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 It is proposed a very simple device for controlling the gravitational mass of a metallic lamina, and the gravity 
acceleration above it. These effects are obtained when a specific extra-low frequency current passes through a 
specially designed metallic lamina.  
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1. Introduction 
            In a previous paper [1] we shown that 
there is a correlation between the gravitational 
mass, , and the rest inertial mass , which 
is given by 
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where  is the variation in the particle’s kinetic 
momentum;  is the electromagnetic energy 
absorbed or emitted by the particle;  is the 
index of refraction of the particle; W  is the 
density of energy on the particle ;

pΔ
U

rn

( )kgJ / ρ  is 
the matter density ( )3mkg  and c  is the speed 
of light.  
          The instantaneous values of the density of 
electromagnetic energy in an electromagnetic 
field can be deduced from Maxwell’s equations 
and has the following expression  

( )22
2
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2
1 HEW με +=

where tEE m ωsin= and tHH ωsin=  are the 
instantaneous values of the electric field and the 
magnetic field respectively. 
       It is known that HB μ= , rkBE ω=  [2] and 
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where    is     the    real part of the propagation 

vector 
rk
k
r

 (also called phase constant); 

ir ikkkk +==
r

 ; ε , μ and σ,    are the 

electromagnetic characteristics of the medium in 
which  the  incident  (or emitted)  radiation  is  
 

 
 

propagating ( 0εεε r= ; ; mF /10854.8 12
0

−×=ε

0μμμ r=  where ). From Eq. 

(3), we see that the index of refraction  

m/H7
0 104 −×= πμ

vcnr =   
is given by 
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 Equation (3) shows that vr =κω . Thus, 
vkBE r == ω , i.e.,  

HvvBE μ==  
Then, Eq. (2) can be rewritten as follows 
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For ωεσ >> , Eq. (3) gives 
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Substitution of Eq. (6) into Eq. (5) gives 
( ) ( )72 2EW ωσ=

Substitution of Eq. (7) into Eq. (1), yields 
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          Note that if tEE m ωsin= .Then, the 

average value for 2E  is equal to 2
2

1
mE  because 



 2
E  varies sinusoidaly ( is the maximum value 

for
mE

E ). On the other hand, we have 2mrms EE = . 

Consequently, we can change 4E  by , and 
the Eq. (8) can be rewritten as follows 

4
rmsE
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The Ohm's vectorial Law tells us 
that rmsrms Ej σ=  . Thus, we can write Eq. (9) in 
the following form: 

( )10110032.7121 032

4
27

i
rmsr

g m
f

j
m

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−×+−= −

σρ
μ

where 2jjrms =  [3].     Since      
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By substitution of Eq. (12) into Eq.(10), we get 
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          Also, it was shown in the above mentioned 
paper [1] that, if the weight of a particle in a side 
of a lamina is  ( ggmP g

rr
=

r
 perpendicular to the 

lamina) then the weight of the same particle, in 
the other side of the lamina is   gmP g

rr
χ=′ , 

where l
i

l
g mm 0=χ  (  and   are 

respectively, the gravitational mass and the rest 
inertial mass of the lamina). Only when

l
gm l

im 0

1=χ , is 
that the weight is equal in both sides of the 
lamina. Thus, the lamina can control the gravity 
acceleration above it, and in this way, it can work 
as a Gravity Controller Device.  
          Since the gravitational mass of a body 
above the lamina is , then we can 

conclude that 
0ig mm =

( )gmP i χ0=′ . Therefore, this 
means that the gravity acceleration above the 
lamina is gg χ=′ .              
          Here, we describe a very simple device, 
which works as the mentioned lamina.  This 
device is easy to build, and can be used in order 
to test the correlation between gravitational mass 
and inertial mass previously mentioned (Eq. (1)), 

and also the modification of the gravity 
acceleration above the lamina ( )gχ .  
 
2. The Device 
          Consider the device shown in Fig.1 (a). It 
is basically a thin Aluminum strip attached to an 
electrical insulating plate.  This strip has been 
designed over an Aluminum lamina, in order to 
an electrical current ( )fjrms ;  to pass through it, 
producing the decreasing of its gravitational 
mass (stripgm ) , according to Eq. (10). The 
Aluminum of this strip has the following 
characteristics:            99.9% Aluminum; 1=rμ ;  
ρ = 2700 kg/m-3;σ = 3.5x107S/m. The Aluminum 
strip has the following dimensions; Length, 
L=3528 mm; Width: l = 5mm; Thickness: Δx 
=3μm. The Resistance of the Aluminum strip 
is: ( ) Ω=Δ== 7.6xlLSLR σσ  and the maximum 
current density, according to Eq. (12), is: 

 ( ) ( ) 226
maxmax /5.3/105.3

2
mmAmALVj rms =×==

σ ; 

the maximum current is ( ) ( ) ASji rmsrms 05.0maxmax ==  
*; the Maximum Dissipated Power  is: 

. ( ) wattsRiP rms 017.02
maxmax ==

          By substuting the values of rμ , σ , ρ  and 
L into Eq. (13), we obtain. 
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Consequently, the gravity acceleration above the 
Aluminum strip is given by 
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         The calculated results starting from 
Eqs.(14) and (15)  for Hzf μ5= ; Hzf μ10= ; 

Hzf μ15= , in the voltage range  VV 5.01.0 −  
are plotted in Table 1. 
          Figure 1(b) shows an experimental set up 
in order to control the decreasing of the 
Gravitational Mass of the Aluminum strip. 
Figure 1(c) shows an experimental set up in order 
to control the decreasing of the gravity 
acceleration above the Aluminum strip.  
                                           
* The maximum out put current of the HP 3325 Function 
Generator (option 002 High Voltage out put) is 
0.08App.(0.056Arms).  Voltage range 4.0mV to 40.0Vpp; sine 
1 Hzμ  to 20MHz.   
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    (a) Device to produce the decreasing in the Gravitational Mass of the Aluminum strip.  

    (b) Experimental set up, using the device shown in (a), in order to control the decreasing of the Gravitational Mass  
           of the Aluminum strip.  

 
    (c) Experimental set up, using the device shown in (a), in order to control the decreasing of the Local Gravity ( g )  
           above the Aluminum strip (Gravity Controller Device). 
          Fig. 1 – Experimental set ups for controlling the Gravitational Mass of the Aluminum strip,  
                       and the Gravity acceleration above it. 
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0.1 0.1428 0.1352 0.9473 9.2930 
0.2 0.1428 0.0395 02769 2.6771 
0.3 0.1428 -0.2304 -1.6139 -15.8323 
0.4 0.1428 -0.6651 -4.6577 -45.6922 
0.5 0.1428 -1.2454 -8.7217 -85.5598 

 
  
 

    

0.1 0.1428 0.1418 0.9933 9.7442 
0.2 0.1428 0.1279 0.8959 8.7887 
0.3 0.1428 0.0794 0.5178 5.0796 
0.4 0.1428 -0.0415 -0.2909 -2.8537 
0.5 0.1428 -0.2209 -1.5469 -15.1750 

 
  
 

    

0.1 0.1428 0.1425 0.9980 9.7903 
0.2 0.1428 0.1383 0.9686 9.5019 
0.3 0.1428 0.1207 0.8458 8.2972 
0.4 0.1428 0.0779 0.5456 5.3523 
0.5 0.1428 0.0014 0.0098 0.0961 

Tab. 1 – Calculated results for the Gravitational Mass of the Aluminum strip ( )stripgm , and for the   
              Gravity acceleration above the Aluminum strip ( )gχ . 

f = 5 μHz 

( )stripim 0  
(gr) 

V 
(volts) 

( )stripgm
(gr) 

χ gχ  
(m/s2) 

f = 10 μHz 

( )stripim 0  
(gr) 

V 
(volts) 

( )stripgm
(gr) 

χ gχ  
(m/s2) 

f = 15 μHz 

( )stripim 0  
(gr) 

V 
(volts) 

( )stripgm
(gr) 

χ gχ  
(m/s2) 

g =9.81 m/s2

g =9.81 m/s2

g =9.81 m/s2
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mLmkgmS

f
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          Next, we will show that by reducing the 
thickness of the Aluminum strip to nm3 † it is 
possible to design a similar device for working 
with frequency up to mHzf 2= . In this case the 
period T  of the wave is  ‡min3.8500 ≅= sT  .   
          Let us then consider an Aluminum strip 
with  thickness,  width and  
length as shown in Fig.2.  If  the maximum 
applied voltage is  then, 
according to Eq. (13), we have 

nm3 mm5 mm528,3

voltsV 2.22max =

( )

( )

( )

( )161106.1121

110758.1121
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For mHzf 2= , Eq. (16) gives 
 

( )

( )
( )1746.0

0

−==
stripi

stripg

m
m

χ

 
          Through the Aluminum strip, the 
maximum intensity of the electrical current is 
given by 
 

( )

( )( ) ( )([ )
mA

mS

SLVSji

3.3

105103528.32.22/105.3 397

maxmaxmax

=

=×××= ]
===

−−

σ

 
The electrical resistance of the Aluminum strip is   
    
                                           
† Ultra Thin Aluminum Nanofoils (foils with 
nanometers thicknesses) are manufactured, for 
example by American Elements - The Advanced 
Materials Manufacturer (See the available nanofoils at: 
https://www.americanelements.com/ultra-thin-
aluminum-nanofoil-7429-90-5).  
‡ In the case of the first device the frequency it were 

Hzf μ10=  and the period .   hourssT 77.27105 ≅=

( )( )( )[ ] Ω=
×××

=

==

−− 6720
105103105.3

528.3
397

S
LRstrip σ

 
Therefore, the maximum dissipated power by the 
strip has now the following value 
 

mWiRP stripstrip 2.732
max

max ==
  
Note that this power is almost the double of the 
power in the first device (37.7mW). 
          Let us now verify if the area of the surface 
of the Aluminum strip (area of the surface of 
thermal transfer ; 5mm x 3,528mm) is sufficient 
to transfer to the surrounding air all the heat 
produced by the strip (in order to avoid the fusion 
of the strip).  
          The coefficient of heat transfer, , can be 
expressed by the following equation [

h
4, 5,6] 

( ) ( )18
TA

tQh
nΔ
ΔΔ

=

where tQ ΔΔ  (in W) is the dissipated power ; 
 (in mnA 2) is the necessary area of the surface of 

thermal transfer and  the difference of 
temperature between the area of the solid surface 
and the surrounding fluid (K).  

TΔ

          When the surrounding fluid is the air , the 
heat transfer coefficient, , varies from 10  up to h

KmW °.100 2  [7]. Assuming KmWh °= .10 2 , 

and KT °=Δ 1 , then for , Eq. 
(18) gives 

mWPstrip 2.73max =

( ) ( )191032.7 23 m
Th

tQAn
−×=

Δ
Δ Δ

=

Since the area of the surface of the Aluminum 
strip is 
  

nstrip AmmmmmA >>×=×= − 23106.17528,35
 
Then, we can conclude that the area of the 
Aluminum strip is sufficient to transfer to the 
surrounding air all the heat produced by it. The 
same is valid in the case of the first device, where 
the dissipated power by the Aluminum strip is 
even smaller than in the second device.  
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Fig. 2 –  Device using Aluminum strip with  3nm thickness. 
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1. Introduction

            In a previous paper [1] we shown that there is a correlation between the gravitational mass,
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where
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 is the variation in the particle’s kinetic momentum; 
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          The instantaneous values of the density of electromagnetic energy in an electromagnetic field can be deduced from Maxwell’s equations and has the following expression 




[image: image12.wmf](


)


2


2


2


1


2


2


1


H


E


W


m


e


+


=


where 

[image: image13.wmf]t


E


E


m


w


sin


=


and 

[image: image14.wmf]t


H


H


w


sin


=


 are the instantaneous values of the electric field and the magnetic field respectively.


       It is known that
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where  
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  is     the    real part of the propagation vector 
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 Equation (3) shows that 
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 Then, Eq. (2) can be rewritten as follows
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Substitution of Eq. (6) into Eq. (5) gives
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Substitution of Eq. (7) into Eq. (1), yields 
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          Note that if 
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The Ohm's vectorial Law tells us that
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 . Thus, we can write Eq. (9) in the following form:
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Then, we can write that
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By substitution of Eq. (12) into Eq.(10), we get
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          Also, it was shown in the above mentioned paper [1] that, if the weight of a particle in a side of a lamina is 
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  are respectively, the gravitational mass and the rest inertial mass of the lamina). Only when
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, is that the weight is equal in both sides of the lamina. Thus, the lamina can control the gravity acceleration above it, and in this way, it can work as a Gravity Controller Device. 


          Since the gravitational mass of a body above the lamina is 
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. Therefore, this means that the gravity acceleration above the lamina is
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          Here, we describe a very simple device, which works as the mentioned lamina.  This device is easy to build, and can be used in order to test the correlation between gravitational mass and inertial mass previously mentioned (Eq. (1)), and also the modification of the gravity acceleration above the lamina
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2. The Device


          Consider the device shown in Fig.1 (a). It is basically a thin Aluminum strip attached to an electrical insulating plate.  This strip has been designed over an Aluminum lamina, in order to an electrical current
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 to pass through it, producing the decreasing of its gravitational mass
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, according to Eq. (10). The Aluminum of this strip has the following characteristics:            99.9% Aluminum; 
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( = 2700 kg/m-3;( = 3.5x107S/m. The Aluminum strip has the following dimensions; Length, L=3528 mm; Width: l = 5mm; Thickness: (x =3(m. The Resistance of the Aluminum strip is:
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 and the maximum current density, according to Eq. (12), is:
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; the maximum current is
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; the Maximum Dissipated Power  is: 
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          By substuting the values of
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into Eq. (13), we obtain.
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Consequently, the gravity acceleration above the Aluminum strip is given by
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         The calculated results starting from Eqs.(14) and (15)  for 
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, in the voltage range  
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 are plotted in Table 1.

          Figure 1(b) shows an experimental set up in order to control the decreasing of the Gravitational Mass of the Aluminum strip. Figure 1(c) shows an experimental set up in order to control the decreasing of the gravity acceleration above the Aluminum strip. 
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     (a) Device to produce the decreasing in the Gravitational Mass of the Aluminum strip.  


 


 


 


 


 


 


 


 


 


 


     (b) Experimental set up, using the device shown in (a), in order to control the decreasing of the Gravitational Mass   


            of the Aluminum strip.  


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


     (c) Experimental set up, using the device shown in (a) , in order to control the decreasing of the Local Gravity ( g )  


            above the Aluminum strip (Gravity Controller Device). 


           Fig. 1 – Experimental set ups for controlling the Gravitational Mass of the Aluminum strip,  


                        and the Gravity acceleration above it. 
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Tab. 1 – Calculated results for the Gravitational Mass of the Aluminum strip
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          Next, we will show that by reducing the thickness of the Aluminum strip to 
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          Let us then consider an Aluminum strip with 
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For 
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          Through the Aluminum strip, the maximum intensity of the electrical current is given by
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The electrical resistance of the Aluminum strip is  



[image: image93.wmf](


)


(


)


(


)


[


]


W


=


´


´


´


=


=


=


-


-


6720


10


5


10


3


10


5


.


3


528


.


3


3


9


7


S


L


R


strip


s




Therefore, the maximum dissipated power by the strip has now the following value
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Note that this power is almost the double of the power in the first device (37.7mW).

          Let us now verify if the area of the surface of the Aluminum strip (area of the surface of thermal transfer ; 5mm x 3,528mm) is sufficient to transfer to the surrounding air all the heat produced by the strip (in order to avoid the fusion of the strip). 

          The coefficient of heat transfer,
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, can be expressed by the following equation [4, 5,6]
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          When the surrounding fluid is the air , the heat transfer coefficient,
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Since the area of the surface of the Aluminum strip is
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Then, we can conclude that the area of the Aluminum strip is sufficient to transfer to the surrounding air all the heat produced by it. The same is valid in the case of the first device, where the dissipated power by the Aluminum strip is even smaller than in the second device. 



[image: image108.emf] 


 


 


   


 


 


 


 


 


 


 


 


                                    


                                                                                      


 


 


 


 


 


 


 


 


 


            


 


 


 


Fig. 2 –  Device using Aluminum strip with  3 nm thickness. 
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� The maximum out put current of the HP 3325 Function Generator (option 002 High Voltage out put) is 0.08App.(0.056Arms).  Voltage range 4.0mV to 40.0Vpp; sine 1� EMBED Equation.3  ��� to 20MHz.  


� Ultra Thin Aluminum Nanofoils (foils with nanometers thicknesses) are manufactured, for example by American Elements - The Advanced Materials Manufacturer (See the available nanofoils at: https://www.americanelements.com/ultra-thin-aluminum-nanofoil-7429-90-5). 


� In the case of the first device the frequency it were � EMBED Equation.3  ��� and the period � EMBED Equation.3  ���.  
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Fig. 2 –  Device using Aluminum strip with  3nm thickness.
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Tab. 1 – Calculated results for the Gravitational Mass of the Aluminum strip
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     (a) Device to produce the decreasing in the Gravitational Mass of the Aluminum strip. 





























     (b) Experimental set up, using the device shown in (a), in order to control the decreasing of the Gravitational Mass  



            of the Aluminum strip. 






































     (c) Experimental set up, using the device shown in (a), in order to control the decreasing of the Local Gravity ( g ) 


            above the Aluminum strip (Gravity Controller Device).


           Fig. 1 – Experimental set ups for controlling the Gravitational Mass of the Aluminum strip, 


                        and the Gravity acceleration above it.
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