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Abstract 

The high reactivity of nanostructured materials makes their use very attractive for various industrial 

applications. However, these materials may also have an important impact on health / environment / climate 

and on the performances of protective devices (i.e. high efficiency particulate air filters, electrostatic 

precipitators). Those properties are mainly due to their high specific surface area, which is directly related to 

the size of the non-porous primary nanoparticles and to the nature of the bridging between them (from point 

contact for agglomerates to partial fusion for aggregates).  

In this paper, a straightforward image processing has been developed to measure, assuming a log-normal size 

distribution, the primary particle diameter (Dpp), the geometric standard deviation GSD (or σg), the projected 

overlap coefficient (Cov, p) and the specific surface area (SS) directly from TEM images according to the approach 

introduced by Bau et al. (2010). Measurements have been performed from TEM images obtained for 22 

different kinds of nanoparticles, from simple spheres to soot particles and virtual aggregates. The results show 

a good agreement (within +/- 20 %) between automatic and manual analysis of Dpp, σg and SS while the overlap 

coefficient has been compared to the manual analysis showing a reasonable agreement (within +/- 40 %). 

Keywords: electronic microscopy, image processing, nanoparticles aggregates / agglomerates, specific surface 

area. 

Introduction 

The study of environmental pollution caused by soot particles is an active research field. Recently, it has been 

shown that the morphological structure and the overlap coefficient between primary particles composing soot 

are directly correlated to their optical/radiative properties (Liu et al , 2015; Yon et al., 2014).  

Beyond their climate impact, toxicity of those particles is now commonly assumed to have serious public health 

implications. Several authors have reported that exposure to diesel particulates increases the risk of mortality 

from lung cancer (Attfield et al., 2012) and that their toxicity is mainly correlated to their specific surface area 

(Schmid & Stoeger, 2016; Steiner et al., 2016). The reference method for measuring this specific surface area is 

based on inert gas adsorption analysis (BET method, Sing, 1985), but as a minimal quantity of powder (at least 

100 mg for nanostructured powders from Karg et al., 2008, which represents 10 m² for SBET = 100 m²/g) is 

needed for such techniques, in certain cases it becomes necessary to derived the specific surface area from 

TEM images. Usually, determination of the morphological parameters (diameter of the primary particles and 

overlapping coefficient) from TEM pictures is made manually, which introduces a bias induced by the operator 

subjectivity and involves a limited number of analyzed images, about 100 depending on the dispersion of the 

measured parameter. Numerical image processing is a good compromise to improve the quality of those 
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measurements and avoid the uncertainty related to subjectivity of the operator. If recent developments have 

mainly focused on the determination of the size of primary particles and the fractal dimension of the 

agglomerates/aggregates (Bescond et al., 2014; Dastanpour et al. 2016; Mirzaei & Rafsanjani, 2017), limited 

work has been performed regarding the overlap coefficient between primary particles (De Temmerman et al., 

2014). To our best knowledge, there is no recent study dealing specifically with the issue of the automated 

determination of the specific surface area based on TEM image analysis. 

Because of the potential health effects of such particles, it is necessary to develop suitable reduction devices 

such as High Efficiency Particulate Air Filters (HEPA), electrostatic precipitators or scrubbers. All these devices 

require the efficiency to be as high as possible in order to avoid any release of NOAA (NanoObjects, their 

Agglomerates and Aggregates) nanostructured particles in the atmosphere or human exposure. Nevertheless, 

for such situations, the pressure drop induced by the formation of a soot cake at the filtration medium surface 

represents a significant economic cost. Furthermore, for safety application and especially in the nuclear 

industry, containment of hazardous particulate materials must be maintained despite the situation. Prediction 

of airflow behavior of containment elements such as HEPA filters in case of fire directly depends on the 

properties of the particulate pollutants (Ishibashi et al., 2014; Ouf et al., 2014). In the currently used 

phenomenological models of filter clogging (Bourrous et al., 2016; Kim et al., 2009; Thomas et al., 2014), the 

pressure drop of a filter clogged by soot particles can only be estimated from the primary particles size and the 

overlap fraction of particles between them. Nevertheless, most of the commercially available online 

measurements (Scanning Mobility Particle Sizer (SMPS), Aerodynamic Particle Sizer (APS), Electrical Low 

Pressure Impactor (ELPI)) only provide/report an equivalent diameter relative to the physical behavior of 

aggregates (settling velocity, electrical mobility...). None of them is able to determine in a direct way the 

primary particle size distribution and their overlap coefficient. 

In most cases, Transmission Electron Microscopy is the reference method (Brasil et al., 1999; Köylü et al., 1995) 

for measuring the morphological properties of fractal aggregates formed during combustion processes. Since 

the application of Mandelbrot’s fractal theory by Jullien & Botet (1987) for describing the shape of 

nanoparticles aggregates/agglomerates formed by diffusion limited cluster aggregation (DLCA), many authors 

have proposed automatic tools for measuring the diameter of primary particles. Such developments were 

motivated by the need to reduce the time of analysis, to increase the statistics and finally to avoid as much as 

possible any human operator subjectivity. The latter effect has been investigated in the present work from TEM 

images of soot particles produced by an ethylene diffusion burner and sampled on TEM grids (Ouf et al., 2010). 

Manual analysis by two separate human operators was carried out for the same samples and the 

corresponding mean primary particle diameters are compared in figure 1a. The agreement between each 

operator appears to be reasonable within a confidence interval of +/- 20 %. Other authors (Anderson et al. 

2017; Kondo et al. 2013) reported similar fluctuations for flame spray soot (respectively +/- 14 % and +/- 17 % 

from these sources). Then, +/- 20 % will be considered as the maximum acceptable discrepancy between the 

proposed automatic analysis and a manual one of primary particle diameter. Similar comparison has been 

conducted for the overlap coefficient and the results are presented in figure 1b. For this parameter, the 

discrepancy between the results obtained by two operators can reach nearly 35 %. This bias can be problematic 

for predictive computations based on this value and for any application that (would) require(s) a fine 

knowledge of the particles properties/reactivity or toxicity (Schmid & Stoeger, 2016; Steiner et al., 2016). 
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Figure 1: Comparison between count median primary spheres diameters (a) and projected overlap coefficients 

(b) measured by two human operators for soot particles produced by an ethylene diffusion flame (adapted 
from Ouf et al., 2010). Bars represent standard deviations. 

 

Manual analysis of the determination of primary particle size and overlap coefficient also remains problematic 

in terms of statistical validity of the data. Moreover, the duration of the measurement does not allow a high 

numbers of analyses, typically less than 20. This can influence the statistical representativeness of the 

measured values. To investigate the influence of the number of measurements required to carry out an 

accurate statistical analysis of the primary particle, mean diameter has been determined for several sets of 

data with a wide range of primary particle diameters. This analysis has been carried out for synthetic TEM 

images of Diffusion Limited Cluster Aggregates and real TEM micrographs of ethylene and gloves box soot 

particles (see Materials and Methods for more details). Figure 2 shows the evolution, as a function of the 

number of primary particles diameters considered, of the absolute deviation (Dev(Npp analyzed)) between mean 

diameter obtained for a specific number of analyses of primary particles Npp analyzed  and the mean diameter 

obtained from the entire set of images (relation I) . 

                  
       -       
                      

       
                 (I) 

With Npp analyzed, the number of primary particles considered,          the mean primary particle size. 

 The numerical DLCA aggregates with a perfectly known diameter distribution (nearly 400 aggregates 

containing from 1 to 1000 primary particles) are used as a reference.  For each Npp analyzed, one hundred random 

sets of Npp analyzed primary particles are generated and the absolute deviation is computed. Mean value is then 

determined and reported in figure 2. For the worst case and similarly to the results reported by Bau et al. 

(2010), a minimum number of 100 primary particles is needed to reach less than 5 % deviation. Nevertheless, 

the geometric standard deviation has a significant influence on the limiting Npp analyzed and, as GSD decreases 

from 1.7 to 1.3 (for DLCA), this limiting value decreases by a factor of 5. In order to check the validity of this 

numerical approach, those are compared with two different kinds of aggregates with various sample sizes 

denoting a limited number of aggregates (14 glove box soot aggregates) and a reasonable one (81 fresh 

ethylene soot aggregates). As demonstrated by Dastanpour & Rogak (2014), the amount of aggregates plays a 

rule in the statistical representativity of the primary particle size distribution. In our case, for the glove box 

sample, 14 aggregates (associated to 50 primary particles) are enough to reach a statically satisfying 

distribution, even for a GSD of 1.5. Without any prior knowledge on the GSD of primary particle size 

distribution, a minimum number of 100 measurements of primary particle diameter is needed (assuming that 

GSD does not exceed 1.7).  
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Figure 2: Evolution of mean primary particle diameter of ethylene soot particles (adapted from Ouf et al., 2010) 
as a function of number of primary particle diameters considered 

Beyond the definition of aggregate and agglomerates of nanoparticles, it can be helpful to introduce a relevant 

metric for describing the bridging between nanoparticles and moreover for describing their physical and 

chemical behavior. For this purpose, Brasil et al. (1999) have introduced the overlap coefficient Cov as a 

function of the mean primary particle diameter and the distance between the centers of mass of two 

contiguous nanoparticles. Beyond the description of the bridging between soot or nanoparticles 

aggregates/agglomerates, several recent studies have demonstrated that this property could have an indirect 

influence on soot optical properties through modification of their morphological properties (Yon et al., 2015), 

pressure drop associated with soot or nanoparticles cake (Thomas et al., 2014) as well as their specific surface 

area (De Temmerman et al., 2014).   

According to Brasil et al.’s relationship between three-dimensional and projected properties and using primary 

particle diameter, overlap coefficient and assuming the soot bulk density, Gwaze et al. (2006) were the first 

authors to apply the specific surface determination from TEM pictures for soot particles. More recently, Bau et 

al. (2010) have validated this approach (see relation III) by comparing TEM-based analysis with specific surface 

area measurements according to the reference BET method (Brunauer et al., 1938; Sing, 1985). Nevertheless, 

such analysis, generally operated manually, suffers a lack of statistics, is extremely time consuming and 

denotes high level of uncertainty.  

To overcome those difficulties, some authors have developed image processing algorithms in order to analyze a 

statistically relevant number of primary particles (more than 100 to reach less than 5% deviation according to 

fig. 2). Several methods have been recently proposed to measure the primary particle diameter (Kook et al., 

2015; Mirzaei & Rafsanjani, 2017), the geometric standard deviation of their size distribution (Bescond et al., 

2014; Dastanpour et al., 2016), the aggregates/agglomerates fractal dimension (Wang et al., 2016) and even 

the overlap coefficient of primary particles (De Temmerman et al., 2014). It is worth noting that none of those 

methods allows the measurement of the specific surface area. 

In the present work, a new semi-automatic measurement process of DPP, σg, COV and SS is proposed, based on 

the Hough transform (Matlab©, Grishin et al., 2012). Automatic analysis of DPP, σg, COV has been validated using 

a wide range of real and model nanoparticles (Bescond et al., 2013) on the basis of manual measurement of 

these morphological parameters. Application of this automatic method to the determination of the specific 

surface area has been finally validated according to BET measurements.  
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Materials and methods 

The presented program aims to analyze raw TEM images without prior processing. To do so, raw images are 

pretreated using classical binarization and opening process. This aims to reduce the noise and to ensure the 

proper selection of the particles. Various automatic binarization methods exist to ensure the selection of the 

optimal threshold. Our program uses the simple and fast method proposed by Otsu (Otsu, 1979). It is based on 

the assumption that only the background and the particle are present on the picture. When images contrast is 

too low to ensure the analyzability, a manual thresholding can also be used. The criterion for this step is to be 

able to distinguish the primary particles constituting the aggregate. 

In a second step, circular structures are found using the Hough transform preprogrammed function and their 

diameter and position are used to identify overlapping particles. To do so, the input parameters are the 

sensitivity, the maximal and minimal radius of each mode visually identified (in order to reduce the processing 

time and to make the measurement more accurate). Furthermore, a visual control is performed by the 

operator consecutively to the analysis of each processed image, in order to avoid any artefact. Figure 3 shows 

an illustration of the analysis performed on a fractal soot aggregate. 

   
Figure 3: Illustration of the primary particle diameter and overlap coefficient measurement process  

 

Recognized particles are identified by blue circles on the right image (after treatment). It is worth noting that all 

of the particles are not systematically detected. Due to the low quality of the input image and the intrinsic 

principle of the Hough transform, an exhaustive automatic detection of the particles cannot be performed. The 

representativeness of the statistical analysis is based on the fact that a high number of images can be analyzed 

successively since analyses are performed within a few seconds. Projected overlap coefficient (Cov,p) is 

measured on the TEM images according to the respective positions of the centers of mass and diameters of 

each overlapping primary particles and the empirical correlation of (Brasil et al., 1999) is used to convert the 2D 

Cov, p into a 3D Cov.  

                 -         (II) 

In the present software, for each couple of circles detected, the distance between the centers is compared to 

the sum of the radius. If this distance is lower, then one COV, p value is considered. This process is repeated for 

all particles detected in the image. One must noticed that present relationship is purely empirical and, as 

reported by Brasil et al. (1999), has been developed for soot aggregates with a fractal dimension of 1.78 and a 

projected overlap coefficient Cov, p ranging from 0 to 0.33. 

 

From this value, using the relation firstly introduced by Brasil et al. (1999) and modified by Bau et al. (2010), the 

specific surface area, defined as the ratio between particle geometric surface area and mass, has been deduced 

by knowing or assuming the bulk density of the material composing nanoparticles ρpp. 
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  -      -

 

   
  

         
    
 

      
       

     (III) 

With Ф an empirical constant equal to 1.3 according to Brasil et al. (1999). As mentioned by Bau et al. (2010), 

this method of specific surface area analysis has been validated on non-porous nanoparticles aggregates with 

different primary particle diameters ranging from 7 nm to 47 nm and projected overlap coefficient between 0 

(agglomerates) and 0.24 (SiO2 aggregates). The corresponding specific surface area covered a range from 36.9 

to 198.3 m²/g and the main assumption in this previous study was to consider that the specific surface area 

measured on an aerosol sample (after dispersion in the airborne phase of a nanostructured powder) is similar 

to the one of the bulk powder as measured by the BET method. 

In this work, the validation protocol has been performed in 3 steps by 3 independent human operators:  

1. First of all, ideal 3D aggregates have been simulated using a DLCA code; this method allows 

the control of the particle size distribution, fractal dimension and overlap coefficient. This 

validation step performed on ideal objects aims to validate the choice of the method, 

statistical representativeness and correlations (Brasil et al., 1999; Bau et al., 2010) which are 

used in the program.  

2. Secondly, evaluation of the robustness of the measurement has been performed on non-

aggregated nanoparticles. In this step, the TEM images considered have been produced in the 

frame of a metrological work (Motzkus et al., 2013) and the geometric properties have been 

manually measured by different laboratories. Those images will be used as a reference for the 

validation of the number size distribution of primary particle diameter to evaluate the impact 

of image noise, background and contrast. 

3. Finally TEM images of aggregates found in the literature or produced for this work have been 

manually analyzed for validating the automatic analysis of Dpp, σg and Cov while the specific 

surface area of the particles was compared to reference BET values obtained on powder 

samples. The robustness of the program with realistic fire particulate emissions was 

evaluated on soot aggregates produced by laboratory scale burners as well as soot particles 

emitted in real fire conditions. All validations have been performed on more than 100 primary 

particles according to the results presented in figure 2 and allowing a good statistical 

representativeness (less than 5 % relative deviation on primary particle diameter). 

Morphological properties and examples of images (TEM based or numerical) of the different samples 

considered are summarized in Tables 1 and 2. Reference values of bulk density and BET specific surface area 

are also reported in these tables with the corresponding reference when coming from literature. Sampling of 

these particles has been carried according to thermophoretic particle sampler (TPS, Ouf et al., 2010), filtration 

on nuclepore membrane of colloidal suspension dispersed according to a pneumatic generator (mentioned as 

filtration in table 1, Motzkus et al., 2013), deposition of a droplet of colloidal suspension directly on TEM grids 

(mentioned as droplet in table 1, Ribeyre, Grévillot, Charvet, Vallières, & Thomas, 2014) mini particle sampler 

(MPS, R’mili, Le Bihan, Dutouquet, Aguerre-Charriol, & Frejafon, 2013) and corresponding methods are 

summarized in table 1. TEM analyses have been carried out using several transmission electron microscope, i.e. 

120 kV Zeiss, EM 910 model (Aerosil 200 and Black carbon samples) and 100kV JEOL, 100CXII model (others 

samples).  

Validation of the automatic measurement tool 

Automatic analysis of primary particle size distribution 

The comparison between the count median diameter measured manually and by the automated software for 

all samples described in Tables 1 and 2 is presented in figure 4. For the 3 different synthetic aggregates 
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obtained with the DLCA code, the agreement is almost perfect, with a mean discrepancy of 2% or 0.4 nm 

(corresponding to 2 pixels according to the resolution of the numerical images of 0.2 nm per pixel). As for TEM 

images obtained for real samples, no significant difference has been noticed between manual and automatic 

analysis. Among the 21 samples tested, the deviation exceeds 20% for only 3 samples (commercial Aerosil 200 

and soot particles sampled during Gloves box and Hydraulic oil fires). This might be due to an excessive noise or 

possible limited resolution of those TEM images. Nevertheless, this order of magnitude of deviation is similar to 

the bias expected for manual analysis between two separated human operators, as shown in figure 1. The 

automated approach developed in the present study is then considered suitable for analyzing real 

nanoparticles and soot samples with high level of confidence. According to Motzkus et al. (2013) and Bescond 

et al. (2014), a log-normal function has been considered for describing the primary particle size distribution of 

respectively nanoparticles (excepted for PSL which is a mono-disperse size standard) and soot samples. Figure 4 

also presents the comparison between the geometric standard deviation determined from the automatic size 

distribution analysis and the one measured manually. For the reference images (i.e. generated using the DLCA 

code), the geometric standard deviation obtained manually is almost perfectly corresponding to the expected 

value. Small discrepancies are doubtless due to the resolution of the image. For the real TEM images, except 

for the Aerosil 200, the correspondence is within 20% which is lower than the uncertainty and bias inherent to 

the human subjectivity during the manual analysis (20 % from figure 1). This validates the concept of the 

measurement and its statistical representativeness. 
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Table 1: Properties of reference samples considered for validation of the automated measurement process 

 

 

 

 

 

 

 

Type Name Source 
Manual TEM analysis 

SBET (m²/g) Density (kg/m3) 
Reference 

(sampling method) 

Examples of TEM or numerical 
images 𝐃𝐩𝐩 (nm) σg (-) Cov,p (-) 

DLCA DLCA1 Diffusion limited  
cluster aggregation  
code 

20.3 1.31 - - - DLCA code from Bescond 
et al. (2013) 

   

DLCA2 20.4 1.51 - - - 

DLCA3 19.8 1.72 - - - 

Nanoparticles PSL, 102 nm 
 

Polystyrene latex  
sphere 

102 - - - - Duke scientific 
 

(filtration) 

 

PSL, 199 nm 
 

199 - - - - 

SiO2 

 

 

 

LUDOX 33.0 1.14 - 1401 14001 1Manufacturer datasheet 
  

(filtration) 

 

Si 
 
 
 

IRAMIS 23.7 1.33 - 87 2327 2Manufacturer datasheet 
 

(filtration) 

 
Aerosil 200 
 
 
 

DEGUSSA 21.3 1.28  196 +/- 1 25802 2Manufacturer datasheet 
 

(droplet) 

 

Black Carbon 
 
 
 

PROLABO 142 1.30 - 30.3 +/- 1 18693 3Manufacturer datasheet 
 

(droplet) 
 

𝐃𝐩𝐩: count median diameter of primary particle (nm),  σg: geometric standard deviation (-), Cov,p: projected overlap coefficient (-), SBET: specific surface area measured by BET (m²/g)
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Table 2: Properties of soot samples considered for validation of the automated measurement process 

Type Name Source 
Manual TEM analysis 

SBET (m²/g) Density (kg/m3) 
Reference  

(sampling method) 

Examples of TEM or numerical 
images 𝐃𝐩𝐩 (nm) σg (-) Cov,p (-) 

Soot particles Fresh ethylene soot Ethylene diffusion 
burner 

28.8 1.18 0.13 +/- 0.12 - - Ouf et al. (2010) 
 

(TPS) 

  
Fresh soot           Aged soot 

Aged ethylene soot 27.1 1.17 0.21 +/- 0.12 - - 

CAST 50/100/1.2 Propane diffusion  
burner miniCAST 

23.3 1.15 0.29 +/- 0.12 - 1745 Thomas et al. (2014) 
(TPS) 

  
 CAST 50/100/1.2  CAST 60/0/1.5 

CAST 60/0/1.5 26.5 1.36 0.28 +/- 0.09 137.2 +/- 0.54 15435 4Monge et al. (2010) 
5Yon et al. (2015) 

(TPS) 

Heptane flame, 
21% [O2] 

Medium scale  
heptane pool fire 

35.1 1.31 0.30 +/- 0.13 - - Present paper 
(TPS) 

 
Heptane 21 % 

Heptane flame, 
15% [O2] 

31.2 1.32 0.29 +/- 0.14 - - Present paper 
 

(TPS) 

Heptane pool fire Medium scale pool  
fire, confined 

42.0 1.35 0.28 +/- 0.13 - - Present paper 
 

(MPS) 

  
Hydraulic oil flame Small scale, over- 

ventilated 
47.7 1.81 0.34 +/- 0.11 - - 6Ouf et al. (2014) 

 
(MPS) 

   

Polycarbonate 
flame 

52.77 1.60 0.29 +/- 0.11 - - 6Ouf et al. (2014) 
 

(MPS) 

   

PMMA/PVC flame Medium scale, 
under-ventilated 

72.0 1.19 0.30 +/- 0.11 57.2 +/- 5.0 1260 Present paper 
 

(filtration) 

  
Gloves box fire Large scale, over- 

ventilated 
41.8 1.47 0.36 +/- 0.11 43.8 +/- 0.1 1660 Present paper 

 
(MPS) 

 
Hydraulic oil fire Large scale, over- 

ventilated 
47.3 1.46 0.34 +/- 0.15 77.1 +/- 1.3 1614 Present paper 

 
(MPS) 

 

Aircraft soot SAM146 engine,  
85% thrust 

16.7 1.54 - - - 7Bescond et al. (2014) 
 

(MPS) 

 
𝐃𝐩𝐩: count median diameter of primary particle (nm),  σg: geometric standard deviation (-), Cov,p: projected overlap coefficient (-), SBET: specific surface area measured by BET (m²/g)
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Figure 4: comparison between count median diameter and geometric standard deviation associated to primary 

particles, measured by the automated software or manually (standard errors at 95% confidence interval) 

Automatic analysis of the overlap coefficient 

Measuring the overlap coefficient remains difficult especially to reach a statistically significant value. The 

measuring process is based on the detection of circles that touch each other as shown in figure 3. However, 

when the overlapping of two particles is too high, it is difficult to identify their circular shape. Furthermore, the 

manual measurement can also be affected by the human subjectivity (see figure 1b) and such artifacts mainly 

explained the high level of deviation reported by previous authors (from 15 % to 40 % for soot particles studied 

by Ouf et al., 2010 and Thomas et al., 2014).  

Comparison between manually and automatically measured projected overlap coefficients is presented in 

figure 5. For all samples, and considering the corresponding standard deviation of each Cov,p, the values 

obtained automatically or manually are in agreement within 40 % (see figure 5a) with a slight trend of under-

estimation of the automatic method versus the manual one. One could also notice that the overall trend is 

globally respected for both methods (see figure 5b). Furthermore, for soot particles, Cov, p is ranging from 0.21 

to 0.38, close to values reported in literature (Gwaze et al., 2006; Ouf et al., 2010; Thomas et al., 2014).  

  
Figure 5: comparison between overlap coefficients measured manually or automatically (the number of 

measurements (manual, automatic) are presented under brackets on figure b after the samples references) 
 

Since this analysis is extremely time consuming and sensitive to an “operator effect”, results presented in 

figure 5 confirm that the proposed automatic approach is, at least, as relevant as a manual analysis and does 

not denote higher level of deviation than the one associated with “human perception” (35 % from figure 1b). 

From these results, it can be considered that the automatic analysis method is able to measure the primary 
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particle diameter, the geometric standard deviation and the overlap coefficient with satisfying accuracy 

(respectively 20 % for Dpp and σg and 40 % for Cov, p). 

Automatic analysis of the specific surface area 

Implementing Bau et al.’s (2010) relationship in our analysis software allows the specific surface area to be 

determined automatically. Comparison between TEM-based method and BET values (reported in the literature 

or supplied by the powder manufacturer) is presented in figure 6. Sensitivity analysis has been also performed 

for each influencing parameters (ρpp, Cov, Dpp, Npp) and is reported in Supplementary Material. This analysis 

shows minor influence of Cov and ρpp compared to Dpp for all considered Npp (from 10 to 10 000). 

A good agreement (+/- 20 %) between the proposed method and BET analysis is reported for BET specific 

surface areas ranging from 30 to 200 m²/g. BET analysis presents the lowest standard deviation, typically less 

than 10 % (see Tables 1 and 2), and remains the reference method. Nevertheless, in most cases, and especially 

for soot particles and more generally aerosols, it is generally tricky to retrieve enough mass of sample (for 

nanoparticles with SBET = 100 m²/g, a total surface of 10 m² represents 100 mg which is minimum amount 

recommended by Karg et al., 2008) to perform a BET analysis. Therefore, developing TEM-based analysis tools 

to determine the specific surface area of aerosols is of great interest. Such results also confirm the recent 

findings of Dazon et al. (2017) for nanostructured samples with BET specific surface area within the range 30-

500 m²/g. They reported a good agreement between the specific surface area of the powder (SSPowder) and the 

one of the aerosol (SSAerosol) after aerosolization, both specific surface areas being obtained by the BET method. 

 

Figure 6: comparison between automatic specific surface area analysis and BET analysis 

Conclusions 

Nowadays, most of the aerosol measurement device constructors propose easy to use and cost effective 

sampling systems that allow airborne particle to be directly collected on TEM grids. Electron microscopy 

remains the most robust and reference method to characterize nanoparticles at several scales (morphology, 

size, microstructure ….). Nevertheless, the analysis of TEM images is time consuming and the use of human 

interface for images analysis involves a lot of questions regarding human subjectivity and measurement 

reproducibility. The proposed method, based on preprogrammed functions (Hough transform), allows the 

quantification of the relevant morphological parameters. Then, primary particles diameter, geometric standard 

deviation and overlap coefficient measured using this automatic tool have been successfully compared to 

reference manual analysis within a confidence interval similar to the bias induced by human subjectivity (+/- 20 

% for the two firsts and 40 % for Cov, p). These data have been used to determine the specific surface area, for 
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which no convincing comparison has been found in the literature between an automatic analysis tool and 

reference BET measurements. The present method is, as far as we are concerned, the first automatic method 

providing reliable values of specific surface area in close agreement to the BET reference method (within an 

interval of +/- 20%). It is worth noting that the present method is limited to non-porous primary particles with 

known bulk density, which is an acceptable hypothesis for soot particles and most of manufactured 

nanoparticles. 
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Supplementary material: sensitivity of specific surface area to primary 

particle diameter, overlap coefficient and density 

The sensitivity of the relation (III) used to determine the surface specific area regarding the different 

input parameters has been proofed using a random normal distribution for each influent parameter.  

The study has been performed in two steps: 

1. Each parameters have been tested separately on 10 000 random values following a 

normal distribution (the others have been fixed at their respective mean value).  

2. All parameters have been tested on a 10 000 random values following a normal 

distribution. 

The standard deviation has been computed for each of the cases and details of these tests are 

reported in table S1. 

Table S2: Test matrix for sensitivity analysis 

Case Dpp ρpp Cov 

1 26.5 nm 1543 kg/m3 
10 000 random values following a normal 

distribution (mean=0.11, coefficient of 
variation 40%) 

2 26.5 nm 
10 000 random values following a normal 

distribution (mean=1543 kg/m3, coefficient 
of variation 5%) 

0.11 

3 
10 000 random values following a normal 
distribution (mean=26.5 nm, coefficient of 

variation 20%) 
1543 kg/m3 0.11 

4 
10 000 random values following a normal 
distribution (mean=26.5 nm, coefficient of 

variation 20%) 

10 000 random values following a normal 
distribution (mean=1543 kg/m3, coefficient 

of variation 5%) 

10 000 random values following a normal 
distribution (mean=0.11, coefficient of 

variation 40%) 

 

Results are presented in figure S1 for 10, 100, 1000 and 10 000 primary particles (Npp). According to 

figure S1, the standard deviation associated to the primary particle diameter has the highest 

influence on the relative deviation of the specific surface area while density, as expected, has the 

lowest influence. On the other hand and surprisingly, the overlap coefficient, denoting a standard 

deviation of 40%, has similar influence than density (with estimated standard deviation close to 5%). 

Such poor influence of the overlap coefficient explains why, even with 40% of uncertainty on this 

parameter, the SSA values obtained according to our automatic analysis software are in close 

agreement with those measured by BET. 
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Figure S3: Evolution of the relative deviation from mean specific surface area value as a function of 

number of primary particles associated to separate uncertainty of density, overlap coefficient and 

primary particle diameter. “All” corresponds to the relative deviation when all uncertainties are 

considered in the same time. 

 

 


