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Quasi-stationarity for one-dimensional renormalized

Brownian motion
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Abstract

We are interested in the quasi-stationarity of the time-inhomogeneous
Markov process

Xt =
Bt

(t+ 1)κ

where (Bt)t≥0 is a one-dimensional Brownian motion and κ ∈ (0,∞).
We first show that the law of Xt conditioned not to go out from (−1, 1)
until the time t converges weakly towards the Dirac measure δ0 when
κ > 1

2 as t goes to infinity. Then we show that this conditioned prob-
ability converges weakly towards the quasi-stationary distribution of
an Ornstein-Uhlenbeck process when κ = 1

2 . Finally, when κ < 1
2 ,

it is shown that the conditioned probability converges towards the
quasi-stationary distribution of a Brownian motion. We also prove the
existence of a Q-process and a quasi-ergodic distribution for κ = 1

2 and
κ < 1

2 .
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aries

2010 Mathematics Subject Classification. Primary : 60B10; 60F99;
60J50;60J65
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1 Introduction

1.1 Introduction of the problem and quasi-stationarity

In this paper, we are interested in some notions related to quasi-stationarity
for a one-dimensional Brownian motion (Bt)t≥0 killed when crossing the
moving boundaries t → (−(t + 1)κ, (t + 1)κ), with κ ∈ (0,∞). Quasi-
stationarity with moving boundaries was studied in [13] and [14] for pe-
riodic or converging boundaries, but expanding boundaries were not yet
considered. Actually, instead of considering the process B absorbed at
t→ (−(t+ 1)κ, (t+ 1)κ), we will study the quasi-stationarity of the process
X = (Xt)t≥0 absorbed at (−1, 1)c and defined by

Xt :=
Bt

(t+ 1)κ
, ∀t < τX

where τX := inf{t ≥ 0 : |Xt| = 1}.
The process X is a time-inhomogeneous Markov process. For any x ∈ R

and s ≥ 0, denote by Px,s the probability measure satisfying Px,s(Xs = x) =
1, and denote by Ex,s its corresponding expectation. Also, for any measure µ,
for any s ≥ 0, one denotes by Pµ,s :=

∫
R Px,sµ(dx) and Eµ,s :=

∫
R Ex,sµ(dx).

A quasi-stationary distribution of X absorbed at (−1, 1)c is a probability
measure α supported on (−1, 1) such that

Pα,s(Xt ∈ ·|τX > t) = α, ∀s ≤ t

We refer the reader to [10, 12] for more details on the theory. Note however
that these references only deal with the time-homogeneous setting and that
quasi-stationary distributions for time-inhomogeneous Markov processes do
not exist except for particular cases (especially we will see that the existence
of one quasi-stationary distribution holds only for κ = 1

2).
Usually, in the literature dealing with quasi-stationarity, mathematicians

are interested in showing the weak convergence of marginal laws of Markov
processes conditioned not to be absorbed by a cemetery set. The correspond-
ing limit is called quasi-limiting distribution. For our purpose, we define a
quasi-limiting distribution as follows

Definition 1. α is a quasi-limiting distribution of X if for some initial law
µ supported on (−1, 1) and for any s ≥ 0,

lim
t→∞

Pµ,s(Xt ∈ ·|τX > t) = α
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where the limit refers to the weak convergence of measures. In [12]
it is noted that, in the time-homogeneous setting, quasi-stationary distri-
bution and quasi-limit distribution are equivalent notions. In the time-
inhomogeneous setting, this equivalence does not hold anymore. More par-
ticularly a time-inhomogeneous Markov process could admit a quasi-limit
distribution without admitting a quasi-stationary distribution. However a
quasi-stationary distribution is necessarily a quasi-limiting distribution.

Quasi-limiting distribution is not the only point of interest in the the-
ory of quasi-stationarity. Another point is the Q-process, which can be
considered as the law of the considered Markov process conditioned not be
absorbed. Concerning the process X, we define the Q-process as follows

Definition 2. We say that there is a Q-process for X if there exists a family
(Qx,s)x∈(−1,1),s≥0 of probability measure defined by : for any x ∈ (−1, 1) and
for any s ≤ t

Qx,s(X[s,t] ∈ ·) := lim
T→∞

Px,s(X[s,t] ∈ ·|T < τX)

where, for any u ≤ v, X[u,v] is the trajectory of X between times u and v.
Then the Q-process is defined as the law of X under (Qx,s)x∈(−1,1),s≥0.

In general, the Q-process is also a Markov process and the theory of
quasi-stationarity allows to get some results of ergodicity for the Q-process.

Finally, a third concept to study is the existence of a quasi-ergodic dis-
tribution defined as follows

Definition 3. β is a quasi-ergodic distribution of X if for some initial law
µ supported on (−1, 1) and for any s ≥ 0,

lim
t→∞

1

t

∫ t

s
Pµ,s(Xu ∈ ·|τX > t)du = β

In the literature, this notion is also called mean-ratio quasi-stationary
distribution. The references [10, 12] does not deal with quasi-ergodic distri-
bution. See for example [5, 8] which provide general assumptions implying
the existence of quasi-ergodic distribution for time-homogeneous Markov
processes.

Some general results on quasi-stationarity for time-inhomogeneous Markov
process are established, particularly in [9], where it is shown that criteria
based on Doeblin-type condition implies a mixing property (or merging or
weak ergodicity) and the existence of the Q-process. However it will be diffi-
cult to apply these results for our purpose. See also [16, 11, 14, 13] for a few
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results about quasi-stationarity in the time-inhomogeneous setting, and [1]
for ergodic properties for general non-conservative (time-homogeneous and
inhomogeneous) semi-group.

Now let us come back to our process X. As we can expect, the existence
of quasi-limiting, Q-process and quasi-ergodic distribution will strongly de-
pend on κ. More precisely, three regimes are identified :

• κ > 1
2 , we will say that X is supercritical

• κ = 1
2 , we will say that X is critical

• κ < 1
2 , we will say that X is subcritical

The aim of this paper is therefore to show the existence of quasi-limiting,
Q-process and quasi-ergodic distribution for each regime. More precisely, it
will be shown in a first step that, for any probability measure µ on (−1, 1)
and s ≥ 0,

lim
t→∞

Pµ,s(Xt ∈ ·|τX > t) = δ0

in the supercritical regime. This regime is of little interest and the existence
of a Q-process and a quasi-ergodic distribution will not be shown. In a sec-
ond step, the existence of quasi-limiting, Q-process and quasi-ergodic distri-
bution will be stated in the critical regime and these probability measures
are connected to the quasi-stationarity of an Ornstein-Uhlenbeck process
absorbed at (−1, 1)c. Finally, the existence of these three notions will also
be established in the subcritical regime where the quasi-stationarity of X is
linked with the quasi-stationarity of a Brownian motion on [−1, 1].

1.2 A few notation

For any E ⊂ R, one denotes by M1(E) the set of the probability measures
supported on E and, for any measurable bounded function f on (−1, 1) and
µ ∈M1((−1, 1)), denote by

µ(f) :=

∫
(−1,1)

fdµ

For a general Markov process (Ω, (FAt )t≥0, (At)t≥0, (PAx,s)x∈R,s≥0), for any

probability measure µ on R and any s ≥ 0, we define PAµ,s :=
∫
R Px,sµ(dx).

Then the family of probability measures (PAµ,s)µ∈M1(R),s≥0 satisfies

PAµ,s(As ∈ ·) = µ

4
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If the process A is time-homogeneous, we define, for any µ ∈M1(R), PAµ :=

PAµ,0 and we have, for any s ≤ t,

PAµ,s(X[s,t] ∈ ·) = PAµ (X[0,t−s] ∈ ·)

For A = X, we will keep the notation established at the beginning of the
introduction.

2 The supercritical regime : κ > 1
2

The following theorem states the existence of a unique quasi-limiting distri-
bution, which is δ0

Theorem 1. For any µ ∈M1((−1, 1)) and s ≥ 0,

lim
t→∞

Pµ,s(Xt ∈ ·|τX > t) = δ0

Proof. By Markov’s inequality, for any ε > 0 and any probability measure
µ,

Pµ,s (|Xt| ≥ ε|τX > t) ≤ Eµ,s(X2
t |τX > t)

ε2

≤ Eµ,s(X2
t )

ε2Pµ,s(τX > t)

=
t− s+ (s+ 1)2κ

∫
(−1,1) x

2dµ(x)

ε2(t+ 1)2κPµ,s(τX > t)

It is well known that Pµ,s-almost surely,

lim sup
t→∞

Bt√
2t log log t

= 1

and

lim inf
t→∞

Bt√
2t log log t

= −1

Thus, since κ > 1
2 , Pµ,s-almost surely,

Xt =
Bt

(t+ 1)κ
−→
t→∞

0

As a result, for any s ≥ 0 and any probability measure µ on (−1, 1),

lim
t→∞

Pµ,s(τX > t) = Pµ,s(τX =∞) > 0

5
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Thus, for any ε > 0,

Pµ,s(|Xt| ≥ ε|τX > t)−→
t→∞

0

In other words, (Xt)t≥0 converges in conditional probability towards 0. This
conclude the proof.

3 The critical case : κ = 1
2

3.1 Existence and uniqueness of a quasi-stationary distribu-
tion

We state a first theorem on the existence of the quasi-limiting distribution
(and quasi-stationary distribution) in the critical regime.

Theorem 2. Let αOU be the unique quasi-stationary distribution of the
Ornstein-Uhlenbeck process absorbed by (−1, 1)c whose the generator is

L :=
1

2
∆− 1

2
x∇ (1)

Then αOU is also the unique quasi-stationary distribution of X and there
exist COU , γOU > 0 such that for any probability measure µ on (−1, 1) and
any 0 ≤ s ≤ t,

||Pµ,s(Xt ∈ ·|τX > t)− αOU ||TV ≤ COU
(
s+ 1

t+ 1

)γOU
(2)

In particular, for any µ ∈ M1((−1, 1)) and s ≥ 0, t → Pµ,s(Xt ∈ ·|τX > t)
converges weakly towards αOU when t goes to infinity.

Remark 1. Using the spectral theory of the Ornstein-Uhlenbeck generator,
αOU can be computed and

αOU (dx) := K × (1− x2)e−
x2

2 dx

where K is the renormalization constant.

Remark 2. It is well-known (see [10, 12]) that there exists λOU > 0 such
that

PZαOU (τZ > t) = e−λOU t, ∀t ≥ 0 (3)

where τZ := inf{t ≥ 0 : |Zt| = 1}. Moreover, for any f ∈ {g ∈ C2([−1, 1]) :
g(−1) = g(1) = 0},

αOU (Lf) = −λOUαOU (f)
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where L is defined in (1). Using the explicit formula of αOU , it is easy to
check that

λOU = 1 (4)

Proof of Theorem 2. Let Z be the Ornstein-Uhlenbeck process whose in-
finitesimal generator is L. Then, for any probability measure µ on (−1, 1)
and any s ≥ 0,

Pµ,s((Xt)t≥s ∈ ·) = PZµ
((

Zlog( t+1
s+1)

)
t≥s
∈ ·
)

(5)

Hence, using (5), one has for any s ≤ t,

PαOU ,s(Xt ∈ ·|τX > t) = PZαOU

(
Zlog( t+1

s+1) ∈ ·
∣∣∣∣τZ > log

(
t+ 1

s+ 1

))
= αOU

In other words αOU is also the unique quasi-stationary distribution of the
time-inhomogeneous Markov process X. Moreover, since Z satisfies the
assumptions (A1) and (A2) of [7] (this is actually shown in [6]), then, by
Theorem 2.1. in [7], there exist COU > 0 and γOU > 0 such that for any
t ≥ 0 and for any probability measure µ,

||PZµ (Zt ∈ ·|τZ > t)− αOU ||TV ≤ COUe−γOU t

Using (5) one deduce that, for any s ≤ t and for any probability measure µ
on (−1, 1),

||Pµ,s(Xt ∈ ·|τX > t)− αOU ||TV ≤ COU
(
s+ 1

t+ 1

)γOU
This concludes the proof.

3.2 Existence of the Q-process

Before tackling the existence of the Q-process, we need the following propo-
sition:

Proposition 1. There exists a non-negative function ηOU : [−1, 1] → R+,
positive on (−1, 1) and vanishing on {−1, 1} such that for any x ∈ (−1, 1)
and any s ≥ 0,

ηOU (x) = lim
t→∞

t+ 1

s+ 1
Px,s(τX > t)

7
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where the convergence holds uniformly on [−1, 1] and αOU (ηOU ) = 1. More-
over the function ηOU is bounded, belongs to the domain of L defined in (1)
and

LηOU = −λOUηOU = −ηOU

Remark 3. More precisely,

ηOU (x) = K ′ × (1− x2) (6)

where K ′ is the positive constant such that αOU (ηOU ) = 1.

An interesting consequence of Proposition 1 can be stated as the follow-
ing corollary

Corollary 1. Let B a Brownian motion on R and denote by

τ
√
·

B := inf{t ≥ 0 : |Bt| ≥
√
t+ 1}

Then for any x ∈ (−1, 1),

PBx (τ
√
·

B > t) ∼t→∞ K ′
1− x2

t+ 1

Proof of Proposition 1 and Corollary 1. Using Proposition 2.3 in [7] applied
to the process Z and (5), one has for any x ∈ (−1, 1) and s ≥ 0,

ηOU (x) = lim
t→∞

eλOU log( t+1
s+1)PZx

(
τZ > log

(
t+ 1

s+ 1

))
= lim

t→∞

(
t+ 1

s+ 1

)λOU
Px,s(τX > t)

= lim
t→∞

t+ 1

s+ 1
Px,s(τX > t)

where we finally used (4). This ends the proof of Proposition 1. Now it is

easy to see that, for any x ∈ (−1, 1) and t ≥ 0, PBx (τ
√
·

B > t) = Px,0(τX > t).
Thus, using Proposition 1 and (6), we conclude the corollary.

Remark 4. In [4], Breiman shows a similar result for one-dimensional Brow-
nian motion absorbed by a one-sided square boundary. More precisely, de-
noting T ∗c := inf{t ≥ 0 : Bt ≥ c

√
t+ 1} for any c > 0, he shows that

PB0 (T ∗c > t) ∼t→∞ at−b(c) for a > 0 and b such that b(1) = 1. In particular,

for c = 1, PB0 (T ∗1 > t) and PB0 (τ
√
·

B > t) decay as 1/t. The reader can also
see [15] for more general boundaries.

8



W.Oçafrain Quasi-stationarity for renormalized Brownian motion

We turn to the existence of the Q-process and its ergodicity.

Proposition 2. • There exists a Q-process and the family of probability
measure (Qx,s)x∈(−1,1),s≥0 defined in Definition 2 is given by : for any
x ∈ (−1, 1) and s ≤ t,

Qx,s(X[s,t] ∈ ·) = Ex,s

(
1X[s,t]∈·,τX>t

(
t+ 1

s+ 1

)λOU ηOU (Xt)

ηOU (x)

)

=
t+ 1

s+ 1
× Ex,s

(
1X[s,t]∈·,τX>t

1−X2
t

1− x2

)
• The probability measure βOU defined by

βOU (dx) := ηOU (x)αOU (dx) = KK ′(1− x2)2e−
x2

2 dx

is the unique stationary distribution of X under (Qx,s)s≥0,x∈(−1,1).
Moreover, for any 0 ≤ s ≤ t and any x ∈ (−1, 1),

||Qx,s(Xt ∈ ·)− βOU ||TV ≤ COU
(
s+ 1

t+ 1

)γOU
where COU and γOU are the same constant as used in (2).

Proof. Straightforward using (5) and Proposition 3.1. in [7] applied to the
Ornstein-Uhlenbeck process Z

3.3 Quasi-ergodic distribution

Now let us provide and show the existence and the uniqueness of the quasi-
ergodic distribution

Theorem 3. For any probability measure µ on (−1, 1) and any s ≥ 0, for
any measurable set S

lim
t→∞

1

t

∫ t

0
Pµ,s(Xu ∈ S|τX > t)du =

∫
S
EZx (τZ)αOU (dx)

Remark 5. In the time-homogeneous setting, it is usually expected that the
quasi-ergodic distribution is the stationary distribution of the Q-process (see
[5, 8]). A similar result could even be expected in the time-inhomogeneous
case when the Q-process converges weakly at the infinity (see [13]). It is
therefore astonishing to see that this is not the case for our process in the
critical regime, even though the Q-process admits a stationary measure. In
particular, the quasi-ergodic distribution of X is different from the quasi-
ergodic distribution of the process Z.

9
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Proof. First, using the variable change u = s + q(t − s), one has, for any
µ ∈M1((−1, 1)), s < t and f bounded measurable,

1

t− s

∫ t

s
Eµ,s(f(Xu)|τX > t)du =

∫ 1

0
Eµ,s(f(Xs+q(t−s))|τX > t)dq

As a result it is enough to show the weak convergence of
(
Pµ,s(Xs+q(t−s) ∈ ·|τX > t)

)
t≥0

for any q ∈ (0, 1), then to conclude with the Lebesgue’s dominated conver-
gence theorem.
Let µ ∈ M1((−1, 1)), s ≥ 0, q ∈ (0, 1) and f bounded measurable. Using
Markov property and (5),for any t ≥ s,

Eµ,s(f(Xs+q(t−s))1τX>t) = Eµ,s
(
f(Xs+q(t−s))1τX>s+q(t−s)PXs+q(t−s),s+q(t−s)(τX > t)

)
(7)

= Eµ,s
(
ft
(
Xs+q(t−s)

)
1τX>s+q(t−s)

)
(8)

where we set for any y ∈ (−1, 1),

ft(y) := f(y)Py,s+q(t−s) [τX > t]

By (5), for any y ∈ (−1, 1) and t ≥ s,

ft(y) = f(y)PZy
[
τZ > log

(
t+ 1

s+ q(t− s) + 1

)]
Now define for any y ∈ (−1, 1),

f∞(y) := f(y)PZy [τZ > − log (q)]

It is easy to see that (ft)t≥0 converges pointwise towards f∞. Moreover, a
simple curve sketching entails that the function t→ t+1

s+q(t−s)+1 is increasing,

which implies that the sequence (ft)t≥0 is a decreasing sequence of contin-
uous functions defined on [−1, 1]. Likewise, f∞ is continuous on [−1, 1].
As a result, by Dini’s theorem for the decreasing sequences of continuous
function, the pointwise convergence is equivalent to uniform convergence on
[−1, 1]. Thus,

lim
t→∞

sup
y∈(−1,1)

|ft(y)− f∞(y)| = 0 (9)

Now let us show that

lim
t→∞

s+ q(t− s) + 1

s+ 1
Eµ,s(f∞(Xs+q(t−s))1τX>s+q(t−s)) = µ(ηOU )αOU (f∞)

(10)

10
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To show this, let us begin with

s+ q(t− s) + 1

s+ 1
Eµ,s

(
f∞(Xs+q(t−s))1τX>s+q(t−s)

)
=
s+ q(t− s) + 1

s+ 1
Pµ,s(τX > s+ q(t− s))× Eµ,s(f∞(Xs+q(t−s))|τX > s+ q(t− s))

On the one hand, by Proposition 1,

lim
t→∞

s+ q(t− s) + 1

s+ 1
Pµ,s(τX > s+ q(t− s)) = µ(ηOU )

On the other hand, by (2),

lim
t→∞

Eµ,s(f∞(Xs+q(t−s))|τX > s+ q(t− s)) = αOU (f∞)

(10) follows from these two convergences. Now, by (10) and (9),

s+ q(t− s) + 1

s+ 1
Eµ,s

(
ft
(
Xs+q(t−s)

)
1τX>s+q(t−s)

)
=
s+ q(t− s) + 1

s+ 1
Eµ,s

(
f∞
(
Xs+q(t−s)

)
1τX>s+q(t−s)

)
+
s+ q(t− s) + 1

s+ 1
Eµ,s

([
f∞
(
Xs+q(t−s)

)
− ft

(
Xs+q(t−s)

)]
1τX>s+q(t−s)

)
−→
t→∞

µ(ηOU )αOU (f∞)

because∣∣∣∣s+ q(t− s) + 1

s+ 1
Eµ,s

([
f∞
(
Xs+q(t−s)

)
− ft

(
Xs+q(t−s)

)]
1τX>s+q(t−s)

)∣∣∣∣
≤ s+ q(t− s) + 1

s+ 1
Pµ,s(τX > s+ q(t− s))× sup

y∈(−1,1)
|ft(y)− f∞(y)| −→

t→∞
0

Hence, using (7), (8),

lim
t→∞

s+ q(t− s) + 1

s+ 1
Eµ,s(f(Xs+q(t−s))1τX>t) = µ(ηOU )αOU (f∞)

= µ(ηOU )

∫
(−1,1)

f(x)PZx (τZ > − log(q))αOU (dx)

Moreover, taking f = 1, using (3) and (4),

lim
t→∞

s+ q(t− s) + 1

s+ 1
Pµ,s(τX > t) = µ(ηOU )PZαOU (τZ > − log(q))

= µ(ηOU )q

11
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Thus we deduce that

lim
t→∞

Eµ,s(f(Xs+q(t−s))|τX > t) = q−1
∫
(−1,1)

αOU (dx)f(x)Px(τZ > − log(q))

Then, by Lebesgue’s theorem, for any probability measure µ on (−1, 1) and
any bounded measurable function f ,

lim
t→∞

1

t− s

∫ t

s
Eµ,s(f(Xu)|τX > t)du = lim

t→∞

∫ 1

0
Eµ,s(f(Xs+q(t−s))|τX > t)dq

=

∫ 1

0
q−1

∫
(−1,1)

f(x)PZx (τZ > − log(q))αOU (dx)dq

=

∫
(−1,1)

αOU (dx)f(x)

∫ 1

0
q−1PZx (τZ > − log(q))dq

=

∫
(−1,1)

αOU (dx)f(x)

∫ ∞
0

PZx (τZ > s)ds

=

∫
(−1,1)

αOU (dx)f(x)EZx (τZ)

This concludes the proof.

4 The subcritical case : κ < 1
2

In this section, we will show that quasi-limiting distribution, quasi-ergodic
distribution and Q-process exist when κ < 1

2 . To do this, the strategy will
be to compare (in a sense described later) the process X to the process Y
defined by

Yt :=

∫ t

0

1

(u+ 1)κ
dBu, ∀t ≥ 0

Then the quasi-stationarity of X will be deduced from the one of Y .

4.1 Approximation by Y through asymptotic pseudotrajec-
tories

Denote by τY := inf{t ≥ 0 : |Yt| = 1}. The aim of this subsection is to show
the following proposition :

Proposition 3. There exists a function F : R+ → R+ such that

lim
s→∞

F (s) = 0

12
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and such that, for any 0 ≤ s ≤ t ≤ T , for any probability measure µ on
(−1, 1),

||Pµ,s(Xt ∈ ·|τX > T )− PYµ,s(Yt ∈ ·|τY > T )||TV ≤ F (s) (11)

Remark 6. (11) provides us with a decay towards 0 uniformly in the initial
law, t and T . It can be seen as an analogue of the asymptotic pseudotrajec-
tories introduced by Benäım and Hirsch in [3]. See also [2] for more details
about asymptotic pseudotrajectories in general case.

Proof of Proposition 3. By Itô’s formula, one has for any t ≥ 0,

Xt = X0 + Yt− < Y,M >t

where

Mt :=

∫ t

0
κ(u+1)κ−1XudBu =

∫ t

0
κ(u+1)2κ−1XudXu+

∫ t

0
(κ(u+1)κ−1Xu)2du

For any s ≤ t, denote by

Ms,t := Mt −Ms =

∫ t

s
κ(u+ 1)κ−1XudBu

and

< M,M >s,t:=< M,M >t − < M,M >s=

∫ t

s
(κ(u+ 1)κ−1Xu)2du

and denote by E(M)s,t the exponential local martingale defined by

E(M)s,t := exp

(
Ms,t −

1

2
< M,M >s,t

)
:= exp

(∫ t

s
κ(u+ 1)2κ−1XudXu +

1

2

∫ t

s
(κ(u+ 1)κ−1Xu)2du

)
= exp

(
1

2
Ns,t

)
where Ns,t := 2

∫ t
s κ(u + 1)2κ−1XudXu +

∫ t
s (κ(u + 1)κ−1Xu)2du. By Itô’s

formula applied to t→ κ(t+ 1)2κ−1X2
t , for any s ≤ t,

Ns,t := κ(t+ 1)2κ−1X2
t − κ(s+ 1)2κ−1X2

s

−
∫ t

s
[κ(u+ 1)2κ−1]′X2

udu−
∫ t

s

κ

u+ 1
du+

∫ t

s
(κ(u+ 1)κ−1Xu)2du

= κ(t+ 1)2κ−1X2
t − κ(s+ 1)2κ−1X2

s

−
∫ t

s
[κ(u+ 1)2κ−1]′X2

udu− κ log

(
t+ 1

s+ 1

)
+

∫ t

s
(κ(u+ 1)κ−1Xu)2du

13
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Note that the process (Ns,t∧τX )s≤t is almost surely uniformly bounded, thus
E(M)s,t∧τX is a martingale. For any t ≥ s ≥ 0 and µ ∈ M1((−1, 1)), define
Gµ,s the probability measure satisfying

Gµ,s(A) = Eµ,s(E(M)s,t∧τX1A), ∀A ∈ σ(Xu, s ≤ u ≤ t)

Then, by Girsanov’s theorem, the law of (Xt∧τX )t≥s under Gµ,s is the law of
(Yt∧τY )t≥s under Pµ,s. In particular, for any S measurable set, probability
measure µ on (−1, 1) and 0 ≤ s ≤ t ≤ T ,

Pµ,s(Yt ∈ S, τY > T ) = Gµ,s(Xt ∈ S, τX > T )

= Eµ,s (E(M)s,T∧τX1Xt∈S,τX>T )

= Eµ,s (E(M)s,T1Xt∈S,τX>T )

= Eµ,s
(

exp

(
1

2
Ns,T

)
1Xt∈S,τX>T

)
=

(
s+ 1

T + 1

)κ
2

Eµ,s
(

exp

(
1

2
N ′s,T

)
1Xt∈S,τX>T

)
with N ′s,T = Ns,T + κ log

(
T+1
s+1

)
. Thus,

Pµ,s(Yt ∈ S|τY > T ) =
Eµ,s

(
exp

(
1
2N
′
s,T

)
1Xt∈S,τX>T

)
Eµ,s

(
exp

(
1
2N
′
s,T

)
1τX>T

)

14
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Thus for any 0 ≤ s ≤ t ≤ T and S measurable set,

|Pµ,s(Xt ∈ S|τX > T )− PYµ,s(Yt ∈ S|τY > T )|

=

∣∣∣∣∣∣Pµ,s(Xt ∈ S|τX > T )−
Eµ,s

(
exp

(
1
2N
′
s,T

)
1Xt∈S,τX>T

)
Eµ,s

(
exp

(
1
2N
′
s,T

)
1τX>T

)
∣∣∣∣∣∣

≤

∣∣∣∣∣∣ Pµ,s(τX > T )

Eµ,s
(

exp
(
1
2N
′
s,T

)
1τX>T

) Eµ,s
(

exp
(
1
2N
′
s,T

)
1Xt∈S,τX>T

)
Pµ,s(τX > T )

−
Eµ,s

(
exp

(
1
2N
′
s,T

)
1Xt∈S,τX>T

)
Pµ,s(τX > T )

∣∣∣∣∣∣
+

∣∣∣∣∣∣
Eµ,s

(
exp

(
1
2N
′
s,T

)
1Xt∈S,τX>T

)
Pµ,s(τX > T )

− Pµ,s(Xt ∈ S, τX > T )

Pµ,s(τX > T )

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ Pµ,s(τX > T )

Eµ,s
(

exp
(
1
2N
′
s,T

)
1τX>T

) − 1

∣∣∣∣∣∣︸ ︷︷ ︸
=:As(µ,T )

×
Eµ,s

(
exp

(
1
2N
′
s,T

)
1τX>T

)
Pµ,s(τX > T )

+
|Eµ,s

(
exp

(
1
2N
′
s,T

)
1Xt∈S,τX>T

)
− Pµ,s(Xt ∈ S, τX > T )|

Pµ,s(τX > T )︸ ︷︷ ︸
=:Cs(µ,t,T,S)

In order to show (11), we will bound the functions As and Cs.

Step 1 : Upper bound for Cs .

For any 0 ≤ s ≤ t ≤ T , probability measure µ and B measurable set,

Cs(µ, t, T, S) =

∣∣∣∣∣∣∣∣∣Eµ,s
[(

exp

(
1

2
N ′s,T

)
− 1

)
1Xt∈S

∣∣∣∣τX > T

]
︸ ︷︷ ︸

=:f(s,t,T,µ,S)

∣∣∣∣∣∣∣∣∣
On the event {τX > T}, X2

u < 1 for any 0 ≤ u ≤ T . Hence the
function f defined as above is bounded as follows

exp

(
−κ

2
(s+ 1)2κ−1 − 1

2

∫ T

s
[κ(u+ 1)2κ−1]′du

)
− 1

≤ f(s, t, T, µ, S) ≤ exp

(
1

2
κ(T + 1)2κ−1 +

1

2

∫ T

s
(κ(u+ 1)κ−1)2du

)
− 1

15



W.Oçafrain Quasi-stationarity for renormalized Brownian motion

In particular, for any 0 ≤ s ≤ t ≤ T , for any probability measure µ
and S measurable set,

|f(s, t, T, µ, S)| ≤
(

1− exp

(
−1

2
κ(s+ 1)2κ−1

))
∨
(

exp

(
1

2

(
κ+

κ2

1− 2κ

)
(s+ 1)2κ−1

)
− 1

)
=: φ(s)

Hence,
Cs(µ, t, T, S) ≤ φ(s)

Step 2 : Upper bound for As .
Taking S = (−1, 1),

Cs(µ, t, T, (−1, 1)) =
|Eµ,s

(
exp

(
1
2N
′
s,T

)
1Xt∈(−1,1),τX>T

)
− Pµ,s(Xt ∈ (−1, 1), τX > T )|

Pµ,s(τX > T )

=

∣∣∣∣∣∣
Eµ,s

(
exp

(
1
2N
′
s,T

)
1τX>T

)
Pµ,s(τX > T )

− 1

∣∣∣∣∣∣
According to the previous bound we have shown, for any for any s ≤ T ,
for any probability measure µ on (−1, 1),

1− φ(s) ≤
Eµ,s

(
exp

(
1
2N
′
s,t

)
1τX>t

)
Pµ,s(τX > t)

≤ 1 + φ(s) (12)

We deduce from this last inequality that

As(µ, T ) ≤
(

1− 1

1 + φ(s)

)
∨
(

1

1− φ(s)
− 1

)
=: ψ(s)

We set then, for any s ≥ 0,

F (s) = φ(s) + ψ(s)(1 + φ(s))

which concludes the proof.

16
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4.2 Quasi-stationarity of Y

Now we are interested in the quasi-stationarity of the process Y . Note that,
by Dubin-Schwartz’s theorem, there exists a Brownian motion B̃ such that
for any t ≥ 0

Yt = B̃ (t+1)1−2κ−1
1−2κ

(13)

Denote τB̃ := inf{t ≥ 0 : |B̃t| = 1}. Then, by (13), for any initial law µ and
s ≥ 0,

PYµ,s(Yt ∈ ·|τY > t) = PB̃µ
(
B̃ (t+1)1−2κ−(s+1)1−2κ

1−2κ

∈ ·
∣∣∣∣τB̃ >

(t+ 1)1−2κ − (s+ 1)1−2κ

1− 2κ

)
It is well known that a Brownian motion absorbed at (−1, 1)c admits a
unique quasi-stationary distribution αBm whose explicit form is

αBm(dx) :=
1

2
cos
(π

2
x
)
dx

and that there exists λBm > 0 such that

PB̃αBm(τY > t) = e−λBmt, ∀t ≥ 0

Remark that λBm satisfies also

αBm

(
1

2
∆f

)
= −λBm

2
∆f, ∀f ∈ {g ∈ C2([−1, 1]) : g(1) = g(−1) = 0}

The Brownian motion absorbed at (−1, 1)c satisfies the Champagnat-Villemonais
condition (A1) − (A2) in [7], which implies the existence of CBm, γBm > 0
such that for any probability measure µ and any t ≥ 0,

||PB̃µ (B̃t ∈ ·|τB̃ > t)− αBm||TV ≤ CBme−γBmt

Thus, using the Dubins-Schwartz transformation, for any s ≤ t and proba-
bility measure µ

||PYµ,s(Yt ∈ ·|τY > t)−αBm||TV ≤ CBm exp

(
−γBm ×

(t+ 1)1−2κ − (s+ 1)1−2κ

1− 2κ

)
(14)

Moreover, let ηBm be the function defined by

ηBm(x) := lim
t→∞

eλBmtPB̃x (τB̃ > t)

17
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This definition makes sense by Proposition 2.3. in [7]. We recall moreover
that ηBm is positive on (−1, 1), vanishing on {−1, 1}, αBm(ηBm) = 1 and
the convergence holds uniformly on [−1, 1]. Then, in the same way as in the
critical case, an analogous version of Propositions 1 and 2 can be stated as
follows

Proposition 4. (i) For any x ∈ (−1, 1) and any s ≥ 0,

ηBm(x) = lim
t→∞

eλBm
(t+1)1−2κ−(s+1)1−2κ

1−2κ PYx,s(τY > t)

where the convergence holds uniformly on [−1, 1].

(ii) There exists a Q-process for Y in the sense of Definition 2 and the
family of probability measure (QY

x,s)x∈(−1,1),s≥0 defined by QY
s,x(Y[s,t] ∈

·) := limT→∞ PYx,s(Y[s,t] ∈ ·|T < τY ) satisfies also

QY
x,s(Y[s,t] ∈ ·) = Ex,s

(
1Y[s,t]∈·,t<τY e

λBm
(t+1)1−2κ−(s+1)1−2κ

1−2κ
ηBm(Yt)

ηBm(x)

)
for any x ∈ (−1, 1) and s ≤ t

(iii) The probability measure βBm defined by

βBm(dx) = ηBm(x)αBm(dx) (15)

is the unique stationary distribution of Y under (QY
x,s)x∈(−1,1),s≥0 and,

for any x ∈ (−1, 1) and s ≥ 0,

||QY
x,s(Yt ∈ ·)−βBm||TV ≤ CBm exp

(
−γBm ×

(t+ 1)1−2κ − (s+ 1)1−2κ

1− 2κ

)
where CBm and γBm are the same as in (14).

Proof. The proof is essentially the same as for the proof of Proposition 2.

4.3 Quasi-limiting distribution of X

Now we will use Proposition 3 in order to show the existence of a quasi-
limiting distribution for the process X.

Theorem 4. For any probability measure µ on (−1, 1) and any 0 ≤ s ≤ t,

||Pµ,s(Xt ∈ ·|τX > t)−αBm||TV ≤ F
(
t

2

)
+CBm exp

(
−γBm ×

(t+ 1)1−2κ − ( t2 + 1)1−2κ

1− 2κ

)
(16)
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where the function F is defined in Proposition 3. In particular, for any
µ ∈M1((−1, 1)) and any s ≥ 0,

lim
t→∞

Pµ,s(Xt ∈ ·|τX > t) = αBm

Proof. Let µ ∈M1((−1, 1)). For any s ≤ t define

µ(s,t) := Pµ,s(Xt ∈ ·|τX > t)

Then, according to Markov property, for any s ≤ t ≤ u,

µ(s,u) = Pµ(s,t),t(Xu ∈ ·|τX > u)

Thus, for any s ≤ t,

||µ(s,2t) − αBm||TV ≤ ||µ(s,2t) − PYµ(s,t),t(Y2t ∈ ·|τY > 2t)||TV
+ ||PYµ(s,t),t(Y2t ∈ ·|τY > 2t)− αBm||TV

= ||Pµ(s,t),t(X2t ∈ ·|τX > 2t)− PYµ(s,t),t(Y2t ∈ ·|τY > 2t)||TV
+ ||PYµ(s,t),t(Y2t ∈ ·|τY > 2t)− αBm||TV

≤ F (t) + CBm exp

(
−γBm ×

(2t+ 1)1−2κ − (t+ 1)1−2κ

1− 2β

)
where we used the inequalities (11) and (14). This shows the inequality (16).
Now, since limt→∞ F (t) = 0 by Proposition 3 and noting that

lim
t→∞

exp

(
−γBm ×

(2t+ 1)1−2κ − (t+ 1)1−2κ

1− 2κ

)
= 0

because κ < 1
2 , this shows that for any µ ∈M1((−1, 1)) and s ≥ 0,

lim
t→∞

Pµ,s(Xt ∈ ·|τX > t) = αBm

4.4 Quasi-ergodic distribution

The following theorem states the existence and uniqueness of the quasi-
ergodic distribution (in the sense of Definition 3) for the process X and
that this quasi-ergodic distribution is the probability measure βBm defined
in (15).
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Theorem 5. For any probability measure µ on (−1, 1) and any s ≥ 0,

lim
t→∞

1

t

∫ t

0
Pµ,s(Xu ∈ ·|τX > t)du = βBm

where βBm is defined in (15) (Proposition 4)

Proof. Let µ ∈M1((−1, 1)). We recall the notation

µ(s,t) = Pµ,s(Xt ∈ ·|τX > t), ∀s ≤ t

For any probability measure µ and s ≤ t,∣∣∣∣∣∣∣∣∫ 1

0
Pµ,s(Xs+q(t−s) ∈ ·|τX > t)dq − βBm

∣∣∣∣∣∣∣∣
TV

≤
∣∣∣∣∣∣∣∣∫ 1

0
Pµ,s(Xs+q(t−s) ∈ ·)|τX > t)dq −

∫ 1

0
PYµ(s,s+ q2 (t−s)), q2 (t−s)

(Ys+q(t−s) ∈ ·|τY > t)dq

∣∣∣∣∣∣∣∣
TV

+

∣∣∣∣∣∣∣∣∫ 1

0
PYµ(s,s+ q2 (t−s)), q2 (t−s)

(Ys+q(t−s) ∈ ·|τY > t)dq − βBm
∣∣∣∣∣∣∣∣
TV

≤
∣∣∣∣∣∣∣∣∫ 1

0
Pµ(s,s+ q2 (t−s)), q2 (t−s)

(Xs+q(t−s) ∈ ·|τX > t)dq −
∫ 1

0
PYµ(s,s+ q2 (t−s)), q2 (t−s)

(Ys+q(t−s) ∈ ·|τY > t)dq

∣∣∣∣∣∣∣∣
TV

+

∣∣∣∣∣∣∣∣∫ 1

0
PYµ(s,s+ q2 (t−s)), q2 (t−s)

(Ys+q(t−s) ∈ ·|τY > t)dq − βBm
∣∣∣∣∣∣∣∣
TV

≤
∫ 1

0
F
(
s+

q

2
(t− s)

)
dq +

∫ 1

0

∣∣∣∣∣∣∣∣PYµ(s,s+ q2 (t−s)), q2 (t−s)
(Ys+q(t−s) ∈ ·|τY > t)dq − βBm

∣∣∣∣∣∣∣∣
TV

dq

By Lebesgue’s theorem,

lim
t→∞

∫ 1

0
F
(
s+

q

2
(t− s)

)
dq = 0

In order to prove the convergence towards the quasi-ergodic distribution, it
remains therefore to show that

lim
t→∞

∫ 1

0

∣∣∣∣∣∣∣∣PYµ(s,s+ q2 (t−s)), q2 (t−s)
(Ys+q(t−s) ∈ ·|τY > t)dq − βBm

∣∣∣∣∣∣∣∣
TV

dq = 0

(17)
The idea of the following reasoning is the same as in the critical case. Simi-
larly one has for any x ∈ (−1, 1), s ≤ t, q ∈ (0, 1) and f bounded measurable,

eλBm
(t+1)1−2κ−(s+

q
2 (t−s)+1)1−2κ

1−2κ EYµ(s,s+ q2 (t−s)),s+
q
2
(t−s)(f(Ys+q(t−s))1τY >t)

= eλBm
(s+q(t−s)+1)1−2κ−(s+

q
2 (t−s)+1)1−2κ

1−2κ EYµ(s,s+ q2 (t−s)),s+
q
2
(t−s)

(
gt
(
Ys+q(t−s)

)
1τY >s+q(t−s)

)
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with for any y ∈ (−1, 1)

gt(y) := eλBm
(t+1)1−2κ−(s+q(t−s)+1)1−2κ

1−2κ f(y)PYy,s+q(t−s)+1 [τY > t+ 1]

Also define for any y ∈ (−1, 1),

g∞(y) := f(y)ηBm(y)

Reminding that

PYy,s+q(t−s)+1 (τY > t+ 1) = PB̃y
[
τB̃ >

(t+ 1)1−2κ − (s+ q(t− s) + 1)1−2κ

1− 2κ

]
and using Proposition 2.3. in [7] applied to the process B̃, (gt)t≥0 converges
uniformly on (−1, 1) towards g∞, which implies that the following quantity

EYµ(s,s+ q2 (t−s)),s+
q
2
(t−s)

(
|gt(Ys+q(t−s))− g∞(Ys+q(t−s))|

∣∣τY > s+ q(t− s)
)

goes to 0 when t goes to infinity. As a result, if one of the limit in the
following equality exists, then the other limit exists also and one has

lim
t→∞

eλBm
(t+1)1−2κ−(s+

q
2 (t−s)+1)1−2κ

1−2κ EYµ(s,s+ q2 (t−s)),s+
q
2
(t−s)(f(Ys+q(t−s))1τY >t)

(18)

= lim
t→∞

eλBm
(s+q(t−s)+1)1−2κ−(s+

q
2 (t−s)+1)1−2κ

1−2κ EYµ(s,s+ q2 (t−s)),s+
q
2
(t−s)

(
g∞
(
Ys+q(t−s)

)
1τY >s+q(t−s)

)
(19)

By the definition of conditional expectation, one has

EYµ(s,s+ q2 (t−s)),s+
q
2
(t−s)

(
g∞
(
Ys+q(t−s)

)
1τY >s+q(t−s)

)
= EYµ(s,s+ q2 (t−s)),s+

q
2
(t−s)

(
g∞
(
Ys+q(t−s)

)∣∣τY > s+ q(t− s)
)
PYµ(s,s+ q2 (t−s)),s+

q
2
(t−s)(τY > s+ q(t− s))

On the one hand, by (14),

lim
t→∞

EYµ(s,s+ q2 (t−s)),s+
q
2
(t−s)

(
g∞
(
Ys+q(t−s)

)∣∣τY > s+ q(t− s)
)

= αBm(g∞)

(20)
On the other hand, using again Proposition 2.3. in [7] applied to the process
B̃, we deduce that the following quantity∣∣∣∣eλBm (s+q(t−s)+1)1−2κ−(s+

q
2 (t−s)+1)1−2κ

1−2κ PYµ(s,s+ q2 (t−s)),s+
q
2
(t−s)(τY > s+ q(t− s))− µ(s,s+ q

2
(t−s))(ηBm)

∣∣∣∣
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goes to 0 when t goes to infinity, and again by (14),

lim
t→∞

µ(s,s+ q
2
(t−s))(ηBm) = αBm(ηBm) = 1

As a result,

lim
t→∞

eλBm
(s+q(t−s)+1)1−2κ−(s+

q
2 (t−s)+1)1−2κ

1−2κ PYµ(s,s+ q2 (t−s)),s+
q
2
(t−s)(τY > s+ q(t− s)) = 1

(21)
Hence we deduce from (18), (19),(20) and (21) that, for any bounded mea-
surable function f ,

lim
t→∞

eλBm
(t+1)1−2κ−(s+

q
2 (t−s)+1)1−2κ

1−2κ EYµ(s,s+ q2 (t−s)),s+
q
2
(t−s)(f(Ys+q(t−s))1τY >t)

= lim
t→∞

eλBm
(s+q(t−s)+1)1−2κ−(s+

q
2 (t−s)+1)1−2κ

1−2κ EYµ(s,s+ q2 (t−s)),s+
q
2
(t−s)

(
g∞
(
Ys+q(t−s)

)
1τY >s+q(t−s)

)
= αBm(g∞) =

∫
(−1,1)

αBm(dx)f(x)ηBm(x) = βBm(f)

Taking f = 1,

lim
t→∞

eλBm
(t+1)1−2κ−(s+

q
2 (t−s)+1)1−2κ

1−2κ PYµ(s,s+ q2 (t−s)),s+
q
2
(t−s)(τY > t) = 1

Thus, for any bounded measurable function f ,

lim
t→∞

EYµ(s,s+ q2 (t−s)),s+
q
2
(t−s)

(
f(Ys+q(t−s))

∣∣τY > t
)

= βBm(f)

We conclude to (17) by Lebesgue’s theorem.

4.5 Q-process

4.5.1 Existence of the Q-process

Now it remains to prove the existence of the Q-process. More precisely, this
subsection is devoted to the proof of the following theorem

Theorem 6. For any s ≤ t and µ ∈ M1((−1, 1)), the family of probabil-
ity measure (Pµ,s(X[s,t] ∈ ·|T < τX))T>t converges weakly when T goes to
infinity towards

Qµ,s(X[s,t] ∈ ·) = Eµ,s
(
1X[s,t]∈·,τX>t

ηt(Xt)

µ(ηs)

)
(22)

22
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where (ηt)t≥0 is defined in Proposition 5. Moreover, for any s ≤ t and
µ ∈M1((−1, 1)), one has

||Qµ,s(Xt ∈ ·)−QY
µ,s(Yt ∈ ·)||TV ≤ F (s) (23)

where F is the same function as in Proposition 3 and QY is as defined in
Proposition 4.

Before proving this theorem, let us first state the following key proposi-
tion.

Proposition 5. There exist a family of positive bounded functions (ηs)s≥0
satisfying

Ex,s(1τX>tηt(Xt)) = ηs(x), ∀x ∈ (−1, 1),∀s ≤ t (24)

and H : M1((−1, 1)) × {s, t ∈ R+ : s ≤ t} → (0,∞) such that, for any
ν ∈M1((−1, 1)) and s ≥ 0,

lim
t→∞

H(ν, s, t) = 0

and that, for any s ≤ t and for any µ, ν ∈M1((−1, 1)),∣∣∣∣Pµ,s(τX > t)

Pν,s(τX > t)
− µ(ηs)

ν(ηs)

∣∣∣∣ ≤ H(ν, s, t) (25)

The proof of this proposition is postponed after the proof of Theorem 6.

Proof of Theorem 6. Let µ ∈M1((−1, 1)) and s ≤ t. We define Qµ,s(X[s,t] ∈
·) as the formula (22). Then, for any T > t,

||Pµ,s(X[s,t] ∈ ·|τX > T )−Qµ,s(X[s,t] ∈ ·)||TV

=

∣∣∣∣∣∣∣∣Eµ,s [1X[s,t]∈·,τX>t

(
PXt,t(τX > T )

Pµ,s(τX > T )
− ηt(Xt)

µ(ηs)

)]∣∣∣∣∣∣∣∣
TV

=

∣∣∣∣∣
∣∣∣∣∣Eµ,s

[
1X[s,t]∈·,τX>t

Pµ,s(τX > t)

(
PXt,t(τX > T )

Pµ(s,t),t(τX > T )
− ηt(Xt)

µ(s,t)(ηt)

)]∣∣∣∣∣
∣∣∣∣∣
TV

where (24) was used. Hence, by (25) in Proposition 5,

||Pµ,s(X[s,t] ∈ ·|τX > T )−Qµ,s(X[s,t] ∈ ·)||TV ≤ H(µ(s,t), t, T )

∣∣∣∣∣∣∣∣Eµ,s [1X[s,t]∈·,τX>t

Pµ,s(τX > t)

]∣∣∣∣∣∣∣∣
TV

≤ H(µ(s,t), t, T )

Since, for s ≤ t fixed, limT→∞H(µ(s,t), t, T ) = 0, this implies the weak
convergence of (Pµ,s(X[s,t] ∈ ·|T < τX))T≥t towards Qµ,s defined in (22).
The inequality (23) is a straightforward consequence of (11) in Proposition
3, letting T →∞.
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4.5.2 Proof of Proposition 5

The remaining of the paper is dedicated to prove Proposition 5. In the
proof, two important lemmata are used. So we will start by proving these
lemmata before tackling the proof of Proposition 5.

Lemma 1. • For any s ≥ 0 and a ∈ (0, 1), there exists Cs,a > 0 such
that

inf
x∈[−a,a]

Px,s(τX > t) ≥ Cs,a sup
x∈(−1,1)

Px,s(τX > t), ∀t ≥ 0

• For any a ∈ (0, 1), there exists Ca > 0 such that

inf
x∈[−a,a]

PYx,s(τY > t) ≥ Ca sup
x∈(−1,1)

PYx,s(τY > t), ∀s ≤ t

Proof. • Let a > 0. To prove this, note that for any x ∈ (−1, 1) and
t ≥ s ≥ 0,

Px,s(τX > t) = PB(s+1)κx

[
τ
(·+s+1)κ

B > t− s
]

where, for any s ≥ 0,

τ
(·+s+1)κ

B := inf{t ≥ 0 : |Bt| = (t+ s+ 1)κ}

So the Harnack inequality to show becomes : for any t ≥ 0,

inf
x∈[−a(s+1)κ,a(s+1)κ]

Px(τ
(·+s+1)κ

B > t) ≥ Cs,a sup
x∈(−(s+1)κ,(s+1)κ)

Px(τ
(·+s+1)κ

B > t)

Actually, for any t ≥ 0,

inf
x∈[−a(s+1)κ,a(s+1)κ]

Px(τ
(·+s+1)κ

B > t) = Pa(s+1)κ(τ
(·+s+1)κ

B > t)

and

sup
x∈(−(s+1)κ,(s+1)κ)

Px(τ
(·+s+1)κ

B > t) = P0(τ
(·+s+1)κ

B > t)

Then, for any t ≥ 0,

Pa(s+1)κ(τ
(·+s+1)κ

B > t) ≥ Pa(s+1)κ

(
τ0B < τ

(·+s+1)κ

B , τ
(·+s+1)κ

B > t+ τ0B

)
= Ea(s+1)κ

(
1
τ0B<τ

(·+s+1)κ

B

P0(τ
(·+s+v+1)κ

B > t)|v=τ0B
)

≥ Pa(s+1)κ

(
τ0B < τ

(·+s+1)κ

B

)
P0

(
τ
(·+s+1)κ

B > t
)
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where
τ0B := inf{t ≥ 0 : Bt = 0}

Then setting Cs,a := Pa(s+1)κ

(
τ0B < τ

(·+s+1)κ

B

)
, one has Cs,a > 0 for

any s ≥ 0 and

inf
x∈[−a,a]

Px,s(τX > t) ≥ Cs,a sup
x∈(−1,1)

Px,s(τX > t), ∀t ≥ 0

• This is straightforward using the Harnack inequality for a Brownian
motion and using the change of time provided by the Dubin-Schwartz’s
transformation (13).

Now let us state and prove Lemma 2.

Lemma 2. Let a > 0 . Then there exists a function χa : R+ → R+ such
that, for any s ≤ t, for any µ ∈M1((−1, 1)) and any ν ∈M1((−1, 1)) such
that ν([−a, a]) > 1

2 ,∣∣∣∣∣Pµ,s(τX > t)

Pν,s(τX > t)
−

PYµ,s(τY > t)

PYν,s(τY > t)

∣∣∣∣∣ ≤ χa(s)
with χa(s)→ 0 when s goes to infinity

Proof. Let s ≤ t. Remind the equality for any µ ∈M1((−1, 1)),

Pµ,s(τY > t) =

(
s+ 1

t+ 1

)κ
2

Eµ,s
[
exp

(
1

2
N ′s,t

)
1τX>t

]
(26)

where we recall that N ′s,t is defined in the proof of Proposition 3, and by
(12), for any µ ∈M1((−1, 1)),

1− φ(s) ≤
Eµ,s(exp

(
1
2N
′
s,t

)
1τX>t)

Pµ,s(τX > t)
≤ 1 + φ(s)

where the function φ is also defined in the proof of Proposition 3. Thus, by
(26), for any µ ∈M1((−1, 1)),(

s+ 1

t+ 1

)κ
2

(1− φ(s)) ≤ Pµ,s(τY > t)

Pµ,s(τX > t)
≤
(
s+ 1

t+ 1

)κ
2

(1 + φ(s))
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and, since φ(s) < 1 for any s ≥ 0, one has also,(
t+ 1

s+ 1

)κ
2 1

1 + φ(s)
≤ Pµ,s(τX > t)

Pµ,s(τY > t)
≤
(
t+ 1

s+ 1

)κ
2 1

1− φ(s)
(27)

Thus, for any µ, ν ∈M1((−1, 1)),

1− φ(s)

1 + φ(s)
≤ Pµ,s(τX > t)

Pµ,s(τY > t)

Pν,s(τY > t)

Pν,s(τX > t)
≤ 1 + φ(s)

1− φ(s)
(28)

Thus, it is deduced from (28) that, for any µ, ν ∈M1((−1, 1)),∣∣∣∣∣Pµ,s(τX > t)

Pν,s(τX > t)
−

PYµ,s(τY > t)

PYν,s(τY > t)

∣∣∣∣∣
≤

PYµ,s(τY > t)

PYν,s(τY > t)

∣∣∣∣Pµ,s(τX > t)

Pν,s(τX > t)

Pν,s(τY > t)

Pµ,s(τY > t)
− 1

∣∣∣∣
≤

PYµ,s(τY > t)

PYν,s(τY > t)

[(
1 + φ(s)

1− φ(s)
− 1

)
∨
(

1− 1− φ(s)

1 + φ(s)

)]
Now, if ν is such that ν([−a, a]) > 1

2 , by Lemma 1, for any s ≤ t,

PYµ,s(τY > t) ≤ sup
x∈(−1,1)

PYx,s(τY > t)

≤ 1

Ca
inf

x∈[−a,a]
PYx,s(τY > t)

≤ 1

Caν([−a, a])
PYν,s(τY > t)

≤ 2

Ca
PYν,s(τY > t)

As a result,∣∣∣∣∣Pµ,s(τX > t)

Pν,s(τX > t)
−

PYµ,s(τY > t)

PYν,s(τY > t)

∣∣∣∣∣ ≤ 2

Ca

[(
1 + φ(s)

1− φ(s)
− 1

)
∨
(

1− 1− φ(s)

1 + φ(s)

)]
It remains to set χa(t) := 2

Ca

(
1+φ(s)
1−φ(s) − 1

)
∨
(

1− 1−φ(t)
1+φ(t)

)
. Then, since

φ(s)→ 0 when s→∞, χa goes also to 0 when s goes to infinity.

Remark 7. The inequalities (27) allows us to get that, for any µ ∈M1((−1, 1))
and s ≥ 0,

Pµ,s(τX > t) =t→∞ O

((
t+ 1

s+ 1

)κ
2

e−λBm
(t+1)1−2κ−(s+1)1−2κ

1−2κ

)
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Hence, defining

τ
(·+1)κ

B := inf{t ≥ 0 : |Bt| = (t+ 1)κ},

then, for κ < 1
2 , for any µ ∈M1((−1, 1)),

PBµ (τ
(·+1)κ

B > t) =t→∞ O

(
(t+ 1)

κ
2 e−λBm

(t+1)1−2κ−1
1−2κ

)
However, contrary to the critical regime, it is difficult to provide an asymp-

totical equivalent for PBµ (τ
(·+1)κ

B > t).

Now we can prove Proposition 5.

Proof of Proposition 5. Let ν ∈ M1((−1, 1)) and s ≥ 0. We recall then the
notation

ν(s,t) := Pν,s(Xt ∈ ·|τX > t), ∀s ≤ t

By Theorem 4, the family (ν(s,t))s≤t converges weakly when t goes to in-
finity towards αBm. Thus, by Prokhorov’s theorem, (ν(s,t))s≤t is tight.
This implies that there exists as(ν) ∈ (0, 1) such that, for any t ≥ s,
ν(s,t)([−as(ν), as(ν)]) > 1

2 .
Let µ ∈M1((−1, 1)), s ≤ t and T ≥ 0. Then, using Markov’s property,

Pµ,s(τX > t+ T )

Pν,s(τX > t+ T )
−Pµ,s(τX > t)

Pν,s(τX > t)
=

Pµ,s(τX > t)

Pν,s(τX > t)

(
Pµ(s,t),t(τX > t+ T )

Pν(s,t),t(τX > t+ T )
− 1

)

Using the same argument as in the proof of Lemma 2, by Lemma 1 one has

Pµ,s(τX > t)

Pν,s(τX > t)
≤ 2

Cs,as(ν)

Thus,∣∣∣∣Pµ,s(τX > t+ T )

Pν,s(τX > t+ T )
− Pµ,s(τX > t)

Pν,s(τX > t)

∣∣∣∣ ≤ 2

Cs,as(ν)

∣∣∣∣∣Pµ(s,t),t(τX > t+ T )

Pν(s,t),t(τX > t+ T )
− 1

∣∣∣∣∣
Using Lemma 2, one has∣∣∣∣Pµ,s(τX > t+ T )

Pν,s(τX > t+ T )
− Pµ,s(τX > t)

Pν,s(τX > t)

∣∣∣∣ ≤ 2

Cs,as(ν)

(
χas(ν)(t) +

∣∣∣∣∣P
Y
µ(s,t),t

(τY > t+ T )

PYν(s,t),t(τY > t+ T )
− 1

∣∣∣∣∣
)
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W.Oçafrain Quasi-stationarity for renormalized Brownian motion

Now,∣∣∣∣∣P
Y
µ(s,t),t

(τY > t+ T )

PYν(s,t),t(τY > t+ T )
− 1

∣∣∣∣∣ =
|PYµ(s,t),t(τY > t+ T )− PYν(s,t),t(τY > t+ T )|

PYν(s,t),t(τY > t+ T )

≤
supx∈(−1,1) PYx,t(τY > t+ T )

PYν(s,t),t(τY > t+ T )
||µ(s,t) − ν(s,t)||TV

≤ 4

Cas(ν)
×
(
F

(
t

2

)
+ CBm exp

(
−γBm

(t+ 1)1−2κ − ( t2 + 1)1−2κ

1− 2κ

))
where we used Lemma 1 and (16).

We conclude from all these computations that t → Pµ,s(τX>t)
Pν,s(τX>t) is a Cauchy

sequence, hence converges as t→∞. Denote by h(s, µ, ν) the limit and set

H(ν, s, t) :=
2

Cs,as(ν)

[
χas(ν)(t) +

4

Cas(ν)
×
(
F

(
t

2

)
+ CBm exp

(
−γBm

(t+ 1)1−2κ − ( t2 + 1)1−2κ

1− 2κ

))]
One has therefore, for any µ, ν ∈M1((−1, 1)),∣∣∣∣Pµ,s(τX > t)

Pν,s(τX > t)
− h(s, µ, ν)

∣∣∣∣ ≤ H(ν, s, t)

and limt→∞H(ν, s, t) = 0.
In order to complete the proof, we will inspire by the proof of Proposition
3.1. in [9]. We define for any s ≥ 0

ηs : x→ h(s, δx, δ0)

Since, on the one hand,

lim
t→∞

Pµ,s(τX > t)

P0,s(τX > t)
= h(s, µ, δ0)

and, on the other hand, by Lebesgue’s theorem,

lim
t→∞

Pµ,s(τX > t)

P0,s(τX > t)
= µ(ηs),

then, for any µ, ν ∈M1((−1, 1)),

h(s, µ, ν) = lim
t→∞

Pµ,s(τX > t)

Pν,s(τX > t)
= lim

t→∞

Pµ,s(τX > t)/P0,s(τX > t)

Pν,s(τX > t)/P0,s(τX > t)
=
µ(ηs)

ν(ηs)
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Moreover, for any s ≤ t ≤ u,

Ex,s
(
1τX>t

PXt,t(τX > u)

P0,t(τX > u)

)
=

Px,s(τX > u)

P0,t(τX > u)

=
Px,s(τX > u)

P0,s(τX > u)
E0,s

(
1τX>t

PXt,t(τX > u)

P0,t(τX > u)

)
For any µ ∈M1((−1, 1)), integrating both sides of the equation with respect
to µ, letting u→∞ and using Lebesgue’s theorem, we deduce that, for any
s ≤ t, there exists a positive constant cs,t which does not depend on µ such
that

cs,t =
Eµ,s(1τX>tηt(Xt))

µ(ηs)

In addition, for any s ≤ t ≤ u and for any ν ∈M1((−1, 1)),

cs,tct,u =
Eµ,s(1τX>tηt(Xt))

µ(ηs)

Eν,t(1τX>uηu(Xu))

ν(ηt)

Choosing ν = µ(s,t) = Pµ,s(Xt ∈ ·|τX > t) and using Markov’s property, we
obtain

cs,tct,u =
Eµ,s(1τX>tηt(Xt))

µ(ηs)
×

Eµ(s,t),t(1τX>uηu(Xu))

µ(s,t)(ηt)

=
Eµ,s(1τX>tηt(Xt))× Eµ,s(EXt,t(1τX>uηu(Xu))|τX > t)

µ(ηs)× Eµ,s(ηt(Xt)|τX > t)

=
Eµ,s(1τX>tηt(Xt))× Eµ,s(EXt,t(1τX>uηu(Xu))1τX>t)

µ(ηs)× Eµ,s(ηt(Xt)1τX>t)

=
Eµ,s(1τX>uηu(Xu))

µ(ηs)

= cs,u

Because of the last equality, replacing for all s ≥ 0 the function ηs(x) by
ηs(x)/c0,s entails (24).
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