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Distributed estimation from relative measurements of heterogeneous and
uncertain quality

Chiara Ravazzi, Member Nelson P. K. Chan, Student Member Paolo Frasca, Senior Member, IEEE

Abstract— This paper studies the problem of estimation
from relative measurements in a graph, in which a vector
indexed over the nodes has to be reconstructed from pairwise
measurements of differences between its components associated
to nodes connected by an edge. In order to model heterogeneity
and uncertainty of the measurements, we assume them to be
affected by additive noise distributed according to a Gaussian
mixture. In this original setup, we formulate the problem of
computing the Maximum-Likelihood (ML) estimates and we
design two novel algorithms, based on Least Squares regression
and Expectation-Maximization (EM). The first algorithm (LS-
EM) is centralized and performs the estimation from relative
measurements, the soft classification of the measurements, and
the estimation of the noise parameters. The second algorithm
(Distributed LS-EM) is distributed and performs estimation
and soft classification of the measurements, but requires the
knowledge of the noise parameters. We provide rigorous proofs
of convergence for both algorithms and we present numerical
experiments to evaluate their performance and compare it
with solutions from the literature. The experiments show the
robustness of the proposed methods against different kinds of
noise and, for the Distributed LS-EM, against errors in the
knowledge of noise parameters.

I. INTRODUCTION

Whenever measurements are used to estimate a quantity
of interest, measurement errors must be properly taken into
account and the statistical properties of these errors should
be identified to enable an efficient estimation. In this paper,
we look at this broad issue in a specific problem within the
context of network systems. Namely, we consider the prob-
lem of distributed estimation from relative measurements,
defined as follows. We assume to have a real vector that is
indexed over the nodes of a graph with a known topology:
the nodes are allowed to take pairwise measurements of the
differences between their vector entries and those of their
neighbors in the graph. The estimation problem consists
in reconstructing the original vector, up to an additive
constant. This prototypical problem can be applied in a
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variety of contexts [1]. One example is relative localization
of mobile automated vehicles, where the vehicles have to
locate themselves by using only distance measurements [2].
Another example is statistical ranking, where a set of items
needs to be sorted according to their quality, which can only
be evaluated comparatively [3], [4]. In all these scenarios,
the noise affecting the measurements can be drastically
heterogeneous and, more importantly, its distribution may
not be known a priori. For instance, in vehicle localization,
distances between vehicles may be measured by more or
less accurate sensors; in a ranking system, the items upon
evaluation can be compared by more or less trustworthy enti-
ties. It is thus important to identify unreliable measurements
and weight them differently in the estimation. In order to
model this uncertainty, in this paper we assume that the
measurement noise is sampled from a mixture of two Gaus-
sian distributions with different variances, representing good
and poor measurements, respectively. Our solution to this
problem builds on the classical Expectation-Maximization
(EM) approach [5], [6], where the likelihood is maximized
by alternating operations of expectation and maximization.

We are particularly interested in finding efficient dis-
tributed algorithms to solve this problem. More precisely, we
say that an algorithm is distributed if it requires each node
to use information that is directly available at the node itself
or from its immediate neighbors. Actually, many distributed
algorithms for relative estimation are available [7], [1], [8],
[9], [10], [11], [12], [13], [14], but they assume that the
quality of the measurements is known beforehand. At the
same time, there is a large literature on robust estimation
that also covers estimation from relative measurements, but
often provides algorithms that are not distributed; see for
instance [15] and references therein. Perhaps the only work
on robust distributed relative estimation is the recent [16]:
their approach is very different from ours as it is based on
`1 optimization. By proposing our distributed EM algorithm,
we contribute to the growing body of research on distributed
algorithms for network-related estimation problems with
heterogeneous and unknown measurements [17], [18], [19],
[16], [20], where distributed algorithms based on consensus
and ranking procedures have been proposed to approximate
Maximum-Likelihood (ML) estimates. Other authors have
used EM to estimate Gaussian mixtures’ parameters in other
problems of distributed inference in sensor networks [21],
[22], [23]. In these works, a network is given and each node
independently performs the E-step from local observations
and this information is suitably propagated to collaboratively
perform the M-step. EM is also a key instrument to design



reliable learning systems based on unreliable information
reported by users in the context of social sensing [24], [25].

Our contribution: In this paper, we define the problem of
robust estimation from relative measurements when measure-
ment noise is drawn from a Gaussian mixture and we design
two iterative algorithms that solve it. Both algorithms are
based on combining classical Weighted Least Squares (WLS)
with Expectation-Maximization (EM), which is a popular
tool in statistical estimation problems involving incomplete
data [26], [27]. The first algorithm is centralized, whereas
the second algorithm is distributed but requires to know the
two variances of the Gaussian mixture. This knowledge is
not necessary for the centralized version. Both algorithms
are proved to converge and their performance is compared
on synthetic data. We observe that the centralized algorithm
has better performance, achieving smaller estimation errors.
The centralized algorithm also requires less iterations to
converge, but each iteration involves more computations.
Both algorithms are fairly robust to uncertainties in the
parameters.

Organization of the paper: We formally present the prob-
lem of relative estimation in Section II, where we also
review some state-of-the-art algorithms. The centralised LS-
EM algorithm is described in Section III and the Distributed
LS-EM algorithm in Section IV. Section V contains some
numerical examples and Section VI our conclusions. The
details of our proofs are postponed to the Appendix.

Notation: Throughout this paper, we use the following
notational conventions. Real and nonnegative integer num-
bers are denoted by R and Z≥0, respectively. Open intervals
are denoted by parentheses and closed intervals by square
brackets. Given a finite set V , the Eucliean space of real vec-
tors with components labelled by elements of V is denoted
by RV . We denote column vectors with small letters, and
matrices with capital letters. Given x ∈ RV , we denote its
v-th element by xv or (x)v . Given x ∈ RV and A ∈ RV×V ,
we denote the `p norm of vector x with the symbol ‖x‖p
(the `2 norm is taken when subscript p is omitted), and with
‖A‖ the spectral norm of matrix A. The support set of a
vector x is defined by supp(x) = {i ∈ V : xi 6= 0} and we
define Σk = {x ∈ RV : ‖x‖0 ≤ k} with ‖x‖0 = |supp(x)|
denoting the `0-pseudonorm. Given E with finite cardinality
|E|, we define P` : [0, 1]E → Σ|E|−` as the projection that
zeroes the ` smallest components of the given vector. It
should be noticed that in general the projection of a vector
could be not unique: we assume that P`(x) consistently
selects one of the possible projections by a tie-breaking rule.
Given matrix M , M> denotes its transpose. Given vector x,
we denote by diag(x) the diagonal matrix whose diagonal
entries are the elements of x.

An (undirected) graph is a pair G = (V, E) where V is a
finite set of vertices and E ⊆ {{v, w} : v, w ∈ V} is the set
of edges. Graph G is connected if, for all i, j ∈ V , there exist
vertices i1, . . . is such that {i, i1}, {i1, i2}, . . . , {is, j} ∈ E .
We let A ∈ {0,±1}E×V be the edge incidence matrix of
the graph G, defined as follows. The rows and the columns
of A are indexed by elements of E and V , respectively. We

assume to have an order on set V , such as it would be for
V = {1, . . . , n}. By this order, the orientation of the edges is
conventionally assumed to be such that, if u < v, then edge
{v, u} originates in u and terminates in v. The (e, w)-entry of
A is 0 if vertex w and edge e are not incident, and otherwise
it is 1 or −1 according as e originates or terminates at w:

Aew =


+1 if e = (v, w)

−1 if e = (w, v)

0 otherwise.

II. ROBUST ESTIMATION FROM RELATIVE
MEASUREMENTS

A set of nodes V = {1, . . . , N} is considered, each of
them endowed with an unknown scalar quantity x̃v ∈ R
with v ∈ V . Starting from a set of noisy measurements, the
nodes’ goal is to estimate their own absolute position. More
precisely, each node u ∈ V is interested in estimating the
scalar value x̃u, based on noisy measurements of differences
x̃u−x̃v with v and u in V . The set of available measurements
can be conveniently represented by graph G = (V, E), where
each edge represents a measurement: A ∈ {0,±1}E×V is
the edge incidence matrix of graph G. We let b ∈ RE be the
vector collecting the measurements

b = Ax̃+ η,

where ηe, e ∈ E are mutually independent random variables
distributed according to a Gaussian distribution N (0, σ2

e),
having

σe = (1− ze)α+ zeβ,

with 0 < α < β, with ze distributed as a Bernoulli distribu-
tion ze ∼ B(p) and p ∈ (0, 1/2). Provided α� β, the value
ze = 1 is associated to a measurement that is unreliable.
With this formulation the random variables {ηe}e∈E are
Gaussian mixtures, whose model is completely described by
three parameters: p, α and β. For convenience, from now
on we consider p fixed and known. This choice is done for
simplicity and does not entail a significant restriction to our
analysis: on the one hand, the algorithms we propose are
fairly robust to small errors in the estimate of p; on the other
hand, our framework can be easily extended to include the
estimation of p as an unknown parameter.

Our main goal is to obtain a robust estimate of the state
vector x̃ by suitably taking into account the different quality
of the measurements. We thus consider a joint Maximum
Likelihood estimation

x̂ML = argmax
x∈RV ,α>0,β>0

L(x, α, β) (1)

where L(x, α, β) := log f(b|x, α, β) and

f(b|x, α, β) =
∏
e∈E

[
1− p√
2πα2

exp

(
− (b−Ax)2

e

2α2

)

+
p√

2πβ2
exp

(
− (b−Ax)2

e

2β2

)]
.

(2)



The computational complexity of optimization problem (1)
makes a brute force approach infeasible for large graphs.

A. Estimation via Weighted Least Squares

Problem (1) becomes much simpler if we assume to know
the distribution that has produced the noise term for each
measurement. Using the noise source information α, β, and
z̃e for all e ∈ E , where z̃e is the realization of ze, the ML-
estimation becomes

XML = argmax
x∈RV

log f(b|x, z̃, α, β) (3)

where XML is the set of maximizing values of the log-
likelihood

f(b|x, z̃, α, β) =
∏
e∈E

[
1− z̃e√

2πα2
exp

(
− (b−Ax)2

e

2α2

)

+
z̃e√
2πβ2

exp

(
− (b−Ax)2

e

2β2

)]
.

Noticing that log(
∏
e xe) =

∑
e log(xe) and that z̃ is a

binary vector, it is easy to see that ML is equivalent to solving
the Weighted Least Square (WLS) problem

argmin
x∈RV

1

2
‖b−Ax‖2W = argmin

x∈RV

1

2
(b−Ax)>W (b−Ax) (4)

with W = diag((1− z̃e)α−2 + z̃eβ
−2).

The following lemma describes the solutions of (4).
Lemma 1 (WLS estimator): Let the graph G be connected

and X be the set of solutions of (4), and let LW := A>WA
denote the weighted Laplacian of the graph. The following
facts hold:

1) x ∈ XML if and only if A>WAx = A>Wb;
2) there exists a unique x̂wls ∈ XML such that ‖x̂wls‖2 =

minx∈XML
‖x‖2;

3)
x̂wls = L†WA

>Wb, (5)

where L†W denotes the Moore-Penrose pseudo-inverse
of the weighted Laplacian LW .

We recall that 1>LW = 0 and 1>L†W = 0.
Further useful properties are collected in the following

result [28, Sect. 5.4].
Proposition 2 (Moments of WLS estimator): Provided G

is connected, it holds that

E[x̂wls] =
(
I − 1

N
11>

)
x̃

E[(x̂wls − E[x̂wls])(x̂wls − E[x̂wls])>] = L†W ,

where 1 is a vector of length N whose entries are all 1.

It should be stressed that determining the state vector x̃
from relative measurements is only possible up to an additive
constant, being A1 = 0, and XML = x̂wls + span(1). This
ambiguity can be avoided by assuming the centroid of the
nodes as the origin of the Cartesian coordinate system. n
view of this comment and of the results above, we shall
assume from now on that G is connected and 1>x̃ = 0.

As shown in Lemma 1, the WLS solution is explicitly
known and can be easily computed solving a linear system.
Furthermore, the following distributed computation is also
possible, by using a gradient descent algorithm. Observe that
the gradient of the cost function in (4) is given by LWx −
A>Wb. Set an initial condition x(0) = 0 and fix τ > 0 and
consider

x(t+1) = (I − τLW )x(t) + τA>Wb. (6)

Provided τ < 2‖LW ‖−1
2 , the gradient descent algorithm (6)

converges to the WLS solution [29], [9].

B. Relations with literature and numerical example

The WLS estimation and the subsequent developments
in this paper share some ideas with several approaches in
literature. We recall two methods based on optimization that
focus on Sparse outliers detection [15] and Least absolute
estimation [30]. Then we will summarize the main advan-
tages of WLS in the considered setting in contrast with these
methods.

The problem of finding the smallest set that contains the
outliers is considered in [15]. Using the same rationale of the
big M trick approach, introduced in [15, Section III.C ], and
recalling that |ye − (Ax̃)e| ≤ 3σe with a probability close
to 1 (about 0.997), a reasonable adaptation of [15] can be
formalized as an optimization problem in the `0-pseudonorm:

min
x∈RV , z∈{0,1}E : 1>x=0

‖z‖0

s.t. |ye − (Ax)e| ≤ 3α+ 3ze(β − α) ∀e ∈ E .
(7)

The decision variables ze ∈ E play the role of indicator
variables for each measurement e ∈ E . The test to label
the measurements is based on a confidence interval: if ze
is 0 then the measurement is trusted, if ze is 1 then the
measurement is not trusted. This problem is combinatorial
and becomes intractable for large scale problems.

For this reason, a standard approach is resorting to least
absolute estimation [30], also known as `1-minimization.
Problem (7) is relaxed by replacing the `0-pseudonorm with
the `1-norm, which is expected to promote sparsity [31]:

min
x∈RV , z∈RE : 1>x=0

‖z‖1

s.t. |ye − (Ax)e| ≤ 3α+ 3ze(β − α) ∀e ∈ E
(8)

or
min

x∈RV : 1>x=0
‖y −Ax‖1 (9)

The problem in (9) has also a probabilistic characterization
and can be interpreted as ML estimation assuming that the
noise is distributed according to a Laplace distribution. The
`1-norm is less sensitive to outliers [30] and performs better
than LS-estimator in presence of different types of corrupted
measurements. It should be noticed that the problem in (9) is
not smooth but is still convex, indeed it is a linear program
(LP) and can be solved efficiently by iterative algorithms, e.g.
using subgradient methods [32] or iterative reweighted least
squares (IRLS, [33]) that admit a distributed implementation.
Observe that the subgradient of the cost function in (9) is



given by A>sgn(y − Ax). Set an initial condition x(0) = 0
and fix τ > 0 and consider

x(t+1) = x(t) + τA>sgn(y −Ax). (10)

Despite these interesting features, LAE has some drawbacks.
First, there are no guarantees that the solution of (9) has
the minimum cardinality property. Moreover, there are no
theoretical conditions under which the problem in (7) is
equivalent to (9). Extensive numerical results show that `1-
norm encourage sparsity but in general the solution of (7) and
(9) do not coincide [15]. Using the noise source information
α, β, and z̃e for all e ∈ E , problems (7) and (8) reduce to a
linear feasibility program. If z̃e is 0, then the measurement is
selected, and if ze is 1, then the measurement is detected as
outlier and not taken into account in the search of x satisfying
the constraints. WLS instead uses all the measurements in the
estimation by mitigating the effect of outliers: its covariance
is given in Proposition 2. Furthermore, finding the optimal
estimate using WLS approach is equivalent to solving a net-
work of resistors [34]. This intuitive electrical interpretation
highlights the role of the topology of the measurement graph
and allows distinguishing between topologies that lead to
small or large estimation errors [35], [9]. In particular, using
Proposition 2 and the electrical interpretation, one can relate
the measurement graph G to the error in the estimation.
Such analysis of performance is not available for `0 or `1-
minimization.

Finally, we provide a numerical example for illustration.
Example 1: Consider the connected network in Fig-

ure 1 with N = 5 nodes and set of edges
E = {(2, 1), (5, 1), (3, 2), (5, 2), (4, 3), (5, 4)}. Let x̃ =
[0.737, 0.088, 0.410, 0.125,−1.362]T, z̃ = [0, 0, 0, 0, 1, 1]T,
α = 0.1, and β = 1. Then, the incidence matrix A and the
vector of measurements can be easily constructed as

A =


1 −1 0 0 0
1 0 0 0 −1
0 1 −1 0 0
0 1 0 0 −1
0 0 1 −1 0
0 0 0 1 −1


and b = [0.658, 2.105,−0.322, 1.450,−0.094, 1.190]T.
The resulting estimates are x̂wls =
[0.737, 0.078, 0.397, 0.156,−1.368]T by weighted least
squares, x̂ls = [0.803, 0.084, 0.222, 0.132,−1.242]T

by unweighted least squares and x̂lae =
[0.803, 0.144, 0.242, 0.112,−1.302]T by `1-minimization.
We obtain that ‖x̂wls − x̃‖2/‖x̃‖2 = 4.89 · 10−4 and
‖x̂ls − x̃‖2/‖x̃‖2 = 2.09 · 10−2 and ‖x̂lae − x̃‖2/‖x̃‖2 =
1.52 · 10−2.

III. CENTRALIZED ALGORITHM

In this section, we tackle the likelihood maximization
problem (1) in its full generality. Since (1) does not admit a
closed form solution, we propose an iterative algorithm that
provides a solution in an iterative fashion. Preliminarily to

x̃4

x̃5

x̃1

x̃2

x̃3

b(4,5)

b(1,5)

b(1,2)
b(2,5)

b(2,3)

b(3,4)

Fig. 1. The network of 5 nodes considered in Example 1.

designing our algorithm, we convert the Maximum Likeli-
hood problem into a minimization problem by the following
result, whose proof is postponed to Appendix A.

Theorem 3: The following optimization problems have
the same solutions

max
α,β

max
x

L(x, α, β) (11)

−min
α,β

min
x

min
π∈[0,1]E

V (x, π, α, β) (12)

where

V (x, π, α, β) (13)

=
1

2

∑
e∈E

(b−Ax)2
e

(
1− πe
α2

+
πe
β2

)
+
∑
e∈E

[
−πe log

p

β
− (1− πe) log

1− p
α
−H(πe)

]
and H : [0, 1] → R is the natural entropy function H(ξ) =
−ξ log ξ − (1− ξ) log(1− ξ).

Note that, with respect to the original problem (11), prob-
lem (12) explicitly introduces the variable π ∈ [0, 1]E which
represents the estimated probabilities that the edges have
large variances. Actually, instead of solving problem (12), we
will solve a suitably modified problem, which we are going
to define next. This modification marks a key difference with
classical EM approaches. Namely, we shall solve

min
α,β

min
x

min
π∈Σ|E|−s

Ṽ (x, π, α, β, ε), (14)

where Ṽ : RV × [0, 1]E × R>0 × R>0 × R≥0 → R is

Ṽ (x, π,α, β, ε) (15)

=
1

2

∑
e∈E

(
(b−Ax)2

e +
ε

|E|

)(
1− πe
α2

+
πe
β2

)
+
∑
e∈E

[
−πe log

p

β
− (1− πe) log

1− p
α
−H(πe)

]
.

Compared to (12), the optimization problem (14) introduces
• the positive variable ε, which has the goal to avoid pos-

sible singularities when one of the Gaussian components
of the mixture collapses to one point;

• the constraint set Σ|E|−s, which implies that at least
s ≥ 1 measurements are classified as reliable.

As will become clear in the proofs, these modifications are
instrumental to guarantee the convergence of the algorithms
that we design. By defining function Ṽ , we do not intend



to pose any additional assumption in our original problem
statement (1). However, problems (12) and (14) are not
equivalent: instead, Problem (14) should be seen as a treat-
able approximation of (12). The mismatch between the two
problems is meant to be small, since ε is bound to be small
and it suffices to choose s as small as 1.

The following lemma summarizes the main properties of
Ṽ in minimization problems that only involve one variable
at the time. Its proof can be obtained by differentiating Ṽ .

Proposition 4 (Partial minimizations): Let us define

x̂ = x̂(π, α, β, ε) = argmin
x∈RV

Ṽ (x, π, α, β, ε)

π̂ = π̂(x, α, β, ε) = argmin
π∈Σ|E|−s

Ṽ (x, π, α, β, ε)

α̂ = α̂(x, π, β, ε) = argmin
α>0

Ṽ (x, π, α, β, ε)

β̂ = β̂(x, π, α, ε) = argmin
β>0

Ṽ (x, π, α, β, ε)

and denote W = diag
(

1−π
α2 + π

β2

)
, LW = A>WA, and

ξe = f(ze = 1|x, α, β). Then, it holds true that

x̂ = L†WA
>Wb

π̂ = Ps(ξ)

α̂ =

√∑
e(1− πe)|be − (Ax)e|2 + ε

‖1− π‖1

β̂ =

√∑
e πe|be − (Ax)e|2 + ε

‖π‖1

where Ps : [0, 1]E → Σ|E|−s is the projection that zeroes the
s smallest components of the given vector.
From the expressions of α̂ and β̂, we can notice that
the regularization term makes them greater than zero, and
consequently also ‖π‖1.

Using the insights obtained by Proposition 4, we propose
an alternating method for the minimization of (14). The
resulting method is a combination of Iterative Reweighted
Least Squares (IRLS) and Expectation Maximization. The
algorithm, which is detailed in Algorithm 1, is based on
the following four fundamental steps, which are iteratively
repeated until convergence.

WLS solution: Given the relative measurements b and
current parameters πe, α, β, a new estimation of the variable
x is obtained by solving the WLS problem with weights

we = (1− πe)α−2 + πeβ
−2, ∀e ∈ E .

Expectation: The posterior distribution ξ of the noise
associated to the edges is evaluated, based on the current
x, α, β.

Projection: The vector π = Ps(ξ) is the best (|E| − s)-
approximation of the posterior probability ξ. Therefore, the
s smallest components of the posterior probabilities ξ are set
to zero to make sure that at least s measurements are used
in the WLS estimation problem.

Maximization: Given the projected posterior probability
π, we use it to re-estimate the mixture parameters α and β.

The procedure is iterated until a suitable Stopping Crite-
rion (SC) is satisfied, e.g. a maximum number of iterations
Tmax can be fixed (SC ={t ≤ Tmax}) or the algorithm can
be run until the estimate stops changing (SC ={‖x(t+1) −
x(t)‖/‖x(t)‖ < tol} for some tol > 0).

Algorithm 1 LS-EM
Require: Data: (b, A). Parameters: c1, c2 > 0, p ∈ (0, 1

2 ),
tol > 0.

1: Initialization:
t← 0, α(t) ← α0, β

(t) ← β0, π(t) ← 0, ε(t) ← 1,
SC← 1.

2: while SC ≥ tol do
3: Computation of weights: ∀e ∈ E

w(t+1)
e ← 1− π(t)

e

(α(t))2
+

π
(t)
e

(β(t))2

4: WLS solution: W (t+1) ← diag(w(t+1))

x(t+1) ← L†
W (t+1)A

>W (t+1)b,

5: Posterior distribution evaluation: ∀e ∈ E
ξ(t+1)
e ← f(ze = 1|x(t+1), α(t), β(t))

6: Best (|E| − s)-approximation:

π(t+1) ← Ps(ξ(t+1))

7: Regularization parameter:

κ(t+1) ← dim(ker(LW (t+1)))

θ(t+1) ← 1

log(t+ 1)
+c1‖x(t+1)−x(t)‖+c2(κ(t+1)−1)

ε(t+1) ← min
(
ε(t), θ(t+1)

)
8: Parameters estimation:

α(t+1) ←

√
ε(t) +

∑
e(1− π

(t+1)
e )|be − (Ax(t+1))e|2

‖1− π(t+1)‖1

β(t+1) ←

√
ε(t) +

∑
e π

(t+1)
e |be − (Ax(t+1))e|2
‖π(t+1)‖1

9: Evaluate SC
10: t← t+ 1
11: end while

Although Algorithm 1 is a modified version of classical
EM, this fact is not sufficient to guarantee the convergence
of the proposed method. In fact, as observed in [26], a
generic EM algorithm is not guaranteed to converge to a
limit point but only to produce a sequence of points along
which the log-likelihood function does not decrease. Hence,
an explicit convergence proof is required in all specific cases.
Algorithm 1 also includes a regularization sequence ε(t),
which appears in the “Maximization” step and is designed



to be monotonic and to go to zero upon convergence of the
algorithm (see Step 7). The presence of such regularization
is actually instrumental to prove the convergence to a local
maximum of the log-likelihood function.

We underline that the proposed method (see Algorithm 1)
can be interpreted also as an IRLS with a specific choice
of the weights [36]. In contrast to classical IRLS, LS-EM
allows to perform a classification of the measurements and
the weights depend on the weighted energy based on this
classification and this marks its difference with IRLS where
the weights associated to edge e of the residual, chosen with
the aim of approximating the `1-norm of residual, turn out to
depend exclusively on the residual of edge |be−(Ax)e|. The
combination of EM with IRLS has been shown to outperform
classical IRLS for in terms of speed and robustness in
presence of noise in sparse estimation problems [37].

In order to state the convergence result, denote ζ(t) =
(x(t), π(t), α(t), β(t), ε(t)): then Algorithm 1 can be seen as
a map from RV × [0, 1]E ×R>0 ×R>0 ×R≥0 to itself that
produces the sequence of iterates {ζ(t)}t∈Z≥0

.
Theorem 5 (LS-EM convergence): For any b ∈ RE ,

the whole sequence ζ(t) converges to ζ∞ =
(x∞, π∞, α∞, β∞, ε∞) such that

x∞ = L†W∞A
>W∞b, W∞ = diag(w∞) (16a)

w∞e =
1− π∞e
|α∞|2

+
π∞e
|β∞|2

(16b)

π∞e = Ps
(
f(ze = 1|x∞, α∞, β∞)

)
(16c)

α∞ =

√∑
e(1− π∞e )|be − (Ax∞)e|2 + ε∞

‖1− π∞‖1
(16d)

β∞ =

√∑
e π
∞
e |be − (Ax∞)e|2 + ε∞

‖π∞‖1
. (16e)

The converge point ζ∞ is a fixed point of the algorithm and a
local minimum of Ṽ (·, ·, ·, ·, ε∞). If ε∞ = 0, then ζ∞ locally
maximizes the log-likelihood.

The proof of Theorem 5 is based on observing that func-
tion Ṽ in (14) is a Lyapunov function that is not increasing
along the sequence of iterates. Details are postponed to
Appendix B.

IV. DISTRIBUTED ALGORITHM

In this section, we design and study a distributed algorithm
to solve problem (1), starting from the centralized one
proposed in the previous section. Preliminary, let us examine
steps 3–8 in Algorithm 1 in order to identify whether they
are amenable to a distributed computation. Steps 3 and
5 only require information depending on edge e and are
thus inherently decentralized. Furthermore, we already know
that the least squares problem in Step 4 can be solved by
a distributed procedure. Instead, steps 6–8 involve global
information and can not easily be distributed.

Based on this discussion, we propose a simple but effective
variation of LS-EM algorithm, detailed in Algorithm 2.
Algorithm 2 is totally distributed and can be performed by
the nodes: at each iteration, every node v ∈ V computes

w
(t)
e , π

(t)
e for every edge incident to it (see Step 3 and

Step 5 in Algorithm 2) and the estimate of position x
(t)
v

(see Step 4 in Algorithm 2). The new algorithm is based
on two design choices. The first choice is inspired by the
distributed gradient dynamics (6): instead of fully solving a
WLS problem at each iteration, we only perform one step
of the corresponding gradient iteration. In the second choice,
we assume α and β to be known, thus removing the need for
their estimation. A further advantage is that keeping α and
β fixed during the evolution of the algorithm avoids certain
difficulties in the convergence analysis in Appendix B and
namely removes the need for regularization and projection
steps. Consequently, this distributed algorithm solves the
exact estimation problem (12). Even though the knowledge
of α and β can be a restrictive assumption, we have observed
that the algorithm is fairly robust to uncertainties in these
values: this quality is further discussed in Remark 1 below.
The convergence of Algorithm 2 can be proved similarly to

Algorithm 2 Distributed LS-EM
Require: Data: (b, A). Parameters: p ∈ (0, 1

2 ), τ > 0, 0 <
α� β, tol > 0.

1: Initialization: t← 0, π(t) ← 0, x(t) ← 0, SC← 1
2: while SC ≥ tol do
3: Computation of weights: ∀e ∈ E

w(t+1)
e ← 1− π(t)

e

α2
+
π

(t)
e

β2

4: Gradient step: W ← diag(w(t+1))

x(t+1) ← (I − τLW )x(t) + τA>Wb,

5: Posterior distribution evaluation: ∀e ∈ E
π(t+1)
e ← f(ze = 1|x(t+1), α, β)

6: Evaluate SC
7: t← t+ 1
8: end while

Theorem 5, under the condition that the parameter τ belongs
to a certain range: details are postponed to Appendix C.

Theorem 6 (Distributed LS-EM convergence): If τ <
α/‖A‖2, then for any b ∈ RE the sequence (x(t), π(t))
generated by Algorithm 2 converges to (x∞, π∞) such that

x∞ = L†W∞A
>W∞b, W∞ = diag(w∞) (17a)

w∞e =
1− π∞e
α2

+
π∞e
β2

(17b)

π∞e = f(ze = 1|x∞, α, β). (17c)
The limit point (x∞, π∞) is a fixed point of the algorithm
and a local minimum of V .

V. NUMERICAL RESULTS

In this section, we provide simulations illustrating the
performance of the proposed algorithms: we are mainly
interested in comparing them in terms of their convergence
times and final estimation errors.



A. Performance analysis of proposed algorithms

We examine how the performance of proposed techniques
depends on the parameters of the problem, such as the pa-
rameters of the Gaussian mixture (α, β, p) and the topology
of the measurement graph G. As a measure of performance,
we consider the normalized quadratic error (NQE), defined
as NQE = ‖x̂− x̃‖2/‖x̃‖2 ∗ 100 [%].

Let us begin by describing our baseline simulation setup
in details. First, we generate synthetic data to define the
estimation problem. The number of nodes is set to N =
50. The N components of the state vector are generated
randomly according to a uniform distribution in the interval
(0, 1): then, the mean is subtracted yielding a state vector
with mean 0. The topology is generated as Erdős-Rényi
random graphs with edge probability pedge ranging from 0.1
up to 1 (i.e., an edge is created between two arbitrary nodes
with probability pedge). In the extreme case of pedge = 1,
the graph generated is the complete graph where all nodes
are connected to all others. We fix α = 0.05 and β/α in
the range from 2 to 10. Also the probability of getting a
bad measurement p is taken between 0 and 1/2. The noise
vector is then sampled from a normal distribution using a
combination of the above parameters.

Next, we simulate the iterative algorithms. We initialize
the state vector to be all zeros and also the vector π to be all
zeros, meaning that all measurements are initially presumed
to be good. For the LS-EM, an initial value for α and β
is specified: α is randomly chosen from the set {0.1, 0.2,
0.3, 0.4, 0.5} and β = 2α in order to meet the constraint
β > α. They are then held fixed for the different trials. For
the Distributed LS-EM, the fixed values for α and β are taken
to be the true values. The stopping criterion SC is chosen
according to a tolerance tol = 10−4, which has been verified
to be small enough to represent numerical convergence. For
the (|E| − s)-approximation, we choose s = N − 1. This
“optimistic” choice accounts to assume a number of valid
measurements that could suffice to construct a spanning tree:
this assumption is not imposed on our synthetic data. Similar
Ps projections have already shown useful to accelerate
convergence of iterative reweighted least square methods for
estimation problems with sparsity prior [37].

Then, we simulate different trials whereby for each trial
the vector z̃ is regenerated. In order to illustrate the evolution
of the algorithms, we plot the NQE against the iteration count
for Algorithm 1 in Fig. 2 and Algorithm 2 in Fig. 3. We
have chosen four trials out of a set of 250: the same trials
(that is, the same random graphs and measurements) are
chosen for both algorithms. We can observe that Algorithm 1
converges faster than Algorithm 2, but the two algorithms
achieve similar final errors in a majority of trials.

The comparison between Algorithms 1 and Algorithm 2
is further explored in Fig. 4, where the distributions of
the final NQEs for all the 250 trials mentioned above are
summarized via the boxplot command in MATLAB with
the default settings, showing the 25th (lower edge), 50th or
median (central mark) and 75th (upper edge) percentiles. In
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Fig. 2. NQE plotted against iteration count for 4 randomly chosen trials
obtained using LS-EM Algorithm (each color represents the result of a trial);
the parameter set is N = 50, pedge = 0.3, p = 0.1, α = 0.05, β/α = 5.
Note that the color of each chosen trial matches its counterpart in Fig. 3
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Fig. 3. NQE plotted against iteration count for 4 randomly chosen trials
obtained using Distributed LS-EM Algorithm (each color represents the
result of a trial); the parameter set is N = 50, pedge = 0.3, p = 0.1, α =
0.05, β/α = 5. Note that the color of each chosen trial matches its
counterpart in Fig. 2

order to make the comparison more complete and provide
benchmarks, we also include the weighted least squares
(WLS) as per (5) and the “naive” unweighted least squares
estimator (LS) x̂ls, in which we assume all measurements to
be good. As expected, WLS outperforms all other estimators,
thanks to using a-priori information on the noise parameters
α, β and complete knowledge of the type of measurements.
Instead, the naive LS has the worst performance.

We can observe that all our approaches have a median that
is clearly lower than the median of the LS approach. Actu-
ally, the bulks of the error distributions are very similar to the
WLS benchmark, except for few trials of the Distributed LS-
EM that perform more poorly. A careful inspection of these
few trials shows that these large errors are due to incorrect
classification of the type of a small number of edges. This
phenomenon is not observed in LS-EM, possibly thanks to
the fact that in a centralized algorithm the information of all
nodes is used at each iteration.

We also performed a parameter study in order to quantify
the behavior of the mean NQE with respect to pedge, p and
β. In Fig. 5, we can observe that the mean NQE decreases
with increasing pedge: as the graph becomes more connected,
there are more measurements available to estimate the state
variables. From the same figure, we can also observe that
starting from pedge = 0.4, the performance of the Distributed
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Fig. 4. Boxplot showing NQE for the different approaches; the parameter
set is N = 50, pedge = 0.3, p = 0.1, α = 0.05, β/α = 5. + are the NQE
considered as outliers by the boxplot command;
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Fig. 5. Mean NQE with respect to pedge; the parameter set is N = 50, p =
0.1, α = 0.05, β/α = 5 and the number of trials is 1000. ◦ = WLS, + =
LS, � = LS-EM, × = Distributed LS-EM.
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Fig. 6. Mean NQE with respect to p; the parameter set is N = 50, pedge =
0.3, α = 0.05, β/α = 5 and the number of trials is 1000. ◦ = WLS, + =
LS, � = LS-EM, × = Distributed LS-EM.
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Fig. 7. Mean NQE with respect to β; the parameter set is N = 50, pedge =
0.3, p = 0.1, α = 0.05 and the number of trials is 1000. ◦ = WLS, + =
LS, � = LS-EM, × = Distributed LS-EM.
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Fig. 8. Boxplot of NQE for different initialization of α and β ob-
tained using Distributed LS-EM; we consider β/α to be known and the
actual α and β values are set as c times their real values, with c ∈
{0.50, 0.75, 1.00, 1.25, 1.50}. The parameter set is N = 50, pedge =
0.3, p = 0.1, α = 0.05, β/α = 5.

LS-EM is similar to that of LS-EM. In Fig. 6, the mean
NQE increases with increasing p: this is due to the presence
of more bad measurements. A similar reasoning explains the
increase of NQE for increasing ratios β/α in Fig. 7. These
dependencies on the parameters are consistent with intuition.
From these three figures, it is clear that the Distributed LS-
EM has larger average error than the centralised LS-EM
(which has in turn a larger error than the WLS estimate).
However, we should recall that the mean error of the Dis-
tributed LS-EM is driven up by the aforementioned sporadic
errors: a comparison of median values would show a smaller
gap from the centralized approach.

Remark 1 (Parameter uncertainty in Distributed LS-EM):
Crucially, in Algorithm 2 the values for α and β are assumed
to be known a priori. In practice one would usually not be
able to have this information: hence we want to explore the
sensitivity of the algorithm to incorrect choices of α and β.
In Fig. 8, we assume not to know the actual values of α and
β, but only their ratio β/α: we can observe that choosing α
and β to be smaller than their actual value yields a higher
median, while larger values than the real one yield similar
results. In Fig. 9, we assume to know α but not β: we can
observe that an incorrect and too large value of β increases
the presence of large errors, even though the bulk of the
error distribution remains similar. Overall, we conclude that
the algorithm is fairly robust to moderate uncertainties in
the knowledge of the parameters.

B. Distributed LS-EM versus Distributed LAE

In this section we compare Distributed LS-EM with a
distributed version of LAE (see (10) for the update). In order
to perform a fair comparison we introduce a mismatch in the
measurements model. The measurements are not generated
as a Gaussian mixtures and we consider an experiment
coming from the geometric estimation problems in multi
robot localization [15]. More precisely, we consider the
following setting. Ground truth x̃ of positions of n = 30
nodes are drawn from a uniform distribution over the interval
[−1, 1]. Connections among nodes are generated according
to the Erdős-Rényi random graph model, where each edge is
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Fig. 9. Boxplot of NQE for different initialization of β obtained using
Distributed LS-EM; we consider α to be known and let the actual ratio
β/α to be {2, 4, 6, 8, 10}. The parameter set is N = 50, pedge = 0.3, p =
0.1, α = 0.05, β/α = 5.

included in the graph with probability pedge independently
from every other edge. The outliers indicator vector z̃ ∼
B(0.1) and the measurements are generated as follows

b = Ax̃+ (1− z̃)αη + z̃γ

where η is white Gaussian noise and γe is distributed accord-
ing to a uniform distribution over the interval [∆/4,∆/4]
with ∆ is the size of the environment. In Figure 11 we show
a comparison between Distributed LS-EM and Distributed
LAE in terms of speed of convergence for different values
of pedge ∈ {0.25, 0.5, 0, 75}. In order to perform a fair
comparison we have fixed p = 0.2 (and not equal to 0.1) and
α = 0.05 and β = 5α. The figure depicts the NQE averaged
over 50 experiments as a function of number of iterations.
The efficiency of the proposed algorithm allows to reduce
the number of iterations required to achieve a satisfactory
level of accuracy. As can be noticed, Distributed LS-EM
need fewer updates (about 40 itarations) than Distributed
LAE (more than 300 iterations) to achieve NQE = 10−3 if
pedge = 0.25. This gain reduces when the graph originated
by the measurement become denser and more connected:
when pedge = 0.5 few iterations (about 5) are needed to
guarantee the convergence of Distributed LS-EM and about
90 for Distributed LAE.

VI. CONCLUDING REMARKS

In this paper, we have studied the problem of estimation
from relative measurements with heterogeneous quality. We
have introduced a novel formulation for the problem and
we have proposed two original algorithms based on the
method of Expectation-Maximization. One of the algorithms
has the important feature of being distributed and thus
amenable to applications where communication is limited or
expensive. The other algorithm also distinguishes itself from
standard EM approaches, due to the presence of regulariza-
tion variables and of a projection step, which help dealing
with the graph-dependent nature of the problem. Besides
designing the algorithms, we have proved their convergence
to a local maximum of the log-likelihood function (or to an
approximation when regularization is employed). We note
here that, as per the convergence properties, the projection

step could be dispensed with at the price of a more involved
proof: however, its role is not only in allowing for a proof
but also in improving the performance in terms of speed,
as we discussed in Section V-A. We have also presented a
number of simulations that support the good performance
of the algorithms and their robustness against uncertainties
in the choice of the parameters. Despite a generally good
performance, the algorithms (and particularly the distributed
one) may perform poorly on some instances: this could
be explained by the local nature of the optimality results.
It is worth mentioning that the model considered in this
paper considers only one measurement per node. Our choice
derives from the need to make the theoretical analysis as
simple as possible. The proposed algorithms can be adapted
to the case when each node in the network has access to
multiple measurements of relative distances. The arguments
used to prove convergence can be adapted to this case, while
repeated measurements would allow for smaller estimation
errors.

Several other interesting problems remain open: we men-
tion three of them here. First, one could further investigate
the role of the topology of the measurement graphs in
determining the performance of the algorithms: namely, some
topologies could be more effective for the same number of
measurements taken. Second, one could look for distributed
algorithms that need not to assume the knowledge of the mix-
ture parameters α and β. Third, one could propose algorithms
that perform a “hard” classification of the measurements, as
opposed to the “soft” classification that is done in this paper,
where the measurements are assigned a probability of being
of type α or β: some preliminary results and designs with
hard classification are available in [38].

APPENDIX

A. Properties of the likelihood

Theorem 3 converts the ML problem (1) into a minimiza-
tion problem. Before its proof, we recall expression (2) and
introduce some useful notation:

f(be|x, α, β) =
1− p√
2πα2

exp

(
− (b−Ax)2e

2α2

)
+

p√
2πβ2

exp

(
− (b−Ax)2e

2β2

)
,

(18)

f(be, ze|x, α, β) =
[
(1− ze)

1− p√
2πα2

exp

(
− (b−Ax)2e

2α2

)
+ze

p√
2πβ2

exp

(
− (b−Ax)2e

2β2

)]
,

(19)

f(be|ze, x, α, β) =
[
1− ze√
2πα2

exp

(
− (b−Ax)2e

2α2

)
+

ze√
2πβ2

exp

(
− (b−Ax)2e

2β2

)] (20)

and f(ze|be, x, α, β) = f(be,ze|x,α,β)
f(be|x,α,β) .
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Fig. 10. NQE plotted against iteration count averaged over 50 trials for Distributed LAE and Distributed LS-EM Algorithm.

Proof of Theorem 3: From the definition of likelihood and
using (18) we have

L(x, α, β) = log
∏
e∈E

f(be|x, α, β)

=
∑
e∈E

log f(be|x, α, β)

=
∑
e∈E

log
∑

ze∈{0,1}

f(be, ze|x, α, β)

=
∑
e∈E

log
∑

ze∈{0,1}

f(be, ze|x, α, β)

q(ze)
q(ze)

for any map q : {0, 1} → (0, 1) such that q(0) +
q(1) = 1. From Jensen’s inequality we get L(x, α, β) ≥∑
e

∑
ze=0,1 q(ze) log f(be,ze|x,α,β)

q(ze)
. Let πe = q(ze = 1) =

1− q(ze = 0). Therefore, we have

L(x, α, β) ≥
∑
e∈E

q(ze = 1) log
f(be, ze = 1|x, α, β)

q(ze = 1)
(21)

+ q(ze = 0) log
f(be, ze = 0|x, α, β)

q(ze = 0)
(22)

=
∑
e∈E

πe log

p√
2πβ2

exp
(
− (b−Ax)2e

2β2

)
πe

+
∑
e∈E

(1− πe) log
1−p√
2πα2

exp
(
− (b−Ax)2e

2α2

)
1− πe

=−
∑
e∈E

[
(b−Ax)2e

(
πe
2β2

+
1− πe
2α2

)
−H(πe)

]
+
∑
e∈E

[
πe log

p

β
+ (1− πe) log

1− p
α

]
− |E|

2
log(2π).

This inequality is true for all πe ∈ [0, 1] and e ∈ E since the
function on the right-hand-side can be extended by continuity
in πe ∈ {0, 1}. Therefore

L(x, α, β)

≥ max
π∈[0,1]E

−
∑
e∈E

[
(b−Ax)2

e

(
πe

2β2
+

1− πe
2α2

)
−H(πe)

]
+
∑
e∈E

[
πe log

p

β
+ (1− πe) log

1− p
α

]
− |E|

2
log(2π)

Using the definition of function V in (13) we obtain

L(x, α, β) ≥ max
π∈[0,1]E

−V (x, π, α, β)− |E|
2

log(2π)

= − min
π∈[0,1]E

V (x, π, α, β)− |E|
2

log(2π)

(23)

By differentiating V (x, π, α, β) with respect to πe we
write the optimality condition as

∂V

∂πe
= − log

1− πe
πe

− log
p

β
+

(b−Ax)2
e

2β2

+ log
1− p
α
− (b−Ax)2

e

2α2
= 0

from which we obtain

π̂e =

p√
2πβ2

exp
(
− (b−Ax)2e

2β2

)
p√
2πβ2

exp
(
− (b−Ax)2e

2β2

)
+ 1−p√

2πα2
exp

(
− (b−Ax)2e

2α2

)
= f(ze = 1|be, x, α, β).

Replacing q(ze = 1) and q(ze = 0) with π̂e = f(ze =
1|be, x, α, β) and (1 − π̂e) = f(ze = 0|be, x, α, β) in (21)
and (22), respectively, we get

L(x, α, β)

≥
∑
e∈E

π̂e log
f(be, ze = 1|x, α, β)

π̂e

+ (1− π̂e) log
f(be, ze = 0|x, α, β)

1− π̂e

≥
∑
e∈E

f(ze = 1|be, x, α, β) log
f(be, ze = 1|x, α, β)

f(ze = 1|be, x, α, β)

+ f(ze = 0|be, x, α, β) log
f(be, ze = 0|x, α, β)

f(ze = 0|be, x, α, β)

=
∑
e∈E

∑
ze∈{0,1}

f(ze|be, x, α, β) log
f(be, ze|x, α, β)

f(ze|be, x, α, β)

=
∑
e∈E

∑
ze∈{0,1}

f(ze|be, x, α, β) log f(be|x, α, β)

from which we conclude that the inequality in (23) is actually
an equality. Therefore

L(x, α, β) = − min
π∈[0,1]E

V (x, π, α, β)− |E|
2

log(2π).



where the last expression is obtained using the definition of
function V in (13). We conclude that

max
α,β

max
x

L(x, α, β) = −min
α,β

min
x

min
π∈[0,1]E

V (x, π, α, β) + c

with c = − |E|2 log(2π).

B. Proof of Theorem 5: convergence of Algorithm 1

Lemma 7 (Monotonicity): The function Ṽ defined
in (15) is nonincreasing along the iterates ζ(t) =
(x(t), π(t), α(t), β(t), ε(t)).

Proof: Repeatedly applying Proposition 4 yields

Ṽ (ζ(t+1)) = Ṽ (x(t+1), π(t+1), α(t+1), β(t+1), ε(t+1))

≤ Ṽ (x(t+1), π(t+1), α(t), β(t), ε(t))

≤ Ṽ (x(t+1), π(t), α(t), β(t), ε(t))

≤ Ṽ (x(t), π(t), α(t), β(t), ε(t)) = Ṽ (ζ(t))

for every time t, proving the result.
The following lemma implies that Algorithm 1 converges

numerically.
Lemma 8 (Asymptotic regularity): If (x(t)) is the se-

quence generated by Algorithm 1, then x(t+1)−x(t) → 0 as
t→∞.

Proof: From their definitions we have

α(t+1) ≥
√
ε(t)/|E| β(t+1) ≥

√
ε(t)/|E|.

Then, if α(t) → 0 or β(t) → 0 as t→∞, we have ε(t) → 0
and, consequently, ‖x(t+1) − x(t)‖2 → 0 and the assertion
is verified. If instead neither α nor β converge to zero, then
there exists a constant K > 0 and a divergent sequence of
integers t` such that min{α(t`), β(t`)} > K for all ` ∈ N. It
holds in general that∑
e∈E

π(t)
e log β(t) +

∑
e∈E

(1− π(t)
e ) logα(t) − |E| log 2

≤ Ṽ (ζ(t)) ≤ Ṽ (ζ(1))

(24)

where the last inequality follows from Lemma 7. Then,
Ṽ (ζ(t`)) ≥ (|E| logK − |E| log 2).

Since x(t+1) = argmin
x∈RV

Ṽ (x, π(t), α(t), β(t), ε(t)) we have

Ṽ (x(t+1), π(t), α(t), β(t), ε(t)) ≤ Ṽ (x(t), π(t), α(t), β(t), ε(t))
(25)

and

∇x[Ṽ (x, π(t), α(t), β(t), ε(t))](x(t+1))

= A>W (t)Ax(t+1) −A>W (t)b

= LW (t)x(t+1) −A>W (t)b = 0

(26)

where W (t) = diag
(

1−π(t)

(α(t))2
+ π(t)

(β(t))2

)
and LW (t) =

A>W (t)A. From (25) we then have

Ṽ (x(t), π(t), α(t), β(t), ε(t))

− Ṽ (x(t+1), π(t+1), α(t+1), β(t+1), ε(t+1))

≥Ṽ (x(t), π(t), α(t), β(t), ε(t))

− Ṽ (x(t+1), π(t), α(t), β(t), ε(t))

=
1

2

∑
e∈E

(
(b−Ax(t))2

e +
ε(t)

|E|

)(
1− π(t)

e

(α(t))2
+

π
(t)
e

(β(t))2

)

− 1

2

∑
e∈E

(
(b−Ax(t+1))2

e +
ε(t)

|E|

)(
1− π(t)

e

(α(t))2
+

π
(t)
e

(β(t))2

)

=
1

2
(x(t))>LW (t)x(t) − (x(t))>A>W (t)b

− 1

2
(x(t+1))>LW (t)x(t+1) + (x(t+1))>A>W (t)b

=
1

2
(x(t) − x(t+1))>LW (t)(x(t) + x(t+1))

− (x(t) − x(t+1))>A>W (t)b

=
1

2
(x(t) − x(t+1))>LW (t)x(t)

+ (x(t) − x(t+1))>(
1

2
LW (t)x(t+1) −A>W (t)b)

From (26) we get

Ṽ (ζ(t))− Ṽ (ζ(t+1)) ≥ 1

2
(x(t) − x(t+1))>LW (t)x(t)

− 1

2
(x(t) − x(t+1))>LW (t)x(t+1)

≥ 1

2
(x(t) − x(t+1))>LW (t)(x(t) − x(t+1))

≥ 1

2
min

v:1>v=0

v>(LW (t))v

‖v‖2
‖x(t) − x(t+1)‖2.

The last inequality is true since LW (t) is positive semidef-
inite, the multiplicity of the eigenvalue 0 is equal to 1 and
1>x(t) = 0 for all t ∈ N. We can thus define

λ(t) :=
1

2
min

v: 1>v=0

v>(LW (t))v

‖v‖2
.

We now prove that ∃t0 ∈ N such that λ(t) ≥ c > 0 for
all t ≥ t0. In fact, suppose by contradiction that there exists
(tj) such that limj→∞ λ(tj) = 0. Then, there needs to exist a
subsequence t` such that α(t`) or β(t`) diverge. If β(t`) →∞,
then (24) implies α(t`) → 0. From Step 8 in Algorithm 1 we
obtain ε(t`) → 0 and κ(t`) → 1. We deduce that there exists
`0 ∈ N such that κ(t`) = 1 for all ` > `0, from which we
get the contradiction λ(t`) > c > 0 for all ` > `0. The case
α(t`) →∞ is analogous.

We now compute for ` ∈ N

0 ≤
t`−1∑
t=1

c‖x(t)−x(t+1)‖2 ≤
t`−1∑
t=1

(
Ṽ (ζ(t))− Ṽ (ζ(t+1))

)
= Ṽ (ζ(1))− Ṽ (ζ(t`))

≤ Ṽ (ζ(1))− (|E| logK − |E| log 2) = K ′.

By letting `→∞, we obtain that ‖x(t) − x(t+1)‖ → 0.



Lemma 9: The sequence (x(t))t∈N is bounded.
Proof: If (α(t))t∈N and (β(t))t∈N are both upper

bounded by a constant χ > 0, then

0 ≤ ‖b−Ax(t)‖22
≤
∑
e∈E

(1− π(t)
e )[α(t)]2 +

∑
e∈E

π(t)
e [β(t)]2 ≤ χ2|E|,

which guarantees that x(t) is bounded as well. Next, we will
show that if either α(t) or β(t) were unbounded, x(t) would
actually be convergent and thus bounded.

To this purpose, we start by observing from (15) that∑
e∈E

π(t)
e log β(t) +

∑
e∈E

(1− π(t)
e ) logα(t) − |E| log 2

≤ Ṽ (x(t), π(t), α(t), β(t), ε(t))

≤ Ṽ (x(1), π(1), α(1), β(1), ε(1)).

(27)

Suppose now that β(t) is not upper bounded. Then, there
exists a subsequence (t`)`∈N such that lim`→∞ β(t`) = ∞.
Then, inequality (27) implies that there are two cases: either
we have π(t`) → 0 for ` → ∞, or α(t`) → 0. In the
former case, we have x(t`) → L†A>b (where L is the
limit of LW (t`) ) implying that x(t) is bounded by asymptotic
regularity. In the latter case, there exists e ∈ E such that
π

(t`)
e 6= 0, implying that lim`→∞ α(t`) = 0. From Steps 7

and 8 in Algorithm 1 we get that ε(t`) → 0 and consequently
κ(t`) → 1. Being κ(t) an integer, there exists `0 ∈ N such
that κ(t`) = 1 for all ` > `0. Since

α(t`) =

√√√√∑e∈E(1− π
(t`)
e )|be − (Ax(t`))e|2 + ε(t`)∑
e∈E(1− π

(t`)
e )

,

we have that if there exist ε > 0 and {t`j}j∈N such that

|be − (Ax(t`j ))e| > ε then π
(t`j )
e → 1 as j → ∞. On the

other hand, if |be − (Ax(t`))e| → 0 then π
(t`)
e → 0. This

means that

lim
j→∞

π
(t`j )
e =

{
1 if e ∈ ∆

0 otherwise
,

where the set ∆ is defined as follows

∆ = {e ∈ E : ∃ε > 0 and (t`j )j s.t |be − (Ax(t`j ))e| > ε}.

Observe that the relative complement ∆c = E \ ∆ has
cardinality not smaller than s: using this notation, we can
deduce that

lim
j→∞

A>W (t`j )Ax(t`j ) = lim
j→∞

A>W (t`j )b

A>∆cA∆c lim
j→∞

x(t`j ) = lim
j→∞

A>∆cb∆c .

Since with κ(t`j ) = 1, the sequence (x(t`j ))j∈N converges

lim
j→∞

x(t`j ) = (A>∆cA∆c)†A>∆cb∆c .

and so does x(t) by asymptotic regularity.
Similarly, the case of α(t) unbounded leads to two cases:

either π(t`) → 1 or β → 0. The former case is actually

forbidden by the presence of at least s components equal to
zero. The latter case is treated in analogous way as the case
α→ 0 above: we omit its detailed discussion.

Lemma 10: Any accumulation point of ζ(t) is a fixed
point of Algorithm 1 and satisfies equalities (16a)-(16e).

Proof: If (x], π], α], β], ε]) is an accumulation point of
the sequence (x(t), π(t), α(t), β(t), ε(t))t∈N, then there exists
a subsequence (x(t`), π(t`), α(t`), β(t`), ε(t`))`∈N that con-
verges to (x], π], α], β], ε]) as `→∞. We now show (16c),
since the other conditions are immediate by continuity. In
order to verify (16c), we need to prove that for all i ∈
supp(π])

π]i =
exp(− |bi−(Ax])i|2

2|β]|2 ) p
β]

1−p
α]

exp(− |bi−(Ax])i|2
2|α]|2 ) + p

β]
exp(− |bi−(Ax])i|2

2|β]|2 )
(28)

and for any i /∈ supp(π]) and j ∈ supp(π])

exp(− |bi−(Ax])i|2
2|β]|2 ) p

β]

1−p
α]

exp(− |bi−(Ax])i|2
2|α]|2 ) + p

β]
exp(− |bi−(Ax])i|2

2|β]|2 )
(29)

≤
exp(− |bj−(Ax])j |2

2|β]|2 ) p
β]

1−p
α]

exp(− |bj−(Ax])j |2
2|α]|2 ) + p

β]
exp(− |bj−(Ax])j |2

|β]|2 )
.

Since lim`→∞ π(t`) = π], then there exists `0 such that,
∀` > `0 and ∀i ∈ supp(π]), π(t`)

i 6= 0 and π(t`)
i = ξ

(t`)
i →

π]i , so that (28) is verified.
If i /∈ supp(π]), then we have to distinguish the following

two cases: either (a) π(t`)
i is zero eventually or (b) π(t`)

i

converges to zero asymptotically. In case (a), there exists
`0 ∈ N such that ∀` > `0, π(t`)

i = 0, from which
ξ

(t`)
i < ξ

(t`)
j , ∀j ∈ supp(π]) and (29) is satisfied. In case

(b), there exists a strictly positive sub-sequence (`q)q∈N such
that π

(t`q )

i = ξ
(t`q )

i → π]i = 0. Since at the same time ξ
(t`q )

j

converges to π]i > 0 for all j ∈ supp(π]), there exists q0 ∈ N
such that ∀q > q0 we have ξ

(t`q )

i < ξ
(t`q )

j , and, by letting
q →∞,

exp(− |bi−(Ax])i|2
2|β]|2 ) p

β]

1−p
α]

exp(− |bi−(Ax])i|2
2|α]|2 ) + p

β]
exp(− |bi−(Ax])i|2

2|β]|2 )

≤
exp(− |bj−(Ax])j |2

2|β]|2 ) p
β]

1−p
α]

exp(− |bj−(Ax])j |2
2|α]|2 ) + p

β]
exp(− |bj−(Ax])j |2

|β]|2 )

We conclude that for all i /∈ supp(π∞)

π]i = 0 = Ps

 exp(− |b−Ax
]|2

2|β]|2 ) p
β]

1−p
α]

exp(− |x
]|2

2|α]|2 ) + p
β]

exp(− |x
]|2

2|β]|2 )


i

.

Since the sequence x(t) is bounded (see Lemma 9), there
exists a subsequence x(tj) such that x(tj) → x∞. Moreover,
α(tj) → α∞, β(tj) → β∞, π(tj) → π∞, and ε(tj) → ε∞.
From Lemma 8, we get limt→∞ x(tj+1) = limt→∞ x(tj) =
x∞, proving convergence. Finally, Lemma 10 ensures that
ζ(t) converges to a fixed point.



C. Proof of Theorem 6: convergence of Algorithm 2

Let us consider the function V : RV× [0, 1]E → R defined
from (13) by fixing the variables α and β, together with a
surrogate function V S : RV × RV × [0, 1]E → R

V S(x, z, π) = V (x, π)+
1

2τ
(x−z)>(I−τLW )(x−z), (30)

where
W = diag

(
1− π
α2

+
π

β2

)
The following two lemmas are stated without proof.

Lemma 11 (Partial minimizations): If

x̂ = argmin
x∈RV

V S(x, z, π) and π̂ = argmin
π∈[0,1]E

V (x, π),

then

x̂ = (I − τLW )z + τA>Wb

π̂e =

p
β e
− |be−(Ax)e|2

2β2

p
β e
− |be−(Ax)e|2

2β2 + (1−p)
α e−

|be−(Ax)e|2
2α2

∀ e ∈ E

Lemma 12 (Monotonicity): The function V defined in this
section is nonincreasing along the iterates ζ(t) = (x(t), π(t)).

We are now able to show that Algorithm 2 converges
numerically.

Lemma 13: If x(t) is the sequence generated by Algo-
rithm 2, then x(t+1) − x(t) → 0 as t→∞.

Proof: Define µ = maxt ‖A>W (t)A‖ ≤ ‖A‖2/α
and ‖A‖ is the spectral norm. Since from assumption τ <
α/‖A‖2 < µ−1 we have

0 ≤ 1

2τ
(1− τµ)‖x(t) − x(t+1)‖2

≤ 1

2τ
(1− τ‖A>W (t)A‖)‖x(t) − x(t+1)‖2 (31)

≤ 1

2τ
(x(t) − x(t+1))>(I − τA>W (t)A)(x(t) − x(t+1)).

If we take the sum until T , then

0 ≤
T∑
t=1

1

2τ
(x(t) − x(t+1))>(I − τA>W (t)A)(x(t) − x(t+1))

=

T∑
t=1

[
V S(x(t+1), x(t), π(t))− V (x(t+1), π(t))

]
(32)

Since π(t+1) = argmin
π

V (x(t+1), π) then we have

V (x(t+1), π(t+1)) ≤ V (x(t+1), π(t)) and, combining with
(31) and (32), we get

0 ≤ 1

2τ
(1− τµ)‖x(t) − x(t+1)‖2

≤
T∑
t=1

[
V S(x(t+1), x(t), π(t))− V (x(t+1), π(t+1))

]
≤

T∑
t=1

[
V S(x(t), x(t), π(t))− V (x(t+1), π(t+1))

]
=

T∑
t=1

[
V (x(t), π(t))− V (x(t+1), π(t+1))

]

where the last inequality follows from the fact x(t+1) =
argmin

x
V S(x, x(t), π(t)). Finally, we observe that the trun-

cated series is telescopic, from which

0 ≤ 1

2τ
(1− τµ)‖x(t) − x(t+1)‖2

≤ V (x(1), π(1))− V (x(T+1), π(T+1))

≤ V (x(1), π(1))− λN(log max{ p
β
,

1− p
α
} − log 2) = C ′

This last inequality holds for any T ∈ N, then by letting
T →∞, we obtain that the series is convergent, from which
we deduce that as t→∞

1

2τ
(x(t) − x(t+1))>(I − τA>W (t)A)(x(t) − x(t+1))→ 0

and by inequality (31) the claim is proved.
Lemma 14: The sequence (x(t))t∈N is bounded.

Proof: Since 1>x(t) = 0 for all t, Lemma 11 implies

‖x(t+1)‖

= ‖(I − τA>W (t)A)
(
I − 1

N
11>

)
x(t) + τA>W (t)b‖

≤ ‖(I − τ
(
A>W (t)A)− 1

N
11>

)
‖‖x(t)‖+ ‖τA>W (t)b‖

≤ (1− τµ2)‖x(t)‖+ τγ

where µ2 = mint ‖A>W (t)A − 1
N 11

>‖ > 0 and γ =
maxt ‖A>W (t)b‖ (notice that W (t) belongs to a finite set
of matrices). We conclude that

lim
t→∞

‖x(t)‖ ≤ lim
t→∞

(1− τµ2)t‖x(0)‖+

∞∑
s=0

(1− τµ2)sγτ

which in turn is no larger than γ
µ2

.
By Lemma 14, the sequence x(t) is bounded and then there

exists a subsequence x(tj) such that x(tj) → x∞, α(tj) →
α∞, β(tj) → β∞, and π(tj) → π∞. From Lemma 13, we
get limt→∞ x(tj+1) = limt→∞ x(tj) = x∞. Since πe(x) =
f(ze = 1|x, α, β) is a continuous function of x, then also
π(t) → π∞ and (x∞, π∞) is a fixed point.
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