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It is proposed a very simple device for controlling the gravitational mass of a metallic lamina, and the gravity
acceleration above it. These effects are obtained when a specific extra-low frequency current passes through a

specially designed metallic lamina.
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1. Introduction

In a previous paper [1] we shown that
there is a correlation between the gravitational
mass, Mg , and the rest inertial massmjg, which

is given by

mg
=——=41-2 1+
mlOC
—J1-2 (U”f J
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“l1-2 (W” J 1)

where Ap is the varlatlon in the particle’s kinetic
momentum; U is the electromagnetic energy
absorbed or emitted by the particle; n, is the
index of refraction of the particle; W is the
density of energy on the particle (J /kg);p is

the matter density (kg/mS) and C is the speed
of light.

The instantaneous values of the density of
electromagnetic energy in an electromagnetic
field can be deduced from Maxwell’s equations
and has the following expression

W=1gE+1H? (2)
where E =E_ sinwtand H =Hsinat are the
instantaneous values of the electric field and the
magnetic field respectively.

It is known thatB=H, E/B = w/k, [2] and
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where K, is the real part of the propagation

vector  k (also called phase constant);
:‘E‘:erriki ; &, uand o, are the

electromagnetic characteristics of the medium in
which the incident (or emitted) radiation is

&, =8.854x10°F/m;
= 1, where g =4z7x107H/m). From Eq.

propagating (&=¢&&;

(3), we see that the index of refraction n, =c/v
is given by
cC &
= C= [ (firlojor +1) @
v
Equation (3) shows that @/x, =V. Thus,
E/B=w/k, =v,ie,
E=vB=v/H
Then, Eqg. (2) can be rewritten as follows
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Foro >> we , EQ. (3) gives
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Substitution of Eqg. (6) into Eq. (5) gives
=(0/20)E* (7)

Substitution of Eg. (7) into Eq. (1), yields
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Note that if E =E_sinwt.Then, the
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average value for E* is equal to % E’ because



E varies sinusoidaly ( E is the maximum value
for E'). On the other hand, we have E,mS:Em/«[Z.

Consequently, we can change E* by Efms, and
the Eq. (8) can be rewritten as follows

m = 1{\/1#.03&1027(;@—?2}3%—1] o (9

The  Ohm's  vectorial Law tells us
that j,,, = oE,,, - Thus, we can write Eqg. (9) in
the following form:

o7 Ly Jrms
m, = 12{\/1+7.032><10 27731] m, (10)

op” f
where .. = J/\/E [3]. Since
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By substitution of Eq. (12) into Eq.(10), we get

x=% = 1—{J1+175&102(%)(V4—94 —1] ik

Also, it was shown in the above mentioned
paper [1] that, if the weight of a particle in a side

of a lamina is I3:mgg (g perpendicular to the

lamina) then the weight of the same particle, in

the other side of the lamina is P'= ;(mgg,

where y =my /mi;  (my and mj,  are
respectively, the gravitational mass and the rest
inertial mass of the lamina). Only when y =1, is

that the weight is equal in both sides of the
lamina. Thus, the lamina can control the gravity
acceleration above it, and in this way, it can work
as a Gravity Controller Device.

Since the gravitational mass of a body

above the lamina is m, =m;, then we can

conclude that P':mio(;(g). Therefore, this

means that the gravity acceleration above the
laminaisg’ = 49 .

Here, we describe a very simple device,
which works as the mentioned lamina. This
device is easy to build, and can be used in order
to test the correlation between gravitational mass
and inertial mass previously mentioned (Eg. (1)),

2
and also the modification of the gravity
acceleration above the lamina (Zg)

2. The Device

Consider the device shown in Fig.1 (a). It
is basically a thin Aluminum strip attached to an
electrical insulating plate. This strip has been
designed over an Aluminum lamina, in order to

an electrical current(j,.; f) to pass through it,
producing the decreasing of its gravitational
mass Mg gyipy, according to Eq. (10). The

Aluminum of this strip has the following
characteristics: 99.9% Aluminum; z, =1;
p = 2700 kg/m™; o = 3.5x10°S/m. The Aluminum
strip has the following dimensions; Length,
L=3528 mm; Width: | = 5mm; Thickness: AX
=3um. The Resistance of the Aluminum strip
is: R=L/cS =L/o{AXI)=6.7Q and the maximum
current density, according to Eq. (12), is:

Tmptrms = (V/L) 1 =35x10° A/ =35A/ mnf;
V2

the maximum  current iSkpgmg = JnagrmgS =0.09A

" the Maximum Dissipated Power is:

Prax = Rimaems) = 0.017watts.

By substuting the values of 1,, o, p and
L into Eq. (13), we obtain.

. 4
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Consequently, the gravity acceleration above the
Aluminum strip is given by

4
9'=19 ={1—2N1+ 6.67><1014%}1}9 (15)

The calculated results starting from
Eqgs.(14) and (15) for f =5uHz; f =10uHz ;
f =154Hz, in the voltage range 0.1V —0.5V

are plotted in Table 1.

Figure 1(b) shows an experimental set up
in order to control the decreasing of the
Gravitational Mass of the Aluminum strip.
Figure 1(c) shows an experimental set up in order
to control the decreasing of the gravity
acceleration above the Aluminum strip.

- The maximum out put current of the HP 3325 Function
Generator (option 002 High Voltage out put) is
0.08A,,.(0.056Ams). Voltage range 4.0mV to 40.0Vy; sine

1 uHZ to 20MHz.
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(b) Experimental set up, using the device shown in (a), in order to control the decreasing of the Gravitational Mass
of the Aluminum strip.

E&l”:| Dynamometer
i ‘T:,Proof mass( );
| =m
B~ o(p)\ 1Y i
@20AWG | \ e .
.. | |
Precision balance 1 O Function Generator
. .Max. ?ZQg . B lg Frequency range > 1uHz (Sine) oo
3 digits resolution:1mg Maximum output current > 0.075 Ap,

(c) Experimental set up, using the device shown in (), in order to control the decreasing of the Local Gravity (g )
above the Aluminum strip (Gravity Controller Device).

Fig. 1 — Experimental set ups for controlling the Gravitational Mass of the Aluminum strip,
and the Gravity acceleration above it.



M, (s : :
_ eli) _ g \/1+1.758x10_27(%]\/_
mio(strip) ) r

f3

Moty = P(AXIL) = 1.428 x10 *kg = 0.1428 grams

f=5uHz
\V/ miO(strip) mg(strip) 4 4y
(volts) (gn (g (m/s)
0.1 0.1428 0.1352 0.9473 9.2930
0.2 0.1428 0.0395 02769 2.6771
0.3 0.1428 -0.2304 -1.6139 -15.8323
0.4 0.1428 -0.6651 -4.6577 -45.6922
0.5 0.1428 -1.2454 -8.7217 -85.5598
f= 10 uHz
\V/ Mo (strip) M (strip) 7 X9
(volts) (gr) (gn (m/s?)
0.1 0.1428 0.1418 0.9933 9.7442
0.2 0.1428 0.1279 0.8959 8.7887
0.3 0.1428 0.0794 0.5178 5.0796
0.4 0.1428 -0.0415 -0.2909 -2.8537
0.5 0.1428 -0.2209 -1.5469 -15.1750
f=15 uHz
v miO(strip) mg(strip) X 79
(volts) (gn (g (m/s)
0.1 0.1428 0.1425 0.9980 9.7903
0.2 0.1428 0.1383 0.9686 9.5019
0.3 0.1428 0.1207 0.8458 8.2972
0.4 0.1428 0.0779 0.5456 5.3523
0.5 0.1428 0.0014 0.0098 0.0961

Gravity acceleration above the Aluminum strip (zg ).

Tab. 1 — Calculated results for the Gravitational Mass of the Aluminum stripm

e

o =3.5x10"S/m;p=2700kg/m®;L =3.528m; u, =1;

g =9.81 m/s?

g =9.81 m/s*

g =9.81 m/s?

sip) » and for the



Next, we will show that by reducing the
thickness of the Aluminum strip to 3nm " it is
possible to design a similar device for working
with frequency up to f =2mHz . In this case the
period T of the wave is T =500s = 8.3min * .

Let us then consider an Aluminum strip
with 3nm thickness, 5mm width and 3,528mm
length as shown in Fig.2. If the maximum
applied voltage is V,, =22.2volts then,

according to Eqg. (13), we have

_ mg(strip) _
miO(strip)
_ ; ;
—31-2 [14+1758<1077| &7 \(VmaXéL) -1
)t
={1-2 1+M_ (16
.I:3
For f =2mHz, Eq. (16) gives
m. ..
=29 _ 046 (17)
miO(stri;j
Through the  Aluminum strip, the

maximum intensity of the electrical current is
given by

imax = jmaxs = G(Vmax/L)S =

—(35x107S/m)22.2/3528)(3x10° \5x10°*)|=
=3.3mA

The electrical resistance of the Aluminum strip is

" Ultra Thin Aluminum Nanofoils (foils  with

nanometers thicknesses) are manufactured, for
example by American Elements - The Advanced
Materials Manufacturer (See the available nanofoils at:
https://www.americanelements.com/ultra-thin-
aluminum-nanofoil-7429-90-5).

* In the case of the first device the frequency it were
f =1QuHz and the period T =10°s = 27.77hours.

3.528
(3.5%x107)(3x10°|5x10°°

)J =6720Q

Therefore, the maximum dissipated power by the
strip has now the following value

P™ =R, i’ =73.2mW

strip strip " max

Note that this power is almost the double of the
power in the first device (37.7mW).

Let us now verify if the area of the surface
of the Aluminum strip (area of the surface of
thermal transfer ; 5mm x 3,528mm) is sufficient
to transfer to the surrounding air all the heat
produced by the strip (in order to avoid the fusion
of the strip).

The coefficient of heat transfer,h, can be
expressed by the following equation [4, 5,6]

AQ/At
- (8Q/At) (18)
A AT
where AQ/At (in W) is the dissipated power ;
A, (in m?) is the necessary area of the surface of
thermal transfer and AT the difference of
temperature between the area of the solid surface
and the surrounding fluid (K).
When the surrounding fluid is the air , the
heat transfer coefficient, h, varies from 10 up to

100W /m? °K [7]. Assuming h=10W/m? °K,
and AT =1°K , then for Ps{‘:ia,j‘ =73.2mW , Eq.
(18) gives

A, = (aQ/ay) _ 7.32x10°m*>  (19)
hAT
Since the area of the surface of the Aluminum
strip is

Ayip =5mmx3,528mm =17.6x107°m?* >> A,

Then, we can conclude that the area of the
Aluminum strip is sufficient to transfer to the
surrounding air all the heat produced by it. The
same is valid in the case of the first device, where
the dissipated power by the Aluminum strip is
even smaller than in the second device.



| 250 mm |

- ST
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@
o1+ | [0 oot +[5 P
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Aluminum strip
| 1|5mm 99.9% Aluminum
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14112 [13[14] [15] 114 17| |18 L9] RO| R 2 [23

1 Gravitational Mass
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1mm Y mg(stnp)
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miO(strip)

Fig. 2 — Device using Aluminum strip with 3nm thickness.
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1. Introduction

            In a previous paper [1] we shown that there is a correlation between the gravitational mass,
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where
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 is the variation in the particle’s kinetic momentum; 
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 is the electromagnetic energy absorbed or emitted by the particle; 
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          The instantaneous values of the density of electromagnetic energy in an electromagnetic field can be deduced from Maxwell’s equations and has the following expression 
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 are the instantaneous values of the electric field and the magnetic field respectively.


       It is known that
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where  
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  is     the    real part of the propagation vector 
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 ; ( , ( and (,    are the electromagnetic characteristics of the medium in which  the  incident  (or emitted)  radiation  is 
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). From Eq. (3), we see that the index of refraction  
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 Equation (3) shows that 
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 Then, Eq. (2) can be rewritten as follows
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Substitution of Eq. (6) into Eq. (5) gives
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Substitution of Eq. (7) into Eq. (1), yields 
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          Note that if 
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, and the Eq. (8) can be rewritten as follows
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The Ohm's vectorial Law tells us that
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 . Thus, we can write Eq. (9) in the following form:
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Then, we can write that
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By substitution of Eq. (12) into Eq.(10), we get
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          Also, it was shown in the above mentioned paper [1] that, if the weight of a particle in a side of a lamina is 
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 perpendicular to the lamina) then the weight of the same particle, in the other side of the lamina is   
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  are respectively, the gravitational mass and the rest inertial mass of the lamina). Only when
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, is that the weight is equal in both sides of the lamina. Thus, the lamina can control the gravity acceleration above it, and in this way, it can work as a Gravity Controller Device. 


          Since the gravitational mass of a body above the lamina is 
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, then we can conclude that 
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. Therefore, this means that the gravity acceleration above the lamina is

[image: image60.wmf]g


g


c


=


¢


.             


          Here, we describe a very simple device, which works as the mentioned lamina.  This device is easy to build, and can be used in order to test the correlation between gravitational mass and inertial mass previously mentioned (Eq. (1)), and also the modification of the gravity acceleration above the lamina
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2. The Device


          Consider the device shown in Fig.1 (a). It is basically a thin Aluminum strip attached to an electrical insulating plate.  This strip has been designed over an Aluminum lamina, in order to an electrical current
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 to pass through it, producing the decreasing of its gravitational mass
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, according to Eq. (10). The Aluminum of this strip has the following characteristics:            99.9% Aluminum; 
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( = 2700 kg/m-3;( = 3.5x107S/m. The Aluminum strip has the following dimensions; Length, L=3528 mm; Width: l = 5mm; Thickness: (x =3(m. The Resistance of the Aluminum strip is:
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 and the maximum current density, according to Eq. (12), is:
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; the maximum current is
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; the Maximum Dissipated Power  is: 
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          By substuting the values of
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into Eq. (13), we obtain.
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Consequently, the gravity acceleration above the Aluminum strip is given by
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         The calculated results starting from Eqs.(14) and (15)  for 
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, in the voltage range  
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 are plotted in Table 1.

          Figure 1(b) shows an experimental set up in order to control the decreasing of the Gravitational Mass of the Aluminum strip. Figure 1(c) shows an experimental set up in order to control the decreasing of the gravity acceleration above the Aluminum strip. 



[image: image79.emf]                                                                                                                                                                                (a)  D evice  to produce the  decreasing in  the  Gravitational Mass   of the Aluminum strip.                               (b)   E xperimental set up ,  using the device shown in (a) ,  in  order to control the  decreasing of the   Gravitational Mass                    of the Aluminum strip.                                         (c )  E xperimental set up ,  using the device shown in (a) ,   in order to control  the  decreasing of  the  Local  G ravity   (  g   )                  a bove  the Aluminum strip  ( Gravity Controller   Device ) .               Fig. 1  –   Experimental  s et ups for c ontrolling the   Gravitational Mass   of the Aluminum strip ,                              and the  Gravity  acceleration above i t.  
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          Next, we will show that by reducing the thickness of the Aluminum strip to 

[image: image81.wmf]nm


3



 it is possible to design a similar device for working with frequency up to 
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          Let us then consider an Aluminum strip with 
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 length as shown in Fig.2.  If  the maximum applied voltage is 
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For 
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          Through the Aluminum strip, the maximum intensity of the electrical current is given by
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The electrical resistance of the Aluminum strip is  
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Therefore, the maximum dissipated power by the strip has now the following value
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Note that this power is almost the double of the power in the first device (37.7mW).

          Let us now verify if the area of the surface of the Aluminum strip (area of the surface of thermal transfer ; 5mm x 3,528mm) is sufficient to transfer to the surrounding air all the heat produced by the strip (in order to avoid the fusion of the strip). 

          The coefficient of heat transfer,
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, can be expressed by the following equation [4, 5,6]
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 the difference of temperature between the area of the solid surface and the surrounding fluid (K). 

          When the surrounding fluid is the air , the heat transfer coefficient,
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, Eq. (18) gives
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Since the area of the surface of the Aluminum strip is
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Then, we can conclude that the area of the Aluminum strip is sufficient to transfer to the surrounding air all the heat produced by it. The same is valid in the case of the first device, where the dissipated power by the Aluminum strip is even smaller than in the second device. 



[image: image108.emf]                                                                                                                                                                                                    Fig. 2   –    Device using Aluminum strip with  3 nm  thickness.  
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� The maximum out put current of the HP 3325 Function Generator (option 002 High Voltage out put) is 0.08App.(0.056Arms).  Voltage range 4.0mV to 40.0Vpp; sine 1� EMBED Equation.3  ��� to 20MHz.  



� Ultra Thin Aluminum Nanofoils (foils with nanometers thicknesses) are manufactured, for example by American Elements - The Advanced Materials Manufacturer (See the available nanofoils at: https://www.americanelements.com/ultra-thin-aluminum-nanofoil-7429-90-5). 



� In the case of the first device the frequency it were � EMBED Equation.3  ��� and the period � EMBED Equation.3  ���.  
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Fig. 2 –  Device using Aluminum strip with  3nm thickness.
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Tab. 1 – Calculated results for the Gravitational Mass of the Aluminum strip
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     (a) Device to produce the decreasing in the Gravitational Mass of the Aluminum strip. 





























     (b) Experimental set up, using the device shown in (a), in order to control the decreasing of the Gravitational Mass  



            of the Aluminum strip. 






































     (c) Experimental set up, using the device shown in (a), in order to control the decreasing of the Local Gravity ( g ) 


            above the Aluminum strip (Gravity Controller Device).


           Fig. 1 – Experimental set ups for controlling the Gravitational Mass of the Aluminum strip, 


                        and the Gravity acceleration above it.
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