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Linear wavelet estimation in regression with
additive and multiplicative noise

Christophe Chesneau, Junke Kou and Fabien Navarro

Abstract In this paper, we deal with the estimation of an unknown function from
a nonparametric regression model with both additive and multiplicative noises. The
case of the uniform multiplicative noise is considered. We develop a projection es-
timator based on wavelets for this problem. We prove that it attains a fast rate of
convergence under the mean integrated square error over Besov spaces. A practi-
cal extension to automatically select the truncation parameter of this estimator is
discussed. A numerical study illustrates the usefulness of this extension.

Key words: Nonparametric regression, Multiplicative noise, Rates of convergence,
Wavelets

1 Introduction

We consider the following unidimensional nonparametric regression model

Yi =Ui f (Xi)+Vi, i ∈ {1, . . . ,n}, (1)

where f : [0,1]→ R is an unknown regression function, X1, . . . ,Xn are n identically
distributed random variables with support on [0,1], U1, . . . ,Un are n identically dis-
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tributed random variables having the uniform distribution on a symmetric interval
around 0 and V1, . . . ,Vn are n identically distributed random variables. Moreover, it
is supposed that Xi and Ui are independent, and Ui and Vi are independent for any
i ∈ {1, . . . ,n}. Additional technical assumptions on the model will be formulated
later. We aim to estimate the unknown function r := f 2 from (X1,Y1), . . . ,(Xn,Yn);
the random vectors (U1,V1), . . . ,(Un,Vn) form the multiplicative-additive noise. The
model (1) can be viewed as a natural extension of the standard nonparametric re-
gression model; the main novelty is the presence of a multiplicative uniform noise
that perturbed the unknown function f . Such multiplicative regression model as (1)
is very popular in various application areas, particularly in signal processing (e.g.
for Global Positioning System (GPS) signal detection in which not only additive
noise but also multiplicative noise is encountered [14]), or in econometrics (e.g. for
volatility estimation where the source of noise is multiplicative [13], also for de-
terministic and stochastic frontier estimation where the noise is multiplicative and
both multiplicative and additive respectively [22]). On the other hand, let us men-
tion that some connexions exist with the so called heteroscedastic nonparametric
regression model. See, for instance, [6], [8] and [3]. In particular, [3] consider the
estimation of r in the heteroscedastic nonparametric regression model defined as
(1) with X1 deterministic, V1 deterministic but unknown (it is an unknown function
of X1) and general assumptions on U1. The form of the model is the same but the
intrinsic definition is different. In this paper, we propose to estimate r with wavelet
methods. Such methods have the advantage to capture the possible complexity of
this unknown function. A natural linear wavelet estimator is then developed. With
a suitable choice of a tuning parameter inherent of this estimator, we prove that it
attains a fast rate of convergence under the mean integrated square error over Besov
spaces. One drawback of this estimator is that the theoretical choice for the tuning
parameter depends on a supposed unknown smoothness of r. We then provide prac-
tical solution to this problem to choose the truncation level of our linear wavelet
estimator using an adapted version of the 2-Fold Cross Validation (2FCV) method
introduced by Nason [18]. A numerical study is performed to show the applicability
of this extension.

The rest of this paper is organized as follows. In Section 2, we briefly present
basics on wavelets and Besov balls. Additional assumptions on the model (1), the
considered wavelet estimator and the main result are given in Section 3. Section 4
is devoted to the simulation study. The technical details for the proof of our main
result are postponed in Section 6.

2 Basics on wavelets and Besov balls

For the purpose of this paper, we use the compactly supported wavelets of the
Daubechies family. We present the essential below, all the details can be found in,
e.g., [9] and [16]. For any j ≥ 0, we set Λ j = {0, . . . ,2 j−1} and, for k ∈Λ j,
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φ j,k(x) = 2 j/2
φ(2 jx− k), ψ j,k(x) = 2 j/2

ψ(2 jx− k).

Following the methodology of [7], there exists an integer τ such that, for any integer
j0 ≥ τ , the collection of functions

S = {φ j0,k, k ∈Λ j0 ; ψ j,k; j ∈ N−{0, . . . , j0−1}, k ∈Λ j}

forms an orthonormal basis of L2([0,1]). Therefore, for any integer j0 ≥ τ and h ∈
L2([0,1]), we have the following wavelet expansion:

h(x) = ∑
k∈Λ j0

α j0,kφ j0,k(x)+
∞

∑
j= j0

∑
k∈Λ j

β j,kψ j,k(x), x ∈ [0,1],

where

α j0,k =
∫ 1

0
h(x)φ j0,k(x)dx, β j,k =

∫ 1

0
h(x)ψ j,k(x)dx,

Also, let us mention that
∫ 1

0 φ j,k(x)dx = 2− j/2, which will be a crucial technical
point in the proof. Let Pj be the orthogonal projection operator from L2([0,1]) onto
the space Vj with the orthonormal basis {φ j,k(·) = 2 j/2φ(2 j ·−k),k ∈Λ j}. Then, for
any h ∈ L2([0,1]), we have

Pjh(x) = ∑
k∈Λ j

α j,kφ j,k(x), x ∈ [0,1].

Besov spaces have the feature to capture a wide variety of smoothness proper-
ties in a function including spatially inhomogeneous behavior, see [12, 17, 23] for
further details. Definitions of those spaces are given below. Suppose that φ is m reg-
ular (i.e. φ ∈Cm and |Dα φ(x)| ≤ c(1+ |x|2)−l for each l ∈ Z, with α = 0,1, . . . ,m).
Let h ∈ Lp([0,1]), p,q ∈ [1,∞] and 0 < s < m. Then the following assertions are
equivalent:

(1) h ∈ Bs
p,q([0,1]); (2)

{
2 js‖Pj+1h−Pjh‖p

}
∈ lq; (3) {2 j(s− 1

p+
1
2 )‖β j,.‖p} ∈ lq.

The Besov norm of h can be defined by

‖h‖Bs
p,q := ‖(ατ,.)‖p +‖(2 j(s− 1

p+
1
2 )‖β j,.‖p) j≥τ‖q, where ‖β j,.‖p

p = ∑
k∈Λ j

|β j,k|p.

3 Assumptions, estimators and main result

Technical assumptions on the model (1) are formulated below.

A.1 We suppose that f : [0,1]→ R is bounded from above.
A.2 We suppose that X1 ∼U ([0,1]).
A.3 We suppose that U1 ∼U ([−θ ,θ ]) with θ > 0 a fixed real number.
A.4 We suppose that V1 has a moment of order 4.
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A.5 We suppose that Xi and Vi are independent for any i ∈ {1, . . . ,n}.

Let us observe that A.2 specifies that we consider a uniform design and that A.3
specifies that the uniform multiplicative noise is considered over a symmetric inter-
val around 0. The assumption A.5 implies that Vi is not a function of Xi a fortiori.

We construct our linear wavelet estimators for r as follows:

r̂ j0,n(x) := ∑
k∈Λ j0

α̂ j0,kφ j0,k(x), x ∈ [0,1], (2)

where

α̂ j,k :=
3

θ 2

(
1
n

n

∑
i=1

Y 2
i φ j,k(Xi)−E(V 2

1 )2
− j/2

)
. (3)

The definition of α̂ j,k rests on technical consideration which will be presented later.
In spite of the simplicity of its construction, its performances strongly depend on
the choice of level j0. Further details on the linear wavelet estimator in a standard
nonparametric regression setting can be found in [12]. Recent developments can be
found in [4].

The following result determines the rates of convergence attained by r̂ j0,n via the
MISE over Besov spaces.

Proposition 1. Consider the problem defined by (1) under the assumptions A.1–A.5,
let r ∈ Bs

p,q([0,1]) with p,q∈ [1,∞), s > 1/p. Then the linear wavelet estimator r̂ j0,n

with 2 j∗ ∼ n
1

2s′+1 and s′ = s− (1/p−1/2)+ satisfies

E
[∫ 1

0

(
r̂ j0,n(x)− r(x)

)2 dx
]
. n−

2s′
2s′+1 .

The level j0 as defined in Proposition 1 is chosen to minimize as possible the MISE

of r̂ j0,n over Besov spaces. The rate of convergence n−
2s′

2s′+1 is not a surprise ; it
generally corresponds to the one obtained in the standard nonparametric regression
estimation. See [12], [24] and [8]. The proof of Proposition 1 is based on a suit-
able decomposition of the MISE and some intermediary results on the probabilistic
properties of the wavelet coefficient estimator (3) (see Lemmas 1 and 2 in Sec-
tion 6). The rest of this section is devoted to the practical aspect of the estimator
(2), with alternatives on the choice of the level j0. In particular, we propose a candi-
date by adapting version of the 2-Fold Cross Validation (2FCV) method originally
developed by Nason for choosing the threshold parameter in wavelet shrinkage [18].

4 Simulation study

In order to illustrate the empirical performance of the proposed estimator, a nu-
merical illustration was produced. In order to set in a realistic context, we pro-
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Fig. 1 (a)–(c): The three test (squared) functions to be estimated.

posed to use an automatic selection method of the estimator truncation parame-
ter (not depending on the regularity of the function to be estimated). Simulations
were performed using R and in particular the rwavelet package [21], available from
https://github.com/fabnavarro/rwavelet.

The simulated data were generated according to (1), where n = 4096, Xi’s are
uniformly distributed on [0,1], Ui’s are U ([−1,1]) (so θ = 1) and Vi are N (0,σ2)
variables and independent of Xi’s with σ2 = 0.01. Daubechies’ compactly-supported
wavelet with 8 vanishing moments were used. We consider three standard test func-
tions for f , commonly used in the wavelet literature (HeaviSine, Ramp and Bumps,
see [10]). Recall that we wish to estimate r = f 2. The squared version of those
functions are plotted in Figure 1.

In the case of fixed design, the calculation of wavelet-based estimators is sim-
ple and fast, thanks to Mallat’s pyramidal algorithm ([16]). In the case of uniform
random design, the implementation requires some changes and several strategies
have been developed in the literature (see e.g. [1, 11]). For uniform design regres-
sion, [2] proposed to use and studied an approach in which the wavelet coefficients
are computed by a simple application of Mallat’s algorithm using the ordered Yi’s
as input variables. We have followed this approach because it preserves the sim-
plicity of calculation and the efficiency of the equispaced algorithm. In the context
of wavelet regression in random design with heteroscedastic noise, [20] and [15]
also adopted this approach. Nason adjusted the usual 2FCV method to choose the
threshold parameter in wavelet shrinkage (see [18]). His strategy was used for the
selection of linear wavelet estimators by [20]. We have chosen to use this approach
to select the truncation parameter j0 of the linear estimator r̂ j0,n. More precisely,
we built a collection of linear estimators r̂ j0,n, j0 = 0,1, . . . , log2(n)−1 (by succes-
sively adding whole resolution levels of wavelet coefficients), and select the best
among this collection by minimizing a 2FCV criterion denoted by 2FCV( j0). The
resulting estimator of the truncation level is denoted by ĵ0 and the corresponding
estimator of r by r̂ ĵ0,n

(see [20, 19] for more details).
For a single experiment, and for each of the three test functions, with a sam-

ple size n = 4096, we display the observations and the unknown function r in
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Fig. 2 (a): Noisy observations (X ,Y 2). (b): Sample of the model collection. (c): Graph of the MSE
(blue) against j0 and (re-scaled) 2FCV criterion. (d): Typical estimations from one simulation with
n = 4096. Blue lines indicate the true functions, red lines correspond to the estimators r̂ ĵ0,n

.
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Figure 2(a). A sample of three estimators from the collection is also shown in
the Figure 2(b). Graphs of the curves associated with the selection criterion (i.e.
2FCV( j0)) are also displayed in Figure 2(c). In order to be able to evaluate the
performance of this criterion, the Mean Square Error curves (i.e. MSE(r̂ j0,n,r) =
1
n ∑

n
i=1(r(Xi)− r̂ j0,n(Xi))

2)) are also shown (in blue). We denote by j∗0, the param-
eter selected by minimizing this quantity. It can be observed that 2FCV( j0) gives
very reliable estimate for the MSE(r̂ j0,n,r), and in turn, also a high-quality estimate
of the optimal model. Indeed, in this case, the method allows to find the oracle of
the collection (i.e. that obtained by assuming the regularity of the function to be
estimated known) for HeaviSine and Bumps and a model of lower complexity for
Ramp (i.e. ĵ0 = 4 and j∗0 = 5).

5 Conclusion

In this paper, we develop a simple wavelet methodology for the problem of estimat-
ing an unknown function subject to additive and multiplicative noises. Focusing on
a uniform multiplicative noise, we construct a linear wavelet estimator that attains a
fast rate of convergence. Then some extensions of the estimator are presented, with
a numerical study showing the usefulness of the method.

A possible extension of this work would be to consider a more general model
with θ unknown for instance or a more general assumption on the distribution of
the multiplicative noise. Another possible extension would be to construct another
wavelet estimation procedure involving thresholding of the wavelet coefficient es-
timators and also dependence on the observations, as in [5] for the additive noise
only. These aspects need further investigations that we leave for a future work.

6 Proofs

To prove Proposition 1, we use the following two lemmas.

Lemma 1. Let j ≥ τ , k ∈Λ j, α̂ j,k be (3). Then, under A.1–A.5, we have

E[α̂ j,k] = α j,k.

Proof of Lemma 1. Using the independence assumptions on the random variables,
A.1–A.5 with E[U1] = 0, observe that

E
[
U1V1 f (X1)φ j,k(X1)

]
= E[U1]E[V1]E

[
f (X1)φ j,k(X1)

]
= 0

and

E
[
V 2

1 φ j,k(X1)
]
= E[V 2

1 ]E
[
φ j,k(X1)

]
= E[V 2

1 ]
∫ 1

0
φ j,k(x)dx = E[V 2

1 ]2
− j/2.
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Therefore, using similar mathematical arguments with E
[
U2

1
]
= θ 2

3 , we have

E[α̂ j,k] =
3

θ 2E

[
1
n

n

∑
i=1

Y 2
i φ j,k(Xi)−E[V 2

1 ]2
− j/2

]

=
3

θ 2

(
E
[
Y 2

1 φ j,k(X1)
]
−E[V 2

1 ]2
− j/2

)
=

3
θ 2

(
E
[
U2

1 r(X1)φ j,k(X1)
]
+2E

[
U1V1 f (X1)φ j,k(X1)

]
+E

[
V 2

1 φ j,k(X1)
]

−E
[
V 2

1 φ j,k(X1)
])

=
3

θ 2E
[
U2

1
]
E
[
r(X1)φ j,k(X1)

]
=
∫ 1

0
r(x)φ j,k(x)dx = α j,k.

Lemma 1 is proved. �

Lemma 2. Let j ≥ τ such that 2 j ≤ n, k ∈ Λ j, α̂ j,k be (3). Then, under (A.A.1)–
(A.A.5),

E
[
(α̂ j,k−α j,k)

2]. 1
n
.

Proof of Lemma 2. Owing to Lemma 1 we have E[α̂ j,k] = α j,k. Therefore

E[(α̂ j,k−α j,k)
2] =Var

[
α̂ j,k
]
=

9
θ 4 Var

[
1
n

n

∑
i=1

Y 2
i φ j,k(Xi)−E[V 2

1 ]2
− j/2

]

=
9

θ 4 Var

[
1
n

n

∑
i=1

Y 2
i φ j,k(Xi)

]

=
9

θ 4
1
n

Var
[
Y 2

1 φ j,k(X1)
]
.

1
n

E
[
Y 4

1 φ
2
j,k(X1)

]
.

1
n

[
E
[
U4

1 f 4(X1)φ
2
j,k(X1)

]
+E

[
V 4

1 φ
2
j,k(X1)

]]
=

1
n

[
E
[
U4

1
]
E
[

f 4(X1)φ
2
j,k(X1)

]
+E

[
V 4

1 φ
2
j,k(X1)

]]
. (4)

By A.1 and E
[
φ 2

j,k(X1)
]
=
∫ 1

0 φ 2
j,k(x)dx = 1, we have E

[
f 4(X1)φ

2
j,k(X1)

]
. 1. On

the other hand, by A.4 and A.5, we have

E
[
V 4

1 φ
2
j,k(X1)

]
= E

[
V 4

1
]
E
[
φ

2
j,k(X1)

]
= E

[
V 4

1
]
. 1

Thus all the terms in the brackets of (4) are bounded from above. This ends the proof
of Lemma 2. �

Proof of Proposition 1 from Lemmas 1 and 2. The main lines of the proof use
standard arguments (see, for instance, [12]). The key result remains Lemma 2 above
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and a suitable choice for j0 which balance the biais and the rest term of term. More
precisely, by the definition of projector, we have

E
[∫ 1

0

∣∣r̂ j0,n(x)− r(x)
∣∣2dx

]
= E

[∥∥r̂ j0,n−Pj∗r
∥∥2

2

]
+
∥∥Pj∗r− r

∥∥2
2. (5)

The orthonormality of the wavelet basis gives

E
[∥∥r̂ j0,n−Pj∗r

∥∥2
2

]
= E

∥∥∥∥∥ ∑
k∈Λ j∗

(α̂ j∗,k−α j∗,k)φ j∗,k

∥∥∥∥∥
2

2

= ∑
k∈Λ j∗

E[(α̂ j∗,k−α j∗,k)
2].

According to Lemma 2, |Λ j∗ |∼ 2 j∗ and 2 j∗ ∼ n
1

2s′+1 ,

E
[∥∥r̂ j0,n−Pj∗r

∥∥2
2

]
.

2 j0

n
. n−

2s′
2s′+1 . (6)

When p≥ 2, s′ = s. By Hölder inequality and r ∈ Bs
p,q([0,1]),

‖Pj0r− r‖2
2 . ‖Pj0 r− r‖2

p . 2−2 j0s . n−
2s

2s+1 .

When 1≤ p < 2 and s > 1/p, Bs
p,q([0,1])⊆ Bs′

2,∞([0,1])

‖Pj0r− r‖2
2 .

∞

∑
j= j0

2−2 js′ . 2−2 j0s′ . n−
2s′

2s′+1 .

Therefore, in both cases,

‖Pj0r− r‖2
2 . n−

2s′
2s′+1 . (7)

By (5), (6) and (7), we obtain

E
[∫ 1

0

∣∣r̂ j0,n(x)− r(x)
∣∣2dx

]
. n−

2s′
2s′+1 .

Proposition 1 is proved. �
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