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In this paper, we study and partially classify those Riemannian manifolds carrying a non-identically vanishing function f whose Hessian is minus f times the Ricci-tensor of the manifold.

Introduction

In this paper, we are interested in those Riemannian manifolds (M n , g) supporting a non-identicallyvanishing function f satisfying

∇ 2 f = -f • Ric (1) 
on M , where ∇ 2 f := ∇∇f denotes the Hessian of f and Ric the Ricci-tensor of (M n , g), both seen as (1, 1)-tensor fields. This equation originates in the search for nontrivial solutions to the so-called skew-Killing-spinor-equation [START_REF] Ginoux | Skew Killing spinors in dimension 4[END_REF].

Equation [START_REF] Corvino | Scalar curvature deformation and a gluing construction for the Einstein constraint equations[END_REF] looks much like that considered by C. He, P. Petersen and W. Wylie in their search for warped product Einstein metrics where functions f are considered whose Hessian is a positive scalar multiple of f • (Ric -λId) for some real constant λ, see e.g. [START_REF] He | Uniqueness of warped product Einstein metrics and applications[END_REF]Eq. (1.4)]. However, no attempt has been made to deal with the negative case since. In another direction, J. Corvino proved [1, Prop. 2.7] that a positive function f satisfies ∇ 2 f = f • Ric -(∆f ) • Id on M if and only if the (Lorentzian) metric g := -f 2 dt 2 ⊕ g is Einstein on R × M . In [START_REF] He | Warped product rigidity[END_REF] the more general situation was considered where the r.h.s. of ( 1) is replaced by f • q for some a priori arbitrary symmetric tensor field q on T M ; but the statements formulated in [START_REF] He | Warped product rigidity[END_REF] are only valid when, for a given fixed q, the space of functions f satisfying ∇ 2 f = f • q has dimension at least 2, see e.g. [5, Theorem A]. Thus we are left with an open problem in case we know about only one such function f .

Along the same line, S. Güler and S.A. Demirbag define a Riemannian manifold (M n , g) to be quasi Einstein if and only if there exist smooth functions u, α, λ on M such that Ric + ∇ 2 u -αdu ⊗ ∇u = λ • Id, see [START_REF] Güler | On warped product manifolds satisfying Ricci-Hessian class type equations[END_REF]Eq. (1.1)]. It is easy to see that, for α = -1 and λ = 0, a function u solves that equation if and only if f := e u solves [START_REF] Corvino | Scalar curvature deformation and a gluing construction for the Einstein constraint equations[END_REF]. However the results of [START_REF] Güler | On warped product manifolds satisfying Ricci-Hessian class type equations[END_REF] cannot be compared with ours since the quasi Einstein condition seems to be interesting only in the case where α > 0 and u > 0.

Independently from [START_REF] He | Warped product rigidity[END_REF][START_REF] He | Uniqueness of warped product Einstein metrics and applications[END_REF], F.E.S. Feitosa, A.A. Freitas Filho, J.N.V. Gomes and R.S. Pina define gradient almost Ricci soliton warped products by means of functions f > 0, ϕ, λ satisfying in particular m f

∇ 2 f + λ • Id = Ric + ∇ 2 ϕ
for some nonzero real constant m, see [2, Eq. (1.4)]. Our equation ( 1) is the special case of that equation where m = -1 and λ = ϕ = 0. But again [START_REF] Feitosa | Gradient almost Ricci soliton warped product[END_REF] only deals with the case where m > 0; besides, only positive f are considered. Therefore, no result of [START_REF] Feitosa | Gradient almost Ricci soliton warped product[END_REF] can be used in our setting.

Ricci-flat manifolds carry obvious solutions to [START_REF] Corvino | Scalar curvature deformation and a gluing construction for the Einstein constraint equations[END_REF], just pick constant functions. Constant functions are actually all solutions to (1) in case M is Ricci-flat and closed. If M is Ricci-flat, complete but noncompact, then there exists a nonconstant solution to [START_REF] Corvino | Scalar curvature deformation and a gluing construction for the Einstein constraint equations[END_REF] if and only if M is the Riemannian product of R with a (complete) Ricci-flat manifold N ; in that case, f is an affine-linear function of the t ∈ R-coordinate. In the search for further nonconstant functions satisfying (1), a natural setting that comes immediately to mind is the case where (M n , g) is Einstein, because then (1) gets close to the Obata resp. We show here that, under further geometric assumptions, only products of two-dimensional spaceforms with a Ricci-flat Riemannian manifold can appear, see Theorem 2.4. In particular, we obtain a classification result covering to some extent the missing case in [START_REF] He | Uniqueness of warped product Einstein metrics and applications[END_REF].

2 Main result and proof

Preliminary remarks

We start with preliminary results, most of which are elementary or already proved in the literature.

From now on, we shall denote by S the scalar curvature of M and, for any function h on M , by ∇h the gradient vector field of h w.r.t. g on M . First observe that the equation ∇ 2 f = -f • Ric is of course linear in f but is also invariant under metric rescaling: if g = λ 2 g for some nonzero real number λ, then ∇ 2 f = λ -2 ∇ 2 f (this comes from the rescaling of the gradient) and Ric = λ -2 Ric.

Lemma 2.1 Let (M n , g) be any connected Riemannian manifold carrying a smooth real-valued function f satisfying (1) on M .

1. The gradient vector field ∇f of f w.r.t. g satisfies

Ric(∇f ) = S 2 ∇f + f 4 ∇S. (2) 
2. There exists a real constant µ such that

f ∆f + 2|∇f | 2 = µ. (3) 
3. If n > 2 and f is everywhere positive or negative, then f solves (1) if and only if, setting u := 1 2-n ln |f |, the metric g := e 2u g satisfies ric = (∆u)g -(n -2)(n -3)du ⊗ du on M and in that case ∆u = -µ n-2 e 2(n-3)u . In particular, if n = 3, the existence of a positive solution f to (1) is equivalent to (M, f -2 g) being Einstein with scalar curvature -3∆ ln |f |.

4. If M is closed and f is everywhere positive or negative, then f is constant on M . 5. If nonempty, the vanishing set N 0 := f -1 ({0}) of f is a scalar-flat totally geodesic hypersurface of M . Moreover, N 0 is flat as soon as it is 3-dimensional and carries a nonzero parallel vector field.

6. If furthermore M is non-Ricci-flat, Einstein or 2-dimensional, then n = 2 and M has constant curvature. In particular, when (M 2 , g) is complete, there exists a nonconstant function f satisfying (1) if and only if, up to rescaling the metric, the manifold (M 2 , g) is isometric to either the round sphere S 2 and f is a nonzero eigenfunction associated to the first positive Laplace eigenvalue; or to flat R 2 or cylinder S 1 × R and f is an affine-linear function; or to the hyperbolic plane H 2 and f is a solution to the Tashiro equation

∇ 2 f = f • Id.
7. If S is constant, then outside the set of critical points of f , the vector field ν := ∇f |∇f | is geodesic. Moreover, assuming (M n , g) to be also complete, (a) if S > 0, then up to rescaling the metric as well as f , we may assume that S = 2 and that µ = f ∆f + 2|∇f | 2 = 2 on M , in which case the function f has 1 as maximum and -1 as minimum value and those are the only critical values of f ;

(b) if S = 0, then up to rescaling f , we may assume that µ = 2 on M , in which case f has no critical value and f (M ) = R, in particular M is noncompact;

(c) if S < 0, then up to rescaling the metric, we may assume that S = -2 on M , in which case one of the following holds:

i. if µ > 0, then up to rescaling f we may assume that µ = 2, in which case f has no critical value and f (M ) = R, in particular M is noncompact; ii. if µ = 0, then f has no critical value and empty vanishing set and, up to changing f into -f , we have f (M ) = (0, ∞), in particular M is noncompact; iii. if µ < 0, then up to rescaling f we may assume that µ = -2, in which case f has a unique critical value, which, up to changing f into -f , can be assumed to be a minimum; moreover, f (M ) = [1, ∞), in particular M is noncompact.

Proof: The proof of the first statement follows that of [START_REF] Kim | Compact Einstein warped product spaces with nonpositive scalar curvature[END_REF]Lemma 4]. On the one hand, we take the codifferential of ∇ 2 f and obtain, choosing a local orthonormal basis (e j ) 1≤j≤n of T M and using Bochner's formula for 1-forms:

δ∇ 2 f = - n j=1 ∇ ej ∇ 2 f (e j ) = - n j=1 ∇ ej ∇ ej ∇f -∇ ∇e j ej ∇f = ∇ * ∇(∇f ) = ∆(∇f ) -Ric(∇f ).
On the other hand, by [START_REF] Corvino | Scalar curvature deformation and a gluing construction for the Einstein constraint equations[END_REF] and the formula δRic = -1 2 ∇S,

δ∇ 2 f = δ (-f • Ric) = Ric(∇f ) -f • δRic = Ric(∇f ) + f 2 ∇S.
Comparing both identities, we deduce that ∆(∇f ) = 2Ric(∇f ) + f 2 ∇S. But identity (1) also gives

∆f = -tr ∇ 2 f = f S, (4) 
so that ∆(∇f ) = ∇(∆f ) = ∇(f S) = S∇f + f ∇S and therefore Ric(∇f ) = S 2 ∇f + f 4 ∇S, which is [START_REF] Feitosa | Gradient almost Ricci soliton warped product[END_REF]. By ( 1) and (2), we have

2∇(|∇f | 2 ) = 4∇ 2 ∇f f = -4f • Ric(∇f ) = -4f • S 2 ∇f + f 4 ∇S = -2Sf ∇f -f 2 ∇S = -∇(Sf 2 ) (4) 
= -∇(f ∆f ), from which (3) follows.

If f vanishes nowhere, then up to changing f into -f , we may assume that f > 0 on M . Writing f as e (2-n)u for some real-valued function u (that is, u = 1 2-n ln f ), the Ricci-curvatures (as (0, 2)-tensor fields) ric and ric of (M, g) and (M, g = e 2u g) respectively are related as follows:

ric = ric + (2 -n)(∇du -du ⊗ du) + (∆u -(n -2)|du| 2 g )g. ( 5 
) But ∇df = (n -2) 2 f • du ⊗ du + (2 -n)f
• ∇du and the Laplace operators ∆ of (M, g) and ∆ of (M, g) are related via ∆v = e -2u • (∆v -(n -2)g(du, dv)) for any function v, so that

ric = ric + 1 f ∇df -(n -2) 2 du ⊗ du + (n -2)du ⊗ du + (∆u)g = ric + 1 f ∇df -(n -2)(n -3)du ⊗ du + (∆u)g.
As a consequence, f satisfies (1) if and only if ric = (∆u)g -(n -2)(n -3)du ⊗ du holds on M . Moreover,

f ∆f + 2|df | 2 g = f • -(n -2) 2 f |du| 2 g -(n -2)f ∆u + 2(n -2) 2 f 2 |du| 2 g = -(n -2)f 2 • ∆u -(n -2)|du| 2 g = -(n -2)f 2 • e 2u • ∆u = -(n -2)e 2(2-n)u • e 2u • ∆u = -(n -2)e 2(3-n)u • ∆u,
in particular (3) yields ∆u = -µ n-2 e 2(n-3)u . In dimension 3, we notice that ∆u = S 3 . This shows the third statement.

If f vanishes nowhere, then again we may assume that f > 0 on M . Since M is closed, f has a minimum and a maximum. At a point x where f attains its maximum, we have µ

= f (x)(∆f )(x)+ 2|∇ x f | 2 = f (x)(∆f )(x) ≥ 0.
In the same way, µ = f (y)(∆f )(y) ≤ 0 at any point y where f attains its minimum. We deduce that µ = 0 which, by integrating the identity f ∆f + 2|∇f | 2 = µ on M , yields df = 0. This shows the fourth statement. The first part of the fifth statement is the consequence of the following very general fact [5, Prop. 1.2], that we state and reprove here for the sake of completeness: if some smooth real-valued function f satisfies ∇ 2 f = f q for some quadratic form q on M , then the subset N 0 = f -1 ({0}) is -if nonempty -a totally geodesic smooth hypersurface of M . First, it is a smooth hypersurface because of d x f = 0 for all x ∈ N 0 : namely if c: R → M is any geodesic with c(0) = x, then the function y := f • c satisfies the second order linear ODE y ′′ = ∇ 2 ċ f, ċ = q( ċ, ċ) • y on R with the initial condition y(0) = 0; if d x f = 0, then y ′ (0) = 0 and hence y = 0 on R, which would imply that f = 0 on M by geodesic connectedness, contradiction. To compute the shape operator W of N 0 in M , we define ν := ∇f |∇f | to be a unit normal to N 0 . Then for all x ∈ N 0 and

X ∈ T x M , ∇ M X ν = X 1 |∇f | • ∇f + 1 |∇f | • ∇ M X ∇f = - X |∇f | 2 2|∇f | 3 • ∇f + 1 |∇f | • ∇ M X ∇f = 1 |∇f | • ∇ 2 X f -∇ 2 X f, ν • ν , (6) 
in particular

W x = -(∇ν) x = 0 because of ∇ 2 f x = f (x)q x =
0. This shows that N 0 lies totally geodesically in M . Now recall Gauß equations for Ricci curvature: for every

X ∈ T N 0 , Ric N0 (X) = Ric(X) T -R M X,ν ν + tr g (W ) • W X -W 2 X,
where Ric(X) T = Ric(X) -ric(X, ν)ν is the component of the Ricci curvature that is tangential to the hypersurface N 0 . As a straightforward consequence, if S N0 denotes the scalar curvature of N 0 ,

S N0 = S -2ric(ν, ν) + (tr g (W )) 2 -|W | 2 .
Here, W = 0 and Ric(ν) = S 2 ν along N 0 because N 0 lies totally geodesically in M , so that

S N0 = S -2ric(ν, ν) = S -S = 0.
This proves N 0 to be scalar-flat. If moreover N 0 is 3-dimensional and carries a parallel vector field, then it is locally the Riemannian product of a scalar-flat -and hence flat -surface with a line, therefore N 0 is flat. This shows the fifth statement.

In dimension 2, we can write Ric = S 2 Id = KId, where K is the Gauß curvature. But we also know that Ric(∇f ) = S 2 ∇f + f 4 ∇S = K∇f + f 2 ∇K. Comparing both identities and using the fact that {f = 0} is dense in M leads to ∇K = 0, that is, M has constant Gauß curvature. Up to rescaling the metric as well as f , we may assume that S, µ ∈ {-2, 0, 2}. If M 2 is complete with constant S > 0 (hence K = 1) and f is nonconstant, then µ > 0 so that, by Obata's solution to the equation ∇ 2 f + f • Id T M = 0, the manifold M must be isometric to the round sphere of radius 1 and the function f must be a nonzero eigenfunction associated to the first positive eigenvalue of the Laplace operator on S 2 , see [9, Theorem A]. If M 2 is complete and has vanishing curvature, then its universal cover is the flat R 2 and the lift f of f to R 2 must be an affine-linear function of the form f (x) = a, x + b for some nonzero a ∈ R 2 and some b ∈ R; since the only possible nontrivial quotients of R 2 on which f may descend are of the form R / Z • ǎ × R for some nonzero ǎ ∈ a ⊥ , the manifold M itself must be either flat R 2 or such a flat cylinder. If M 2 is complete with constant S < 0, then f satisfies the Tashiro equation ∇ 2 f = f • Id T M . But then Y. Tashiro proved that (M 2 , g) must be isometric to the hyperbolic plane of constant sectional curvature -1, see e.g. [START_REF] Tashiro | Complete Riemannian manifolds and some vector fields[END_REF]Theorem 2 p.252]. Note that the functions f listed above on S 2 , R 2 , S 1 × R or H 2 obviously satisfy [START_REF] Corvino | Scalar curvature deformation and a gluing construction for the Einstein constraint equations[END_REF]. If (M n , g) is Einstein with n ≥ 3, then it has constant scalar curvature and Ric = S n • Id. But again the identity Ric(∇f ) = S 2 ∇f + f 4 ∇S = S 2 ∇f yields n = 2 unless S = 0 and thus M is Ricci-flat. Therefore, n = 2 is the only possibility for non-Ricci-flat Einstein M . This shows the sixth statement. If S is constant, then Ric(∇f ) = S 2 ∇f . As a consequence, ∇ 2 ∇f f = -f Ric(∇f ) = -Sf 2 ∇f . But, as already observed in e.g. [10, Prop. 1], away from its vanishing set, the gradient of f is a pointwise eigenvector of its Hessian if and only if the vector field ν = ∇f |∇f | is geodesic, see ( 6) above. Assuming furthermore (M n , g) to be complete, we can rescale as before f and g such that S, µ ∈ {-2, 0, 2}. In case S > 0 and hence S = 2, necessarily µ > 0 holds and thus µ = 2. But then f 2 + |∇f | 2 = 1, so that the only critical points of f are those where f 2 = 1, which by f 2 ≤ 1 shows that the only critical points of f are those where f = ±1 and hence where f takes a maximum or minimum value. Outside critical points of f , we may consider the function y := f • γ: R → R, where γ: R → M is a maximal integral curve of the geodesic vector field ν. Then y satisfies y ′ = |∇f | • γ > 0 and y(t) 2 + y ′ (t) 2 = 1, so that y ′ = 1 -y 2 and therefore there exists some φ ∈ R such that

y(t) = cos(t + φ) ∀ t ∈ R.
Since that function obviously changes sign and 0 is not a critical value of f , we can already deduce that f changes sign, in particular N 0 = f -1 ({0}) is nonempty. Moreover, the explicit formula for y shows that f must have critical points, which are precisely those where cos reaches its minimum or maximum value. This shows statement 7.(a).

In case S = 0, we have ∆f = 0 and therefore (3 

)
• If µ < 0, then µ = -2 and (3) becomes -f 2 + |∇f | 2 = -1. As a consequence, because of f 2 = 1 + |∇f | 2 ≥ 1,
the function f has constant sign and hence we may assume that f ≥ 1 up to changing f into -f . In particular, the only possible critical value of f is 1, which is an absolute minimum of f . If γ is any integral curve of the normalized gradient vector field ν = ∇f |∇f | , which is defined at least on the set of regular points of f , then the function y := f • γ satisfies the ODEs y ′ = y 2 -1, therefore y(t) = cosh(t + φ) for some real constant φ. Since that function has an absolute minimum, it must have a critical point. It remains to notice that f (M ) = [1, ∞) and thus that M cannot be compact. This shows statement 7.(c) and concludes the proof of Lemma 2.1.

Example 2.2 In dimension 3, Lemma 2.1 implies that, starting with any Einstein -or, equivalently, constant-sectional-curvature--manifold (M 3 , g) and any real function u such that ∆u = S 3 , the function f := e -u satisfies (1) on the manifold (M, g = e -2u g). In particular, since there is an infinite-dimensional space of harmonic functions on any nonempty open subset M of R 3 , there are many nonhomothetic conformal metrics on such M for which nonconstant solutions of (1) exist.

On any nonempty open subset of the 3-dimensional hyperbolic space H 3 with constant sectional curvature -1, there is also an infinite-dimensional affine space of solutions to the Poisson equation ∆u = -2: in geodesic polar coordinates about any fixed point p ∈ H 3 , assuming u to depend only on the geodesic distance r to p, that Poisson equation is a second-order linear ODE in u(r) and therefore has infinitely many affinely independent solutions. In particular, there are also lots of conformal metrics on H 3 for which nonconstant solutions of (1) exist. Note however that, although H 3 is conformally equivalent to the unit open ball B 3 in R 3 , we do not obtain the same solutions to the equation depending on the metric we start from. Namely, we can construct solutions of (1) starting from the Euclidean metric g and from the hyperbolic metric e 2w g on B 3 , where e 2w(x) = 4 (1-|x| 2 ) 2 at any x ∈ B 3 . In both cases we obtain solutions of (1) by conformal change of the metric. Since g and e 2w g lie in the same conformal class, the question arises whether solutions coming from e 2w g can coincide with solutions coming from g on B 3 . Assume f were a solution of (1) arising by conformal change of g (by e -2u for some u ∈ C ∞ (B 3 )) and by conformal change of e 2w g (by e -2v for some v ∈ C ∞ (B 3 )). Then f = e -u = e -v and thus v = u would hold, therefore u would satisfy ∆ g u = 0 as well as ∆ e 2w g u = -2, in particular 0 = ∆ g u = e 2w ∆ e 2w g u + dw, du g = -2e 2w + dw, du g . But the r.h.s. of the last identity has no reason to vanish in general. Note also that the conformal metrics themselves have no reason to coincide, since otherwise e -2v e 2w g = e -2u g would hold hence u = v -w as well and the same kind of argument would lead to an equation that is generally not fulfilled.

Note 2.3

If S is a nonzero constant and M is closed, then the function f is an eigenfunction for the scalar Laplace operator associated to the eigenvalue S on (M, g) and it has at least two nodal domains. Mind however that S is not necessarily the first positive Laplace eigenvalue on (M, g). E.g. consider the Riemannian manifold M = S 2 × Σ n-2 which is the product of standard S 2 with a closed Ricci-flat manifold Σ n-2 , then the first positive Laplace eigenvalue of Σ can be made arbitrarily small by rescaling its metric; since the Laplace spectrum of M is the sum of the Laplace spectra of S 2 and Σ, the first Laplace eigenvalue on M can be made as close to 0 as desired by rescaling the metric on Σ.

Classification in presence of a particular Killing vector field

Next we aim at describing the structure of M using the flow (F ν t ) t of ν. Namely, outside the possible critical points of f , the manifold M is locally diffeomorphic via (F ν t ) t to the product I × N c of an open interval with a regular level hypersurface N c of f . Moreover, the induced metric has the form dt 2 ⊕ g t for some one-parameter-family of Riemannian metrics on N c . To determine g t , one would need to know the Lie derivative of g w.r.t. ν; but for all X, Y ∈ T N c ,

(L ν g)(X, Y ) = ∇ X ν, Y + ∇ Y ν, X (6) = 2 |∇f | ∇ 2 X f, Y -∇ 2 X f, ν ν, Y = - 2f |∇f | ric(X, Y )
and we do not know a priori more about the Ricci curvature of M . Besides, we have a priori no information either on the critical subsets {∇f = 0}, we do not even know whether they are totally geodesic submanifolds or not.

Therefore, we introduce more assumptions. We actually introduce some that fit to the particular geometric setting induced by so-called skew Killing spinors, see [START_REF] Ginoux | Skew Killing spinors in dimension 4[END_REF].

Theorem 2.4 Let (M n , g) be a complete Riemannian manifold of dimension n ≥ 3 and constant scalar curvature S carrying a nonconstant real-valued smooth function f satisfying (1). Up to rescaling the metric as well as f we can assume that S = 2ǫ with ǫ ∈ {-1, 0, 1} and max(f

) = 1 = -min(f ) if S = 2, |∇f | = 1 if S = 0 and -f 2 + |∇f | 2 ∈ {-1, 0, 1} if S = -2.
Assume also the existence of a non-identically vanishing Killing vector field η on M such that

• the vector fields η and ∇f are pointwise orthogonal,

• the vector field η |N c is parallel along N c := f -1 ({c}) for every regular value c of f ,

• if S = 0, the vector field η satisfies inf

M (|η|) =inf M (|∇f |)
and vanishes where ∇f does,

• also ∇ η η = ǫf ∇f holds in case n > 4 or f has no critical point.

Then M is isometric to either the Riemannian product S(ǫ) × Σ n-2 of the simply-connected complete surface with curvature ǫ with a complete Ricci-flat manifold Σ in case ǫ = 0, or to the Riemannian product of R with some complete Ricci-flat manifold carrying a nonzero parallel vector field in case ǫ = 0.

Proof:

The assumption that η ⊥ ∇f not only means that the flow of η preserves the level hypersurfaces of f , but also implies that [η, ∇f ] = [η, ν] = 0: for

0 = X( η, ∇f ) = ∇ X η, ∇f + η, ∇ 2 X f = ∇ 2 η f -∇ ∇f η, X ∀ X ∈ T M, so that ∇ 2 η f = ∇ ∇f η, that is, ∇ ∇f η = -f Ric(η) and it also follows that [η, ∇f ] = ∇ η ∇f -∇ ∇f η = ∇ 2 η f -∇ 2 η f = 0.
As a further consequence of [η, ∇f ] = 0, using again that η is Killing,

[η, ν] = η( 1 |∇f | )∇f = - ∇ η ∇f, ∇f |∇f | 3 ∇f = - ∇ ∇f η, ∇f |∇f | 3 ∇f = 0.
In particular, the flow of ν preserves η and conversely the flow of η preserves both ∇f and ν.

Next we examine the assumption that η |N c is parallel on N c = f -1 ({c}), which is a smooth hypersurface for all but finitely many values of c by Lemma 2.1. By Gauß-Weingarten formula, ∇ Nc η = 0 is equivalent to

∇ X η = ∇ Nc X η + W η, X ν = W η, X ν (6) = - 1 |∇f | ∇ 2 η f, X ν = f |∇f | Ric(η), X ν for all X ∈ T N c , where W = -∇ν is the Weingarten-endomorphism-field of N c in M . With ∇ ν η = -f |∇f | Ric(η), the above identity is equivalent to ∇η = f |∇f | • (Ric(η) ⊗ ν -ν ⊗ Ric(η)) = f |∇f | • Ric(η) ∧ ν. (7) 
In particular rk(∇η) ≤ 2 on the subset of regular points of f . Moreover, η cannot vanish anywhere on the subset of regular points of f : for if η vanished at some regular point x, then η would vanish along the level hypersurface containing x and, being preserved by the flow of ν, it would have to vanish identically on a nonempty open subset of M and therefore on M , which would be a contradiction. Thus η -1 ({0}) ⊂ (∇f ) -1 ({0}). On the other hand, the assumption (∇f ) -1 ({0}) ⊂ η -1 ({0}) yields η -1 ({0}) = (∇f ) -1 ({0}). In particular, when nonempty, (∇f ) -1 ({0}) is a totally geodesic submanifold of M (vanishing set of a Killing vector field) and has even codimension, which is positive otherwise would vanish identically. By e.g. [8, Sec. 2.5], the tangent bundle of η -1 ({0}) is given by ker(∇η) and therefore it has pointwise dimension at most n -2. But since rk(∇η) ≤ 2 on M \ η -1 ({0}), which is a dense open subset of M , the inequality rk(∇η) ≤ 2 must hold along η -1 ({0}) by continuity, in particular dim(ker(∇η)) ≥ n -2 and thus dim(ker(∇η)) = n -2 along η -1 ({0}). On the whole, when nonempty, the set of critical points of f is a possibly disconnected (n -2)-dimensional totally geodesic submanifold of M . As a further step, we translate Gauß equations for Ricci curvature along each N c in our context.

Denoting W = -∇ν = f |∇f | Ric T the Weingarten-endomorphism-field of N c in M
, where Ric T is the pointwise othogonal projection of Ric onto T M , we have tr

(W ) = f |∇f | • S 2 by Ric(ν) = S 2 ν. As a consequence, we have, for all X ∈ T N c : Ric(X) = Ric(X) T = Ric Nc (X) + W 2 X -tr(W )W X + R X,ν ν = Ric Nc (X) + f 2 |∇f | 2 • Ric 2 (X) - S 2 Ric(X) + R X,ν ν.
We can compute the curvature term R X,ν ν explicitely: choosing a vector field X that is pointwise tangent to the regular level hypersurfaces of f , we can always assume w.l.o.g. that [X, ν] = 0 at the point where we compute, so that, with

∇ ν ν = 0, R X,ν ν = -∇ ν ∇ X ν = ∇ ν f |∇f | Ric(X) = ν f |∇f | • Ric(X) + f |∇f | • (∇ ν Ric)(X) + f |∇f | • Ric(∇ ν X) = ν(f )|∇f | -f ν(|∇f |) |∇f | 2 • Ric(X) + f |∇f | • (∇ ν Ric)(X) + f |∇f | • Ric(∇ X ν) = |∇f | 2 -f ∇ν ∇f,∇f |∇f | |∇f | 2 • Ric(X) + f |∇f | • (∇ ν Ric)(X) - f 2 |∇f | 2 • Ric 2 (X) = 1 + Sf 2 2|∇f | 2 • Ric(X) + f |∇f | • (∇ ν Ric)(X) - f 2 |∇f | 2 • Ric 2 (X).
We can deduce that, for every

X ∈ T N c , Ric Nc (X) = Ric(X) - f 2 |∇f | 2 • Ric 2 (X) - S 2 Ric(X) -R X,ν ν = Ric(X) - f 2 |∇f | 2 • Ric 2 (X) - S 2
Ric(X)

-1 + Sf 2 2|∇f | 2 • Ric(X) - f |∇f | • (∇ ν Ric)(X) + f 2 |∇f | 2 • Ric 2 (X) = - f |∇f | • (∇ ν Ric)(X). (8) 
That identity has important consequences. First, choosing a local o.n.b. (e j ) 1≤j≤n-1 of T N c ,

S Nc = n j=1 Ric Nc (e j ), e j = - f |∇f | • n j=1 (∇ ν Ric)(e j ), e j = - f |∇f | •   n j=1 (∇ ν Ric)(e j ), e j + (∇ ν Ric)(ν), ν   + f |∇f | • (∇ ν Ric)(ν), ν , with (∇ ν Ric)(ν) = ∇ ν (Ric(ν)) -Ric(∇ ν ν) = ∇ ν ( S 2 
ν) = 0, so that

S Nc = - f |∇f | • tr(∇ ν Ric) = - f |∇f | • ν(tr(Ric)) = - f |∇f | • ν(S) = 0.
Therefore, each level hypersurface N c is scalar-flat.

In the case where n = 3 or 4, the manifold N c is locally the Riemannian product of a flat manifold with an interval and is hence also flat, in particular Ric Nc = 0, which in turn implies that

∇ ν Ric = (9) 
This equation, which holds on the dense open subset {∇f = 0}, means that all eigenspaces and eigenvalues of the Ricci-tensor of M are preserved under parallel transport along integral curves of ν. Assume first that f has critical points, in particular S = 0. Along the critical submanifold N crit := (∇f ) -1 ({0}), one has ker(Ric) ⊃ T N crit : if c: I → N crit is any smooth curve, then f • c is constant and therefore 0 = (f • c) ′′ = ∇ 2 ċ f, ċ (the gradient of f vanishes along N crit ), so that ric( ċ, ċ) = 0. But ∇ 2 f and thus Ric is either nonpositive or nonnegative along N crit because N crit is a set of minima or maxima of f as we have seen in Lemma 2.1, therefore Ric( ċ) = 0. In particular, 0 is an eigenvalue of multiplicity at least n -2 of the Ricci-tensor; since the Ricci-eigenvalues are constant along the integral curves of ν, it can be deduced that 0 is an eigenvalue of multiplicity at least n -2 everywhere in M . But the multiplicity cannot be greater that n -2, otherwise Ric would have only one nonzero eigenvalue (namely S 2 ∈ {±1}) and hence its trace would be S 2 , contradiction. Therefore 0 is an eigenvalue of multiplicity exactly n -2 of Ric at every point in M . It remains to notice that at regular points, one has Ric(ν) = S 2 ν and Ric(η) ⊥ ν, so that, using Ric(η) ⊥ ker(Ric), we deduce that Ric 2 (η) is proportional to Ric(η), the eigenvalue being necessarily equal to S 2 , that is, Ric

2 (η) = S 2 Ric(η). ( 10 
)
This allows for η to be normalized as we explain next. Namely we would like ∇ η η = ǫf ∇f to hold on M . Let γ: (-ε, ε) → M be any integral curve of ν with starting point γ(0) in some regular level hypersurface of f ; we have already seen in the proof of Lemma 2.1 that y := f • γ does not depend on the starting point γ(0) of γ in a fixed level hypersurface of f . Since, as explained above, the vector field ν is geodesic on M and η is parallel along each N c , the function h := |η| 2 • γ only depends on t and not on the starting point γ(0). In other words, ∇(|η| 2 ) = ν(|η| 2 )ν. But

ν(|η| 2 ) = 2 ∇ ν η, η = -2 ∇ η η, ν = -2 f |∇f | ric(η, η), (11) 
so that ric(η, η) also only depends on t. By [START_REF] Kobayashi | Transformation groups in differential geometry[END_REF] and Ric Nc (η) = 0 because of η |N c being parallel, we have, outside

N 0 = f -1 ({0}), ν(ric(η, η)) = (∇ ν ric)(η, η) + 2ric(∇ ν η, η) (8) = - |∇f | f Ric Nc (η), η 0 -2 f |∇f | ric(Ric(η), η) = -2 f |∇f | |Ric(η)| 2 . ( 12 
)
Note here that both [START_REF] Tashiro | Complete Riemannian manifolds and some vector fields[END_REF] and ( 12) are valid in any dimension and without the condition [START_REF] Ranjan | A generalization of Obata's theorem[END_REF]. Combining ( 12) with (10) and using ν(|∇f

| 2 ) = -2ǫf |∇f |, we deduce that ν(ric(η, η)) = -2ǫ f |∇f | ric(η, η) = ν(|∇f | 2 ) |∇f | 2 ric(η, η).
As a consequence, there exists a real constant C, that has the sign of ǫ, such that ric(η, η) = C•|∇f | 2 and thus ∇ η η = Cf ∇f on M . Therefore, up to replacing η by 1

√

Cǫ • η, we may assume that ∇ η η = ǫf ∇f on M . Note that this concerns only the case where n ∈ {3, 4} and f has critical points, otherwise we assume ∇ η η = ǫf ∇f to hold on M . Assuming from now on ∇ η η = ǫf ∇f and n ≥ 3 to hold, it can be deduced that |η| 2 = -ǫf 2 + cst for some cst ∈ R: Namely ∇(|η| 2 ) = -2∇ η η = -2ǫf ∇f = -ǫ∇(f 2 ) and the set of regular points of f is connected. Moreover, using e.g. ( 11), we have ric(η, η) = ǫ|∇f | 2 ; differentiating that identity w.r.t. ν and using (12) yields |Ric(η)| = |ǫ| • |∇f |. In case S = 2, we have η = 0 on (∇f ) -1 ({0}) = f -1 ({±1}), so that cst = 1 and hence |η| = 1 -f 2 = |∇f |. In case S = 0, we have |η| 2 = cst, from which ric(η, η) = 0 and even Ric(η) = 0 follow. In case S = -2, we have

-f 2 + |∇f | 2 = µ 2 ∈ {-1, 0, 1}, so that |η| 2 = f 2 + cst = |∇f | 2 -µ 2 + cst. Now the assumption inf M (|η|) =inf M (|∇f |) yields cst -µ 2 = 0, in particular |η| = |∇f |.
To sum up, in all cases we obtain ric(η, η) = ǫ|Ric(η)| • |η|, which is exactly the equality case in Cauchy-Schwarz inequality. We can thus deduce that Ric(η) is proportional to η and hence Ric(η) = S 2 η.

If n > 4 or if f has no critical point, it remains to show that Ric(η) = S 2 η implies ker(Ric) = {η, ν} ⊥ : for we already know from Ric Nc = -f |∇f | • (∇ ν Ric) that S Nc = 0. But by the Gauß formula, S Nc = S -2ric(ν, ν) + tr(W ) 2 -|W | 2 , so that, with S -2ric(ν, ν) = 0, we deduce that 0

= f 2 |∇f | 2 • tr(Ric T ) 2 -|Ric T | 2 = f 2 |∇f | 2 • S 2 4 - |Ric(η)| 2 |η| 2 -|Ric {η,ν} ⊥ | 2 = f 2 |∇f | 2 • S 2 4 - S 2 4 -|Ric {η,ν} ⊥ | 2 = - f 2 |∇f | 2 • |Ric {η,ν} ⊥ | 2 ,
from which Ric {η,ν} ⊥ = 0 follows.

We have now all we need to conclude that both distributions Span(η, ν) and its orthogonal complement are integrable and totally geodesic, the first one being of constant curvature ǫ and the second one being Ricci-flat (hence flat if n = 3 or 4). Namely we already know that Span(η, ν) is integrable since [η, ν] = 0. Moreover,

∇ η η = ǫf ∇f = ǫf |∇f |ν ∇ η ν = - f |∇f | Ric(η) = - Sf 2|∇f | η = - ǫf |∇f | η ∇ ν η = ∇ η ν = - ǫf |∇f | η ∇ ν ν = 0,
so that all above expressions lie in Span(η, ν), in particular Span(η, ν) is totally geodesic. As for Span(η, ν) ⊥ , we compute, for all X, Y ∈ Γ Span(η, ν) ⊥ ,

∇ X Y, η = -Y, ∇ X η (7) 
= -f |∇f |

• (ric(η, X) ν, Y -ν, X ric(η, Y )) = 0 and, using Span(η, ν) ⊥ = ker(Ric),

∇ X Y, ν = -Y, ∇ X ν = f |∇f | ric(X, Y ) = 0.
It follows that ∇ X Y ∈ Γ Span(η, ν) ⊥ , therefore this distribution is integrable and totally geodesic.

To compute the curvature of both integral submanifolds, we notice that, from the above computations, R η,ν ν = Ric(η) = ǫη and R X,ν ν = 0 = R X,η η for all X ∈ ker(Ric), so that where we denoted by ric Σ the Ricci curvature of the integral submanifold Σ of Span(η, ν) ⊥ . Therefore, Σ is Ricci-flat and thus flat if 1-or 2-dimensional. On the whole, this shows that the holonomy group of M splits locally, therefore the universal cover of M is isometric to the Riemannian product S(ǫ) × Σ of the simply-connected complete surface with curvature ǫ ∈ {-1, 0, 1} with some simply-connected Ricci-flat manifold Σ. In case ǫ = 1, the lift f of f to S 2 × Σ is constant along the Σ-factor and satisfies the equation (∇ S 2 ) 2 f = -f • Id, which is exactly the equation characterizing the eigenfunctions associated to the first positive Laplace eigenvalue [9, Theorem A]. Furthermore, the isometry group of S 2 × Σ embeds into the product group of both isometry groups of S 2 and Σ and the first factor must be trivial since f , as the restriction of a linear form from R onto S 2 , is not invariant under {±Id}. Therefore, M is isometric to S 2 × Σ for some Ricci-flat Σ and f is the trivial extension of an eigenfunction associated to the first positive Laplace eigenvalue on S 2 .

In case ǫ = 0, the manifold M is Ricci-flat and therefore is isometric to the Riemannian product of R with a Ricci-flat manifold N as we mentioned in the introduction; our supplementary assumptions only mean that N carries a nontrivial parallel vector field. Mind in particular that N is not necessarily isometric to the Riemannian product of R or S 1 with some Ricci-flat manifold, even if this is obviously locally the case. In case ǫ = -1, the lift f of f to H 2 × Σ is constant along the Σ-factor and satisfies the equation (∇ H 2 ) 2 f = f •Id, which is exactly the Tashiro equation. Since the isometry group of H 2 × Σ embeds into the product group of both isometry groups of H 2 and Σ and the first factor must be trivial since f has no nontrivial symmetry [11, Theorem 2 p.252], we can deduce as above that M is isometric to H 2 × Σ for some Ricci-flat Σ and f is the trivial extension of a solution to the Tashiro equation on H 2 . This concludes the proof of Theorem 2.4.

  becomes |∇f | 2 = µ on M , in particular µ > 0 and f has no critical point on M . But because of |∇f | = 1, the function y = f • γ is in fact equal to t → t + φ for some constant φ ∈ R. This shows that f (M ) = R and in particular that M cannot be compact. This proves statement 7.(b). In case S < 0 and thus S = -2, there are still three possibilities for µ:• If µ > 0, then µ = 2 and (3) becomes -f 2 + |∇f | 2 = 1, hence f has no critical point. If γ isany integral curve of the normalized gradient vector field ν = ∇f |∇f | , then the function y := f • γ satisfies the ODEs y ′ = 1 + y 2 , therefore y(t) = sinh(t + φ) for some real constant φ. In particular, f (M ) = R and M cannot be compact.• If µ = 0, then (3) becomes f 2 = |∇f | 2 . But since no point where f vanishes can be a critical point by the fifth statement, f has no critical point and therefore must be of constant sign. Up to turning f into -f , we may assume that f > 0 and thus f = |∇f |. Along any integral curve γ of ν = ∇f |∇f | , the function y := f • γ satisfies y ′ = y and hence y(t) = C • e t for some positive constant C. This shows f (M ) = (0, ∞), in particular M cannot be compact.

R η,ν ν, η |η| 2 = ǫ|η| 2 |η| 2

 2 = ǫ and, using the Gauß formula for curvature, for allX, Y ∈ Γ Span(η, ν) ⊥ , ric Σ (X, Y ) = ric(X, Y ) -R X, η |η| η |η| , Y -R X,ν ν, Y = 0,
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