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Asynchronous opinion dynamics on the k-nearest-neighbors graph

Wilbert Samuel Rossi and Paolo Frasca

Abstract— This paper is about a new model of opinion
dynamics with opinion-dependent connectivity. We assume that
agents update their opinions asynchronously and that each
agent’s new opinion depends on the opinions of the k agents that
are closest to it. We show that the resulting dynamics is sub-
stantially different from comparable models in the literature,
such as bounded-confidence models. We study the equilibria of
the dynamics, observing that they are robust to perturbations
caused by the introduction of new agents. We also prove that
if the number of agents n is smaller than 2k, the dynamics
converge to consensus. This condition is only sufficient.

I. INTRODUCTION

Driven by the evolution of digital communication, there is
an increasing interest for mathematical models of opinion
dynamics in social networks. A few such models have
become popular in the control community, see the surveys
[1], [2]. In the perspective of the control community, opinion
dynamics distinguish themselves from consensus dynamics
because consensus is prevented by some other dynamical
feature. In many popular models, this feature is an opinion
dependent limitation of the connectivity. This is the case
of bounded confidence (BC) models [3], [4], where social
agents influence each other iff their opinions are closer than a
threshold. This way of defining connectivity, however, seems
at odds with several social situations, since it may require an
agent to be influenced by an unbounded number of fellow
agents. Instead, the number of possible interactions is capped
in practice by the limited capability of attention by the
individuals. For instance, online social network services are
based on recommender systems that select a certain number
of news items, those which are closer to the user’s presumed
tastes. However, to the best of our knowledge, this important
observation has not been incorporated in any suitable model
of opinion dynamics, with the partial exception of [5].
The latter paper compares different models of interaction,
including one in which each agent is influenced by a fixed
number of neighbors.

In a striking contrast, this observation has been made in
the field of biology by a number of quantitative studies about
flocking in animal groups (these include both theoretical and
experimental works) [6], [7], [8], [9]. The importance of this
way of defining connectivity has been also captured by graph
theorists, who have studied a the properties of what they call
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k-nearest-neighbors graph. For instance, it is known that k
must be logarithmic in n to ensure connectivity [10] and
flocking behavior [11].

In this paper, we provide the first analysis of the k-nearest-
neighbor opinion dynamics. In this analysis, our contribution
is threefold: (1) We describe the equilibria of the dynamics,
distinguishing a special type of clustered equilibria that are
constituted of separate clusters; (2) We discuss the robustness
of clustered equilibria to perturbations consisting in the ad-
dition of new agents; (3) We provide a proof of convergence
for small groups, that is, groups such that n < 2k.

Our work differs from [5] in several aspects. As per
the model, the dynamical model in [5] is synchronous and
continuous-time, whereas ours is asynchronous and discrete-
time. As per the analysis, [5] focuses on the equilibria and
their properties (for instance, the distribution of their clusters’
sizes) are studied by extensive simulations, whereas we
study the dynamical properties (robustness to perturbations,
convergence) by a mix of simulations and analytical results.
Our robustness analysis is based on the approach taken
by Blondel, Hendrickx and Tsitsiklis for BC models [12].
Our convergence result is inspired by classical proofs of
convergence for randomized consensus dynamics [13, Chap-
ter 3], but its interest and difficulty originate from the
lack of reciprocity in the interactions: this feature clearly
distinguishes our model from bounded confidence models,
where interactions are reciprocal as long as the interaction
thresholds are equal for all agents [3], [5], [14], [15], [16],
[17].

II. THE DYNAMICAL MODEL

Let n and k be two integers with

1 ≤ k ≤ n,

and let V = {1, . . . , n} be the set of agents. Each agent
is endowed with a scalar opinion xi ∈ R, to be updated
asynchronously. The update law

x+ = f(x, i) (1)

goes as follows. An agent i is selected from V ; the elements
of V are ordered by increasing values of |xj −xi|; then, the
first k elements of the list (i.e. those with smallest distance
from i) form the set Ni of current neighbors of i. Should
a tie between two or more agents arise, priority is given to
agents with lower index. Agent i may but not necessarily
does belong to Ni. Once Ni is determined, agent i updates
his opinion xi to

x+i =
1

k

∑
j∈Ni

xj ,
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Fig. 1. Simulation of the model (1) with n = 20, k = 50, initial opinions
chosen uniformly at random in [0, 1] and update sequence chosen uniformly
at random. The plot contains a typical trajectory that converges to a clustered
equilibrium.
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Fig. 2. Simulation of the model (1) with n = 20, k = 50, initial opinions
chosen uniformly at random in [0, 1] and update sequence chosen uniformly
at random. The plot contains a less common trajectory that converges to a
non-clustered equilibrium.

while the remaining agents do not change their opinions

x+j = xj for every j 6= i .

We show a couple of simulations to illustrate the possible
behaviours of the model, see Figure 1 and 2. For these simu-
lations we set n = 20, k = 5 and choose the initial opinion of
every agent uniformly at random in [0, 1]. At every step, we
choose from V the node that updates opinion, independently
and uniformly at random. The simulation of Figure 1 shows
a typical outcome: the agents form two distinct groups (of
10 agents each) with homogeneous opinions; for every agent,
his neighbors at time t = 1000 have almost the same opinion.
This last observation does not hold in the simulation of
Figure 2: the two pairs of agents that at time t = 1000 have
opinion about 0.6 and about 0.7, respectively, have neighbors
with different opinions. These distinct behaviors lead us to
distinguish different kinds of equilibria: this will be the topic
of the next section.

III. EQUILIBRIA

In this section we discuss some properties of the equilibria
of system (1). Motivated by the simulations, we introduce
the following terminology. Given a configuration x ∈ Rn,
the directed graph that represents the possible interactions
(i.e. the opinion dependancies for any possible selection of
the node to be updated) is

G(x) = (V,E(x)) with E(x) =
⋃
i∈V
{(i, j), j ∈ Ni} ,

where Ni is the set of neighbors of i, should i be selected to
update his opinion. Clearly, if k = n the graph G(x) =
(V, V × V ) is complete. A configuration x ∈ Rn is an
equilibrium for the asynchronous dynamics if

x = f(x, i) for every i .

If k = 1, then G(x) contains only links between nodes with
the same opinion: in this trivial case, every configuration is
an equilibrium because agents cannot change opinion.

A configuration x is called clustered if

xNi = xi1Ni for every i ,

that is, if for every node all of his neighbors have the same
opinion. Furthermore, a clustered configuration x = c1 for
some c ∈ R is called consensus.

It is immediate to see that clustered configurations are
equilibria. However, there exist equilibria that are not clus-
tered. It is possible to obtain a simple counterexample with
n = 7 and k = 3 and exploiting the tie break rule. Consider
any configuration x ∈ R7 of the form

x{1,3,5} = α1{1,3,5} , x{2,4,6} = β 1{2,4,6} , x7 = α+β
2 ,

where α, β ∈ R and α < β. The above is an equilibrium
even if xN7

= x{1,2,7} 6= 1
2 (α+ β)1{1,2,7}.

The tie breaking rule is not central for the existence of non-
clustered equilibria, as one can see in the following example
inspired by Figure 2.

Example 1: Consider x ∈ R20 with

x{1,2,...,11} = α1{1,2,...,11} ,

x12 = x13 = 3α+2β
5 ,

x14 = x15 = 2α+3β
5 ,

x{16,17,...,20} = β 1{16,17,...,20} ,

where α, β ∈ R and α < β. For instance, the neighbors of
agent 12 are N12 = {1, 12, 13, 14, 15} because

|x12 − x12| = |x13 − x12| = 0 ,

|x12 − x14| = |x12 − x15| = 1
5 (β − α) ,

|x12 − x1| = 2
5 (β − α) ,

while the remaining agents are at distance 2
5 (β−α) or larger.

Such configuration is an equilibrium with xN12
6= x12 1N12

.

A simple analysis shows that clustered configuration are
those in which the agents form clusters of at least k partici-
pants with the same opinion. To make this claim formal, let



Vi = {j : xj = xi} be the set of nodes that share the same
opinion of i.

Lemma 1: A configuration is clustered if and only if
|Vi| ≥ k for every i.

Proof: By definition, in a clustered configuration Ni ⊆
Vi for every i. Assume |Vi| ≥ k for every i. For any i there
are at least k nodes j (including i) with xj = xi: such nodes
have zero distance from i and hence Ni ⊆ Vi. This holds
for every i so the configuration is clustered. On the other
hand, assume that exists i with |Vi| ≤ k − 1. The set Ni
must contain a node j with xj 6= xi so not in Vi, violating
the definition of clustered configuration.

From this result, it follows that a clustered configuration
allows up to ⌊n

k

⌋
distinct sets Vi (and this bound is tight). For the special case
of consensus, this claim becomes the following corollary.

Corollary 2: Consensus is the only possible clustered
configuration if and only if

n < 2k .

IV. ROBUSTNESS OF THE EQUILIBRIA

The clustered equilibria of the dynamics described above
have interesting robustness properties regarding the addition
of new nodes or the removal of nodes. The model shows
different behavior with respect to a standard Asynchronous
Bounded Confidence (ABC) model. In this section, we
briefly introduce for comparison the ABC model; then we
provide a few simulations to motivate the following discus-
sion of the robustness properties.

A. ABC model

Given a fixed range of confidence d > 0, we introduce the
Asynchronous Bounded Confidence (ABC) update law

x+ = fABC(x, i) . (2)

where i is the agent that updates his opinion. The neigh-
borhood of i is NABC

i = {j : |xj − xi| ≤ d} and always
contains i itself. The new opinion of agent i is

x+i =
1

|NABC
i |

∑
j∈NABCi

xj ,

while the remaining agents do do not change opinion

x+j = xj for every j 6= i .

B. Simulations

We present a simulation to show the difference between
model (1) and model (2) when a few agents are added to
a consensus configuration (which is an equilibrium for both
models). We set k = 5 for model (1) and d = 0.25 for
model (2). We start with 10 agents sharing opinion 0.4;
at steps t = 2, 3, 4, 5 we add a new agent, with opinion
chosen uniformly at random in [0, 1]. We select the agent
that updates his opinion among those present at that time,
independently and uniformly at random: the same selection
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Fig. 3. The addition of four new nodes to a consensus configuration
with ten nodes. Upper plot: the trajectory of the model (1) with k = 5.
Lower plot: the trajectory of the model (2) with d = 0.25. The same initial
conditions and update order are used.

is used in both models. Figure 3 contains the plots of the
simulation. The upper plot regards the dynamics of model
(1): the four new agents converge to the consensus opinion,
which does not change; they are too few to form a new
cluster. The lower plot contains the dynamics of the model
(2): the consensus configuration is not preserved and the
agent added at step t = 3 remains isolated during the
dynamics and keeps his opinion. The other three new agents
join the original ten; this group of 13 agents converge to the
same opinion which however is different from the original
consensus value.

C. Robustness of the equilibria

We now provide a general discussion that explains the
observations from Figure 3. Let n, k with 1 ≤ k ≤ n be given
and consider a clustered equilibria x ∈ Rn of the model (1).
We first discuss the addition of a new agent with opinion
xn+1 = α to the configuration x, that becomes [x;α] ∈ Rn′

with n′ = n+1. Before the addition of the new node, clusters
have to contain at least k agents. This fact remains true after
the addition and we have that

f([x;α], i) = [x;α′]



for every i, meaning that the original (clustered) portion of
the configuration [x;α] remains unperturbed. For a generic
value of α the limit of the dynamics has the same cluster
locations of x, with one of the clusters getting a new
member. For some specific values, it may happen that the
configuration [x;α] is a non-clustered equilibrium. In any
case, none of the original agents changes opinion. Instead,
in the metric ABC model (2) with uniform visibility radius d,
either the new agent is further apart from the original agents
and nothing happens or he falls within the visibility radius
of a cluster of agents. In the latter case both the new agents
and the agents in the cluster change opinions, converging to
an intermediate value.

Assuming n sufficiently large, the removal of an agent
from a clustered equilibrium presents interesting differences
too. In the metric ABC model (2) the removal of an agent
does not trigger any dynamics in the remaining agents. In
model (1), if the agent is removed from a cluster with k+1
agents or more, nothing happens. But if the agent is removed
from a cluster with k agents, the new configuration is not
an equilibrium anymore and the remaining nodes from that
group will evolve towards some new equilibrium.

V. CONVERGENCE TO CONSENSUS

In this section we show that process (1) converges to a
consensus, provided n < 2k and the choice of the agent
that updates his opinion at time t is an i.i.d. uniform random
variable over V . We recall from Section III that the consensus
is the unique clustered equilibrium for n < 2k.

For t ≥ 0, let x(t) ∈ Rn be the sequence of opinion
vectors and I(t) ∈ V a sequence of agents. Given an initial
configuration x(0) = x0, we consider the dynamics

x(t+ 1) = f(x(t), I(t)) for every t ≥ 0 , (3)

where I(t) is the agent that updates his opinion at time t.
We introduce two functions µ,M : Rn → V that, given an

opinion vector x, return respectively the index of the smallest
and largest components, with ties sorted

µ(x) = min(argmin
i
xi) , M(x) = min(argmax

i
xi) .

The outer min sorts possible ties; note that M(x) = µ(−x).
In the following two lemmas we prove the properties of

the dynamics in which the agent with smallest opinion is the
one that updates his opinion.

Lemma 3: Given n, k with 1 ≤ k ≤ n and an initial
configuration x0 ∈ Rn consider dynamics (3) with I(t) =
µ(x(t)) and the scalar sequence y(t) := maxi∈Nµ(x(t))

xi(t).
Then:
• the set sequence Nµ(x(t)) and the scalar sequence y(t)

are constant;
• for every i ∈ Nµ(x(0)) the sequences xi(t) are non-

decreasing and satisfy xi(t) ≤ y(0);
• for every i /∈ Nµ(x(0)) the sequences xi(t) are constant.

Proof: The proof goes by induction. First, consider the
trivial case with xµ(x(t))(t) = y(t). This condition means
xi(t) = y(t) for every i ∈ Nµ(x(t)) and thus xµ(x(t))(t+1) =
xµ(x(t))(t) so everything remains unchanged.

Next, consider the case with xµ(x(t))(t) < y(t). We have

xµ(x(t))(t+ 1) =
1

k

∑
j∈Nµ(x(t))

xj(t) ∈
(
xµ(x(t))(t), y(t)

)
.

Therefore,

{i : xi(t) < y(t)} = {i : xi(t+ 1) < y(t)}

and

{i : xi(t) = y(t)} = {i : xi(t+ 1) = y(t)} .

Moreover, the cardinality of the set {i : xi(t) < y(t)}
is strictly smaller than k. This implies that Nµ(x(t+1)) =
Nµ(x(t)) and also y(t + 1) = y(t). The claims follow by
induction and by observing that only the agents i ∈ Nµ(x(0))
can update their opinions at some time t ≥ 0 and the updated
value xi(t+ 1) belongs to [xi(t), y(t)].

Lemma 4: Given n, k with 1 ≤ k ≤ n and an initial con-
figuration x0 ∈ Rn consider the dynamics (3) with I(t) =
µ(x(t)) and the scalar sequence y(t) = maxi∈Nµ(x(t))

xi(t).
Then

y(k−1)−min
i
xi(k−1) ≤

(
1− 1

k

)(
y(0)−min

i
xi(0)

)
Proof: First, compute xµ(x(t))(t+1) for a generic t ≥ 0.

We have

xµ(x(t))(t+ 1) = 1
k

∑
j∈Nµ(x(t))

xj(t)

= 1
k

∑
j∈Nµ(x(0))

xj(t)

≥ 1
k

∑
j∈Nµ(x(0))

xj(0)

thanks to Lemma 3. Then,

xµ(x(t))(t+ 1) ≥ k−1
k xµ(x(0))(0) +

1
ky(0)

= xµ(x(0))(0) +
1
k

(
y(0)− xµ(x(0))(0)

)
.

Next, consider the set

S(t) =
{
i : xi(t) < xµ(x(0))(0) +

1
k

(
y(0)− xµ(x(0))(0)

)}
,

and observe that either S(t) = ∅ or |S(t+1)| = |S(t)| − 1
because µ(x(t)) /∈ S(t + 1). Since the set S(0) contains at
most k − 1 elements, the set S(k−1) is empty. Hence,

xi(k − 1) ≥ xµ(x(0))(0) + 1
k

(
y(0)− xµ(x(0))(0)

)
for every i, a fact that implies

xµ(x(k−1))(k − 1) ≥ xµ(x(0))(0) + 1
k

(
y(0)− xµ(x(0))(0)

)
.

Using Lemma 3 we know that Nµ(x(t)) = Nµ(x(0)) for
every t ≥ 0 and that for every i therein, xi(t) ≤ y(t) = y(0).
Therefore

y(k−1)− xµ(x(k−1))(k−1) ≤ y(0)− xµ(x(0))(0)
− 1

k

(
y(0)− xµ(x(0))(0)

)
and the thesis follows because xµ(x(t)) = mini xi(t).

The following lemma follows from Lemma 3 and 4 using
the property M(x) = µ(−x).

Lemma 5: Given n, k with 1 ≤ k ≤ n and an ini-
tial configuration x0 ∈ Rn consider the dynamics (3)



with I(t) = M(x(t)) and the scalar sequence z(t) :=
mini∈NM(x(t))

xi(t). Then:
• the set sequence NM(x(t)) and the scalar sequence z(t)

are constant;
• for every i ∈ NM(x(0)) the sequences xi(t) are non-

increasing and satisfy xi(t) ≥ z(0);
• for every i /∈ NM(x(0)) the sequences xi(t) are constant.

Moreover,

max
i
x(k−1)− z(k−1) ≤

(
1− 1

k

)(
max
i
xi(0)− z(0)

)
.

The next equivalence will be crucial in the following.
Lemma 6: Given n, k with 1 ≤ k ≤ n, consider x ∈ Rn

and define the quantities

y := max
i∈Nµ(x)

xi and z := min
i∈NM(x)

xi .

Then, z ≤ y for every x ∈ Rn if and only if n < 2k.
Proof: We prove the equivalent claim that x ∈ Rn

with z > y exists if and only if n ≥ 2k. Indeed, if n ≥ 2k
consider the vector x ∈ Rn such that

x1 ≤ x2 ≤ . . . ≤ xk < xk+1 ≤ . . . ≤ xn−k+1 ≤ . . . ≤ xn

where n− k+1 > k. The set Nµ(x) contains the k smallest
elements of x so y = xk, while the set NM(x) contains the
k largest elements of x, so z = xn−k+1 > xk = y. For the
converse, assume that x with z > y exists, meaning(

maxi∈Nµ(x)
xi
)
<
(
mini∈NM(x)

xi
)
.

Both sets Nµ(x) and NM(x) contain k elements, so the sets

{j : xj ≤ maxi∈Nµ(x)
xi} and {j : xj ≥ mini∈NM(x)

xi}

contain at least k elements each. These two sets are disjoint,
thus the vector x ∈ Rn has at least n ≥ 2k components.

The next lemma describes a “shrinking sequence”.
Lemma 7: Given n, k with 1 ≤ k ≤ n and an initial

configuration x0 ∈ Rn consider the dynamics (3) with

I(t) =

{
µ(x(t)) for t ∈ {0, . . . , k − 2}
M(x(t)) for t ∈ {k − 1, . . . , 2k − 3}

If n < 2k then

max
i
xi(T )−min

i
xi(T ) ≤

(
1− 1

k

)(
max
i
xi(0)−min

i
xi(0)

)
where T = 2k−2.

Proof: For the sake of compactness, we set

α(t) := min
i
xi(t) , β(t) := max

i
xi(t) , γ :=

(
1− 1

k

)
,

introduce the two sequences

y(t) := max
i∈Nµ(x(t))

xi(t) and z(t) := min
i∈NM(x(t))

xi(t) ,

and set R = k−1. We have

β(T )− α(T ) = β(T )− z(T ) + z(T )− α(T )

≤ γ
(
β(R)−z(R)

)
+ z(R)−α(R)

using Lemma 5 with initial configuration x(R). Then

= γ
(
β(R)−y(R)

)
+ γ
(
y(R)−z(R)

)
+ z(R)−α(R)

≤ γ
(
β(R)−y(R)

)
+
(
y(R)−z(R)

)
+ z(R)−α(R)

since γ < 1 and since y(R) − z(R) ≥ 0 if n < 2k by
Lemma 6. Then

= γ
(
β(R)−y(R)

)
+ y(R)−α(R)

≤ γ
(
β(0)− y(0)

)
+ γ
(
y(0)− α(0)

)
= γ

(
β(0)− α(0)

)
using Lemma 3 and 4 with initial configuration x(0). We
have finally obtained β(T )− α(T ) ≤ γ

(
β(0)− α(0)

)
.

If n < 2k and the agent I(t) that updates his opinion
at time t is chosen independently and uniformly at random
over V , then process (3) converges almost surely to a
consensus, from any initial configuration. The almost sure
convergence is guaranteed because the finite sequence of
updates introduced in the Lemma 7 appears infinitely often
with probability one. This fact is proved in the following
theorem, which provides the desired converge result.

Theorem 8: Let n, k with 1 ≤ k ≤ n be given. Let
{I(t), t ≥ 0} be a sequence of independent and uniformly
distributed random variables over {1, . . . , n} and consider
dynamics (3). If n < 2k, then

lim
t→∞

x(t) = 1c almost surely

for any x0 ∈ Rn, with c ∈ [mini(x
0
i ),maxi(x

0
i )].

Proof: Let δ(t) = maxi xi(t)−mini xi(t) and observe
that, for any x(0) = x0 and {I(t), t ≥ 0},

δ(0) ≥ 0 and 0 ≤ δ(t+ 1) ≤ δ(t) for every t ≥ 0 ,

because the updates in the dynamics (3), based on model
(1), involve convex combinations: the element with highest
opinion cannot increase it and the element with lowest
opinion cannot decrease it. We introduce the sequence of
events {At, t ≥ 2k−3} with

At =
{
I(s)=µ(x(s)) for s ∈ {t−2k+3, . . . , t−k+1} and

I(s)=M(x(s)) for s ∈ {t−k+2, . . . , t}
}
,

i.e. the event At is the occurrence of the finite sequence in-
troduced in Lemma 7 in the time window {t−(2k−3), . . . , t}.
In the same lemma we proved that, given the occurrence of
At, we have δ(t+1) ≤ (1− 1

k ) δ(t−2k+3). Observe that

0 ≤ lim
t→∞

δ(t) ≤ lim
t→∞

(
1− 1

k

)nt
δ(0)

where nt is the number of times At occurred up to time
t. If P(At infinitely often) = 1 then nt → ∞ for t → ∞
and the rightmost limit above is zero almost surely. Hence,
limt→∞ δ(t) almost surely, which implies the convergence
to consensus. Moreover, c ∈ [mini(x

0
i ),maxi(x

0
i )] because

every update in (3) is a convex combination of a subset of
the current opinions.

It remains to prove P(At infinitely often) = 1. The events
of the sequence {At, t ≥ 2k − 3} are not independent but



the events in the subsequence {Ath , h ≥ 1} where th =
h(2k − 2)− 1 are. Each of these events has probability

P(Ath) =
(
1

n

)2k−2

,

thus
∑∞
h=1 P(Ath) = ∞. Hence, {At i.o.} ⊃ {Ath i.o.}.

From the second Borel-Cantelli lemma [18, Ch. 2, Thm 18.2]
P(At infinitely often) ≥ P(Ath infinitely often) = 1 .
The result continues to hold for dynamics where I(t) is
not uniformly distributed over {1, . . . , n}, as long as the
probability to sample each agent is constant and positive. The
proof has been based on exhibiting one suitable “shrinking
sequence”: however, it is clear that plenty of other sequences
could do the job and actually play a role in inducing
convergence of the dynamics. Therefore, the proof does not
imply any good estimate of the convergence time.

VI. CONCLUSION

In this paper we have introduced a new model of opinion
dynamics with opinion-dependent connectivity following the
k-nearest-neighbors graph. The model is motivated by the
rise of online social network services, where recommender
systems select a certain number of news items to present
to users, reducing the number of possible interactions to
those which are closer to the user’s presumed tastes. The
resulting dynamics is substantially different from comparable
models in the literature, such as bounded-confidence mod-
els. One key difference is the inherent lack of reciprocity
of the interactions, which makes all convergence analysis
challenging. Another key difference is the robustness of the
formed clusters, whose opinions are hard to sway by external
leader nodes. This feature makes control approaches based
on leadership, like [19], unsuitable to k-nearest-neighbors
dynamics.
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