified such that they are associated with the class of training samples to 
which they are most similar. In this study, the training samples were considered each palm’s first Ntrain ∈ 
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{2, 4, 6} palm-print image(s). The probe palm prints were considered to be the remainder of the palm-
print images. Ntrain × Npalm matching scores were generated in a database based on the probe sample.  

The proposed method was then compared with several state-of-the-art orientation-based techniques, 
including the ordinal code (Sun et al.2005), fusion code (Kong et al. 2006), RLOC (Guo et al. 2009), 
palmCode (Kumar an Shen.2004), BOCV (Guo et al. 2009), and half-orientation methods (Fei and 
Zhang. 2016) (see figure 6).  
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Fig. 6 EERs for PolyU palm-print databases 

 

Several training palm-print images (between two and six for each palm-print database) were used to 
evaluate the proposed method’s performance. The test dataset comprised the remainder of the palm-print 
images. Therefore, the identification experiments were performed six times with Ntrain = 1 to 6.  

Figure 6 shows the results. It is evident that the proposed method is superior to other orientation-based 
methods when it is applied to the PolyU databases; it achieved lower error rates in both instances. The 
competitive code method extracted robust orientation features from the images with a high level of 
identification accuracy in specific instances. However, for the majority of the conditions, the proposed 
method was found to be superior to the competitive method.  

In order to gauge the accuracy of the technique, we used various numbers of superpixels, and the 
results are shown in figure 7. The EER results reveal that the most efficient number of superpixels was 
50 for the PolyU databases. 
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Fig. 7 EERs for various superpixel numbers 

 

3.3 Speed Effectiveness 

The proposed technique was implemented in MATLAB version 10.3 using a PC with a dual-core Intel 
i5-6600 3.3-GHz processor and 8-GB RAM. The operating system of the PC was Windows 10.0. The 
method was compared to previous state-of-the-art methods based on feature extraction in terms of 
computational cost in order to evaluate the complexity of its computation. The average time required to 
perform the feature extraction and matching over 100 runs was calculated to assess the computational 
complexity. The results thus obtained are shown in Table 2. The proposed method was found to consume 
a greater amount of time during feature extraction than the competitive code, BOCV, and half-orientation 
methods. However, the proposed method’s matching speed was slightly higher as a simple matching 
scheme was used. 

The proposed method required 26.228 s to perform the operation. This is acceptable for practical 
applications, although it is slightly greater than the time consumed by several orientation-based 
conventional methods. Future work will be focused on reducing the feature extraction time. 

Table. 2. Computational costs of various orientation-based methods 
in feature extraction and matching. 

Methods Feature extraction(s) Matching(s) 
Competitive code 18.837 0.080 

Palmcode 1.760 0.204 
Fusion code 1.607 0.254 
Ordinal code 9.716 0.991 

RLOC 65.121 3.712 
BOCV 18.896 0.963 

Half-orientation 27.194 0.150 
Proposed 26.228 0.123 
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4. Conclusions and Prospective Research 

SPFs were used for palm-print identification as a means of producing an original recognition system 
in this study. SPFs were acquired using certain statistical methods. In the case of the standard PolyU 
database, a 0.0147 EER was obtained with the devised system in the experimental outcomes. In the 
current research, the proposed techniques were found to be superior. The devised system comprised a 
number of innovative features. Firstly, the high-level character depiction of the palm-print imaging was 
introduced through the application of SPFs. Secondly, to the best of the researchers’ knowledge, SPFs 
have not been applied to palm-print characteristic imaging prior to this study, while significant 
identification effectiveness was realized through the use of this original system for palm-print 
identification. Two prospective research paths may now be followed: one path involves the identification 
of additional SPFs for palm-print identification, while the other involves the investigation of image 
improvement methods for improving the palm print representation quality. 
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