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Linear wavelet estimation in regression with
additive and multiplicative noise

Christophe Chesneau, Junke Kou and Fabien Navarro

Abstract In this paper, we deal with the estimation of an unknown function from
a nonparametric regression model with both additive and multiplicative noises. The
case of the uniform multiplicative noise is considered. We develop a projection es-
timator based on wavelets for this problem. We prove that it attains a fast rate of
convergence under the mean integrated square error over Besov spaces. A practi-
cal extension to automatically select the truncation parameter of this estimator is
discussed. A numerical study illustrates the usefulness of this extension.

Key words: Nonparametric regression, Multiplicative noise, Rates of convergence,
Wavelets

1 Introduction

We consider the following unidimensional nonparametric regression model

Yi =Ui f (Xi)+Vi, i ∈ {1, . . . ,n}, (1)

where f : [0,1]→ R is an unknown regression function, X1, . . . ,Xn are n identically
distributed random variables with support on [0,1], U1, . . . ,Un are n identically dis-
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tributed random variables having the uniform distribution on a symmetric interval
around 0 and V1, . . . ,Vn are n identically distributed random variables. Moreover, it
is supposed that Xi and Ui are independent, and Ui and Vi are independent for any
i ∈ {1, . . . ,n}. Additional technical assumptions on the model will be formulated
later. We aim to estimate the unknown function r := f 2 from (X1,Y1), . . . ,(Xn,Yn);
the random vectors (U1,V1), . . . ,(Un,Vn) form the multiplicative-additive noise. The
model (1) can be viewed as a natural extension of the standard nonparametric regres-
sion model; the main novelty is the presence of a multiplicative uniform noise that
perturbed the unknown function f . Such multiplicative regression model as (1) is
very popular in various application areas, particularly in signal processing (e.g. for
Global Positioning System (GPS) signal detection in which not only additive noise
but also multiplicative noise is encountered Huang et al. (2013)), or in economet-
rics (e.g. for volatility estimation where the source of noise is multiplicative Härdle
and Tsybakov (1997), also for deterministic and stochastic frontier estimation where
the noise is multiplicative and both multiplicative and additive respectively Simar
and Wilson (2000)). On the other hand, let us mention that some connexions ex-
ist with the so called heteroscedastic nonparametric regression model. See, for in-
stance, Chichignoud (2012), Comte (2015) and Cai et al. (2008). In particular, Cai
et al. (2008) consider the estimation of r in the heteroscedastic nonparametric re-
gression model defined as (1) with X1 deterministic, V1 deterministic but unknown
(it is an unknown function of X1) and general assumptions on U1. The form of the
model is the same but the intrinsic definition is different. In this paper, we propose
to estimate r with wavelet methods. Such methods have the advantage to capture the
possible complexity of this unknown function. A natural linear wavelet estimator is
then developed. With a suitable choice of a tuning parameter inherent of this esti-
mator, we prove that it attains a fast rate of convergence under the mean integrated
square error over Besov spaces. One drawback of this estimator is that the theoret-
ical choice for the tuning parameter depends on a supposed unknown smoothness
of r. We then provide practical solution to this problem to choose the truncation
level of our linear wavelet estimator using an adapted version of the 2-Fold Cross
Validation (2FCV) method introduced by Nason Nason (1996). A numerical study
is performed to show the applicability of this extension.

The rest of this paper is organized as follows. In Section 2, we briefly present
basics on wavelets and Besov balls. Additional assumptions on the model (1), the
considered wavelet estimator and the main result are given in Section 3. Section 4
is devoted to the simulation study. The technical details for the proof of our main
result are postponed in Section 6.

2 Basics on wavelets and Besov balls

For the purpose of this paper, we use the compactly supported wavelets of the
Daubechies family. We present the essential below, all the details can be found in,
e.g., Daubechies (1992) and Mallat (2008). For any j ≥ 0, we set Λ j = {0, . . . ,2 j−
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1} and, for k ∈Λ j,

φ j,k(x) = 2 j/2
φ(2 jx− k), ψ j,k(x) = 2 j/2

ψ(2 jx− k).

Following the methodology of Cohen et al. (1993), there exists an integer τ such
that, for any integer j0 ≥ τ , the collection of functions

S = {φ j0,k, k ∈Λ j0 ; ψ j,k; j ∈ N−{0, . . . , j0−1}, k ∈Λ j}

forms an orthonormal basis of L2([0,1]). Therefore, for any integer j0 ≥ τ and h ∈
L2([0,1]), we have the following wavelet expansion:

h(x) = ∑
k∈Λ j0

α j0,kφ j0,k(x)+
∞

∑
j= j0

∑
k∈Λ j

β j,kψ j,k(x), x ∈ [0,1],

where

α j0,k =
∫ 1

0
h(x)φ j0,k(x)dx, β j,k =

∫ 1

0
h(x)ψ j,k(x)dx,

Also, let us mention that
∫ 1

0 φ j,k(x)dx = 2− j/2, which will be a crucial technical
point in the proof. Let Pj be the orthogonal projection operator from L2([0,1]) onto
the space Vj with the orthonormal basis {φ j,k(·) = 2 j/2φ(2 j ·−k),k ∈Λ j}. Then, for
any h ∈ L2([0,1]), we have

Pjh(x) = ∑
k∈Λ j

α j,kφ j,k(x), x ∈ [0,1].

Besov spaces have the feature to capture a wide variety of smoothness properties
in a function including spatially inhomogeneous behavior, see Härdle et al. (2012);
Meyer (1992); Triebel (1994) for further details. Definitions of those spaces are
given below. Suppose that φ is m regular (i.e. φ ∈Cm and |Dα φ(x)| ≤ c(1+ |x|2)−l

for each l ∈ Z, with α = 0,1, . . . ,m). Let h ∈ Lp([0,1]), p,q ∈ [1,∞] and 0 < s < m.
Then the following assertions are equivalent:

(1) h ∈ Bs
p,q([0,1]); (2)

{
2 js‖Pj+1h−Pjh‖p

}
∈ lq; (3) {2 j(s− 1

p+
1
2 )‖β j,.‖p} ∈ lq.

The Besov norm of h can be defined by

‖h‖Bs
p,q := ‖(ατ,.)‖p +‖(2 j(s− 1

p+
1
2 )‖β j,.‖p) j≥τ‖q, where ‖β j,.‖p

p = ∑
k∈Λ j

|β j,k|p.

3 Assumptions, estimators and main result

Technical assumptions on the model (1) are formulated below.

A.1 We suppose that f : [0,1]→ R is bounded from above.
A.2 We suppose that X1 ∼U ([0,1]).
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A.3 We suppose that U1 ∼U ([−θ ,θ ]) with θ > 0 a fixed real number.
A.4 We suppose that V1 has a moment of order 4.
A.5 We suppose that Xi and Vi are independent for any i ∈ {1, . . . ,n}.

Let us observe that A.2 specifies that we consider a uniform design and that A.3
specifies that the uniform multiplicative noise is considered over a symmetric inter-
val around 0. The assumption A.5 implies that Vi is not a function of Xi a fortiori.

We construct our linear wavelet estimators for r as follows:

r̂ j0,n(x) := ∑
k∈Λ j0

α̂ j0,kφ j0,k(x), x ∈ [0,1], (2)

where

α̂ j,k :=
3

θ 2

(
1
n

n

∑
i=1

Y 2
i φ j,k(Xi)−E(V 2

1 )2
− j/2

)
. (3)

The definition of α̂ j,k rests on technical consideration which will be presented later.
In spite of the simplicity of its construction, its performances strongly depend on
the choice of level j0. Further details on the linear wavelet estimator in a standard
nonparametric regression setting can be found in Härdle et al. (2012). Recent devel-
opments can be found in Chaubey et al. (2015).

The following result determines the rates of convergence attained by r̂ j0,n via the
MISE over Besov spaces.

Proposition 1. Consider the problem defined by (1) under the assumptions A.1–A.5,
let r ∈ Bs

p,q([0,1]) with p,q∈ [1,∞), s > 1/p. Then the linear wavelet estimator r̂ j0,n

with 2 j∗ ∼ n
1

2s′+1 and s′ = s− (1/p−1/2)+ satisfies

E
[∫ 1

0

(
r̂ j0,n(x)− r(x)

)2 dx
]
. n−

2s′
2s′+1 .

The level j0 as defined in Proposition 1 is chosen to minimize as possible the MISE

of r̂ j0,n over Besov spaces. The rate of convergence n−
2s′

2s′+1 is not a surprise ; it
generally corresponds to the one obtained in the standard nonparametric regression
estimation. See Härdle et al. (2012), Tsybakov (2009) and Comte (2015). The proof
of Proposition 1 is based on a suitable decomposition of the MISE and some inter-
mediary results on the probabilistic properties of the wavelet coefficient estimator
(3) (see Lemmas 1 and 2 in Section 6). The rest of this section is devoted to the
practical aspect of the estimator (2), with alternatives on the choice of the level j0.
In particular, we propose a candidate by adapting version of the 2-Fold Cross Val-
idation (2FCV) method originally developed by Nason for choosing the threshold
parameter in wavelet shrinkage Nason (1996).
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Fig. 1 (a)–(c): The three test (squared) functions to be estimated.

4 Simulation study

In order to illustrate the empirical performance of the proposed estimator, a numeri-
cal illustration was produced. In order to set in a realistic context, we proposed to use
an automatic selection method of the estimator truncation parameter (not depending
on the regularity of the function to be estimated). Simulations were performed us-
ing R and in particular the rwavelet package Navarro and Chesneau (2018), available
from https://github.com/fabnavarro/rwavelet.

The simulated data were generated according to (1), where n = 4096, Xi’s are
uniformly distributed on [0,1], Ui’s are U ([−1,1]) (so θ = 1) and Vi are N (0,σ2)
variables and independent of Xi’s with σ2 = 0.01. Daubechies’ compactly-supported
wavelet with 8 vanishing moments were used. We consider three standard test func-
tions for f , commonly used in the wavelet literature (HeaviSine, Ramp and Bumps,
see Donoho et al. (1995)). Recall that we wish to estimate r = f 2. The squared
version of those functions are plotted in Figure 1.

In the case of fixed design, the calculation of wavelet-based estimators is sim-
ple and fast, thanks to Mallat’s pyramidal algorithm (Mallat (2008)). In the case
of uniform random design, the implementation requires some changes and several
strategies have been developed in the literature (see e.g. Cai et al. (1998); Hall et al.
(1997)). For uniform design regression, Cai and Brown (1999) proposed to use and
studied an approach in which the wavelet coefficients are computed by a simple
application of Mallat’s algorithm using the ordered Yi’s as input variables. We have
followed this approach because it preserves the simplicity of calculation and the
efficiency of the equispaced algorithm. In the context of wavelet regression in ran-
dom design with heteroscedastic noise, Navarro and Saumard (2017b) and Kulik
et al. (2009) also adopted this approach. Nason adjusted the usual 2FCV method to
choose the threshold parameter in wavelet shrinkage (see Nason (1996)). His strat-
egy was used for the selection of linear wavelet estimators by Navarro and Saumard
(2017b). We have chosen to use this approach to select the truncation parameter j0
of the linear estimator r̂ j0,n. More precisely, we built a collection of linear estima-
tors r̂ j0,n, j0 = 0,1, . . . , log2(n)−1 (by successively adding whole resolution levels
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of wavelet coefficients), and select the best among this collection by minimizing
a 2FCV criterion denoted by 2FCV( j0). The resulting estimator of the truncation
level is denoted by ĵ0 and the corresponding estimator of r by r̂ ĵ0,n

(see Navarro and
Saumard (2017b,a) for more details).

For a single experiment, and for each of the three test functions, with a sam-
ple size n = 4096, we display the observations and the unknown function r in
Figure 2(a). A sample of three estimators from the collection is also shown in
the Figure 2(b). Graphs of the curves associated with the selection criterion (i.e.
2FCV( j0)) are also displayed in Figure 2(c). In order to be able to evaluate the
performance of this criterion, the Mean Square Error curves (i.e. MSE(r̂ j0,n,r) =
1
n ∑

n
i=1(r(Xi)− r̂ j0,n(Xi))

2)) are also shown (in blue). We denote by j∗0, the param-
eter selected by minimizing this quantity. It can be observed that 2FCV( j0) gives
very reliable estimate for the MSE(r̂ j0,n,r), and in turn, also a high-quality estimate
of the optimal model. Indeed, in this case, the method allows to find the oracle of
the collection (i.e. that obtained by assuming the regularity of the function to be
estimated known) for the three signals.

5 Conclusion

In this paper, we develop a simple wavelet methodology for the problem of estimat-
ing an unknown function subject to additive and multiplicative noises. Focusing on
a uniform multiplicative noise, we construct a linear wavelet estimator that attains a
fast rate of convergence. Then some extensions of the estimator are presented, with
a numerical study showing the usefulness of the method.

A possible extension of this work would be to consider a more general model
with θ unknown for instance or a more general assumption on the distribution of
the multiplicative noise. Another possible extension would be to construct another
wavelet estimation procedure involving thresholding of the wavelet coefficient es-
timators and also dependence on the observations, as in Chesneau et al. (2015) for
the additive noise only. These aspects need further investigations that we leave for a
future work.

6 Proofs

To prove Proposition 1, we use the following two lemmas.

Lemma 1. Let j ≥ τ , k ∈Λ j, α̂ j,k be (3). Then, under A.1–A.5, we have

E[α̂ j,k] = α j,k.

Proof of Lemma 1. Using the independence assumptions on the random variables,
A.1–A.5 with E[U1] = 0, observe that
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E
[
U1V1 f (X1)φ j,k(X1)

]
= E[U1]E[V1]E

[
f (X1)φ j,k(X1)

]
= 0

and

E
[
V 2

1 φ j,k(X1)
]
= E[V 2

1 ]E
[
φ j,k(X1)

]
= E[V 2

1 ]
∫ 1

0
φ j,k(x)dx = E[V 2

1 ]2
− j/2.

Therefore, using similar mathematical arguments with E
[
U2

1
]
= θ 2

3 , we have

E[α̂ j,k] =
3

θ 2E

[
1
n

n

∑
i=1

Y 2
i φ j,k(Xi)−E[V 2

1 ]2
− j/2

]

=
3

θ 2

(
E
[
Y 2

1 φ j,k(X1)
]
−E[V 2

1 ]2
− j/2

)
=

3
θ 2

(
E
[
U2

1 r(X1)φ j,k(X1)
]
+2E

[
U1V1 f (X1)φ j,k(X1)

]
+E

[
V 2

1 φ j,k(X1)
]

−E
[
V 2

1 φ j,k(X1)
])

=
3

θ 2E
[
U2

1
]
E
[
r(X1)φ j,k(X1)

]
=
∫ 1

0
r(x)φ j,k(x)dx = α j,k.

Lemma 1 is proved. �

Lemma 2. Let j ≥ τ such that 2 j ≤ n, k ∈ Λ j, α̂ j,k be (3). Then, under (A.A.1)–
(A.A.5),

E
[
(α̂ j,k−α j,k)

2]. 1
n
.

Proof of Lemma 2. Owing to Lemma 1 we have E[α̂ j,k] = α j,k. Therefore

E[(α̂ j,k−α j,k)
2] =Var

[
α̂ j,k
]
=

9
θ 4 Var

[
1
n

n

∑
i=1

Y 2
i φ j,k(Xi)−E[V 2

1 ]2
− j/2

]

=
9

θ 4 Var

[
1
n

n

∑
i=1

Y 2
i φ j,k(Xi)

]

=
9

θ 4
1
n

Var
[
Y 2

1 φ j,k(X1)
]
.

1
n

E
[
Y 4

1 φ
2
j,k(X1)

]
.

1
n

[
E
[
U4

1 f 4(X1)φ
2
j,k(X1)

]
+E

[
V 4

1 φ
2
j,k(X1)

]]
=

1
n

[
E
[
U4

1
]
E
[

f 4(X1)φ
2
j,k(X1)

]
+E

[
V 4

1 φ
2
j,k(X1)

]]
. (4)

By A.1 and E
[
φ 2

j,k(X1)
]
=
∫ 1

0 φ 2
j,k(x)dx = 1, we have E

[
f 4(X1)φ

2
j,k(X1)

]
. 1. On

the other hand, by A.4 and A.5, we have

E
[
V 4

1 φ
2
j,k(X1)

]
= E

[
V 4

1
]
E
[
φ

2
j,k(X1)

]
= E

[
V 4

1
]
. 1
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Thus all the terms in the brackets of (4) are bounded from above. This ends the proof
of Lemma 2. �

Proof of Proposition 1 from Lemmas 1 and 2. The main lines of the proof use
standard arguments (see, for instance, Härdle et al. (2012)). The key result remains
Lemma 2 above and a suitable choice for j0 which balance the biais and the rest
term of term. More precisely, by the definition of projector, we have

E
[∫ 1

0

∣∣r̂ j0,n(x)− r(x)
∣∣2dx

]
= E

[∥∥r̂ j0,n−Pj∗r
∥∥2

2

]
+
∥∥Pj∗r− r

∥∥2
2. (5)

The orthonormality of the wavelet basis gives

E
[∥∥r̂ j0,n−Pj∗r

∥∥2
2

]
= E

∥∥∥∥∥ ∑
k∈Λ j∗

(α̂ j∗,k−α j∗,k)φ j∗,k

∥∥∥∥∥
2

2

= ∑
k∈Λ j∗

E[(α̂ j∗,k−α j∗,k)
2].

According to Lemma 2, |Λ j∗ |∼ 2 j∗ and 2 j∗ ∼ n
1

2s′+1 ,

E
[∥∥r̂ j0,n−Pj∗r

∥∥2
2

]
.

2 j0

n
. n−

2s′
2s′+1 . (6)

When p≥ 2, s′ = s. By Hölder inequality and r ∈ Bs
p,q([0,1]),

‖Pj0r− r‖2
2 . ‖Pj0 r− r‖2

p . 2−2 j0s . n−
2s

2s+1 .

When 1≤ p < 2 and s > 1/p, Bs
p,q([0,1])⊆ Bs′

2,∞([0,1])

‖Pj0r− r‖2
2 .

∞

∑
j= j0

2−2 js′ . 2−2 j0s′ . n−
2s′

2s′+1 .

Therefore, in both cases,

‖Pj0r− r‖2
2 . n−

2s′
2s′+1 . (7)

By (5), (6) and (7), we obtain

E
[∫ 1

0

∣∣r̂ j0,n(x)− r(x)
∣∣2dx

]
. n−

2s′
2s′+1 .

Proposition 1 is proved. �
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