
HAL Id: hal-01877109
https://hal.science/hal-01877109v1

Submitted on 21 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Mining of Temporal Safety Properties for
Intrusion Detection in Industrial Control Systems

Oualid Koucham, Stéphane Mocanu, Guillaume Hiet, Jean-Marc Thiriet,
Frédéric Majorczyk

To cite this version:
Oualid Koucham, Stéphane Mocanu, Guillaume Hiet, Jean-Marc Thiriet, Frédéric Majorczyk. Effi-
cient Mining of Temporal Safety Properties for Intrusion Detection in Industrial Control Systems.
SAFEPROCESS 2018 - 10th IFAC Symposium on Fault Detection, Supervision and Safety for Tech-
nical Processes, Aug 2018, Varsovie, Poland. pp.1-8. �hal-01877109�

https://hal.science/hal-01877109v1
https://hal.archives-ouvertes.fr

Efficient Mining of Temporal Safety
Properties for Intrusion Detection in

Industrial Control Systems

Oualid Koucham ∗ Stéphane Mocanu ∗∗ Guillaume Hiet ∗∗∗

Jean-Marc Thiriet ∗ Frédéric Majorczyk ∗∗∗∗

∗U.G.A, CNRS, Gipsa-lab, ({oualid.koucham, jean-marc.thiriet}@
grenoble-inp.fr).

∗∗U.G.A, CNRS, G-INP, Inria, LIG, stephane.mocanu@imag.fr
∗∗∗ CentraleSupélec, Inria, CNRS (guillaume.hiet@centralesupelec.fr)

∗∗∗∗DGA, Inria (frederic.majorczyk@supelec.fr)

Abstract: Sophisticated process-aware attacks targeting industrial control systems require
adequate detection measures taking into account the physical process. This paper proposes an
approach relying on automatically mined process specifications to detect attacks on sequential
control systems. The specifications are synthesized as monitors that read the execution traces
and report violations to the operator. In contrast to other approaches, a central aspect of our
method consists in reducing the number of mined specifications suffering from redundancies.
We evaluate our approach on a hardware-in-the-loop testbed with a complex physical process
model and discuss our approach’s mining efficiency and attack detection capabilities.

Keywords: Control and security for critical infrastructure systems, safety and security of CPS,
integrated monitoring, intrusion detection, specification mining

1. INTRODUCTION

Safety within industrial control systems (ICS) has classi-
cally focused on accidental risks with potential impacts
on the system and its environment. Nowadays, we must
also take into account the increasing risks originating from
malicious intent. In particular, ICS need to cope with the
prospect of targeted attacks that rely on an advanced
knowledge of the physical process. The lack of sufficient
protection mechanisms motivates the need to develop suit-
able detection mechanisms to identify the occurrence of
process-oriented malicious behavior.

ICS rely on both continuous and sequential control to
achieve their industrial objective. An attacker can target
any aspect to drive the physical process towards a for-
bidden state. We present an efficient approach to detect
process-aware attacks targeting the sequential aspect of
ICS. We focus on sequence attacks which threaten the
process through a malicious temporal ordering of individ-
ually legitimate commands. Detection approaches aimed
at sequence attacks are classified either as cyber oriented
relying on network exchanges between ICS nodes, or as
process oriented relying on the state and evolution of
physical process variables. Since the finality of sequence
attacks is putting the physical process in a forbidden state,
a process oriented detection appears to be more suitable.
Moreover, such approaches produce violations that can
be directly interpreted in terms of actual physical process
states rather than low level network messages. This in turn
eases the identification and treatment of false alerts for
operators familiar with the physical process.

This paper extends and builds on the process oriented ap-
proach presented in Koucham et al. (2016). Malicious be-
havior is detected through violations of process specifica-
tions, which consist in temporal safety properties over the
states of sensors and actuators. The process specifications
are mined from execution traces of the physical process
and then synthesized as monitors that report violations.

Our focus in this paper is to limit the overwhelming num-
ber of process specifications usually produced by generic
mining approaches. We observe that a significant number
of these mined specifications exhibit redundancies and
show that their elimination leads to a substantial im-
provement in the number of mined properties. In practice,
limiting these redundancies is crucial in order to provide
operators with pertinent and manageable alerts which
ultimately translates into quicker reactions.

In summary, we first propose an efficient approach to infer
and monitor process specifications on the highly structured
traces of sequential control systems. We then evaluate
and analyze our approach using an experimental testbed
in a hardware-in-the-loop setting under both attacks and
legitimate manipulations.

The paper is organized as follows. Section 2 provides the
necessary background information, reviews related work
on intrusion detection, specification mining, and discusses
links with fault diagnosis. Section 3 presents our detection
approach. Section 4 describes our evaluation setup and
implementation. Section 5 provides an analysis of the
results. Finally, Section 6 concludes the paper.

2. BACKGROUND AND RELATED WORK

A threat model makes explicit the position of the attackers
regarding the system (internal or external), their capaci-
ties, the targeted assets and the nature of the attacks.
In our model, the attacker is positioned within the su-
pervisory zone (internal) and can carry attacks through
supervisory ICS workstations that can access the PLCs.
We assume that the attacker has the knowledge and the
capacities to forge or modify commands aimed at the PLCs
to change the state of actuators.

In this paper, we deal with sequence attacks. We focus on
this class of sophisticated process-oriented attacks since
it has been identified as an important threat to control
systems in operational plants (see Robert T. Marsh (1997);
Larsen (2008)). Such attacks aim at putting the physical
process in a forbidden state through a malicious ordering
of individually legitimate commands. In particular, we
focus on sequence attacks that modify the relative order
of the commands (for instance, sending two consecutive
commands to simultaneously open two valves). We do
not cover attacks which manipulate the timing between
consecutive commands. Detecting such attacks requires
more elaborate quantitative models which are beyond the
scope of this paper. We also do not cover physical attacks
or false data injection attacks involving corrupted sensor
data. Since we monitor the system using supervisory flows,
detecting such attacks is difficult.

The task of an intrusion detection system (IDS) is to
automatically detect violations of the security policy of
a monitored system. In this paper, we implement an
anomaly-based IDS which reports violations as deviations
from a reference behavior. Compared to other approaches,
such an IDS has the ability to detect novel attacks.
On the other hand, the amount of false alerts can be
significant if the reference behavior is not complete. By
eliminating redundant process specifications, we limit the
number of raised false alerts. Among intrusion detection
approaches for ICS, the works closest to ours target
process-aware attacks as in Caselli et al. (2015); Mitchell
and Chen (2014); Carcano et al. (2011). In contrast to
Caselli et al. (2015), we focus on process variables instead
of network communications since attacks targeted towards
the physical process can be best detected and understood
by monitoring the evolution of process variables. We use
a more expressive formalism for the monitored properties
than Mitchell and Chen (2014) and Carcano et al. (2011)
and avoid the need to manually specify the properties.

Our detection approach builds on runtime verification,
which is a lightweight verification technique that checks
whether the current execution of the system satisfies or vi-
olates a certain correctness property (Leucker and Schall-
hart (2009)). In our case, the correctness property specifies
the temporal ordering of sensor and actuator states. We
call monitors the devices which read the execution trace
of the system, and return a verdict indicating the status
of the property. As discussed in Koucham et al. (2016),
linear temporal logic (LTL), introduced in Pnueli (1977),
is a suitable formalism for representing the ordering con-
straints violated by sequence attacks. For instance, the
LTL formula �¬(valve1∧valve2) is a property stating that
valve1 and valve2 should never be simultaneously open.

Here, ¬,∧ are the propositional negation and conjunction
operators and � is the temporal logic operator correspond-
ing to a global constraint over all subsequent positions
in the trace, i.e �φ is true if the formula φ is true in
the current and all subsequent positions. In our approach,
monitors are synthesized as finite state automata from
LTL formulae (see D’Amorim and Roşu (2005)).

Applications of runtime verification to the failure diagnosis
was explored by Bauer et al. (2006) and Dubey et al.
(2011). In Bauer et al. (2006), failure detection is per-
formed by a set of monitors, while failure identification
relies on aggregating the verdicts emitted by the dis-
tributed monitors and inferring possible causes of failure
through a consistency-based diagnosis approach. The sys-
tem’s description is reduced to checking the input-output
correctness behavior of the components using monitors.
This yields a tractable diagnosis approach in terms of
satisfiability in propositional logic. Our solution can be
used in conjunction with such a diagnosis approach by au-
tomatically inferring and limiting the number of properties
to monitor at the input-output ports of a set of PLCs.

Concerning specification mining, Lemieux et al. (2015)
discuss several techniques to reduce the complexity of the
task. However, the number of valid mined specifications
can still remain significant. In this paper, we leverage the
regular structure of execution traces in sequential control
systems to limit the number of infered properties.

3. APPROACH

3.1 General overview

Control logic

Process

Activity
recognizer

Traces

A1

···

Ai

···

An

Specifications
mining

Traces

Patterns

Scopes
identification

Scopes

Spec1LTL
·
·
·

SpecnLTL

Fig. 1. General overview of the mining approach

In this section, we present a general overview of our ap-
proach which spans two phases : (i) a mining phase where
process specifications are infered from execution traces of
the physical process, and (ii) a monitoring phase where
the infered properties are deployed to detect violations.

Mining phase Figure 1 shows the general overview of
the mining phase. At first, we collect attack-free execution
traces that record the evolution of sensors and actuators
states throughout the execution of control logics. The
traces are collected from supervisory flows between the
supervisors and the PLCs. We focus in our approach on
control logics implemented as Sequential Function Charts
(SFC) (see John and Tiegelkamp (2010)) as they are
particularly suitable for sequential processes.

We distinguish between the control flow of an SFC, repre-
sented by selection and parallel branches, and linear step-
transition sequences without branching and parallel execu-
tion which we call activities. We use the SFC’s structure to

divide the execution traces per activity (performed by the
activity recognizer block in Figure 1), and mine process
specifications per activity. The activity recognizer reads
the execution traces and uses the SFCs to identify the
current active steps and thus the current activities. We
focus on activities as they represent the actual sequencing
of actions performed by the PLCs, while control flow
decides which activities are to be executed.

Our goal is to automatically find safety temporal spec-
ifications that are valid on attack-free execution traces
of the system. This problem is known as specification
mining. Specification mining approaches typically use
specification patterns to find the properties that are
valid on the traces. For instance, consider the pattern
A never occurs between B and C. Here, A, B and C are
variables which take values in a set of events that might
correspond to changes in the states of actuators and
sensors. In particular, B and C define the scope of the
property, i.e the subsequences of the execution trace where
the constraint applies, and A specifies the event which
never occurs within the scope. If B ∈ {e0, e1, e2, e3},
C ∈ {e0, e1, e2, e3}, and A ∈ {e4}, then possible instanti-
ations of the pattern include : (i) e4 never occurs between
e0 and e2, (ii) e4 never occurs between e1 and e3, (iii) e4

never occurs between e1 and e2. The objective is to find all
instantiations that are valid on the attack-free traces.

0

e0

|
1

e1

|
2

e2

|
3

e3

|
overlap

between e0 and e2

between e1 and e3

Fig. 2. Scopes overlap illustration

However, a common issue with specification mining ap-
proaches is the significant number of resulting valid in-
stantiations. We argue that many of these instantiations
are redundant due to scope overlaps. An overlap occurs
between two scopes when they delimit intersecting subse-
quences of the execution trace. We illustrate this situation
on the previous example using the execution trace in
Figure 2. Each position is associated with an event and the
figure shows the subsequences corresponding to the scopes
between e0 and e2 and between e1 and e3. These scopes
overlap since the subsequences they delimit intersect on
the subsequence spanning positions 1 and 2.

To illustrate how such redundancies impact the number of
violations sent to an operator, suppose that the properties
(i), (ii) and (iii) above are valid. If an attack causes event
e4 to happen between position 1 and 2, property (iii)
would be violated. However, due to redundancy, properties
(i) and (ii) would also be violated. Thus, instead of a
single violation, the operator would need to deal with three
redundant violations. This problem worsens as the number
of events and scopes become large as in the case of long
activities. The operator then risks becoming overwhelmed
with the significant number of violations. In this paper, we
avoid redundancies through a pre-selection of scopes before
mining. Only instantiations on the pre-selected scopes are
tested for validity. This pre-selection is done by the scopes
identification block in Figure 1.

To determine the valid instantiations, we synthesize each
instantiation as a finite state automaton and run the
attack-free execution traces. If a violation is raised, we
discard the instantiated property. Otherwise, we keep the
property to be used during the detection phase. As an
output, we obtain a number of LTL process specifications
which will be deployed as monitors.

Monitoring phase During the monitoring phase, the
deployed monitors return violations which are presented to
the process operator. The activity recognizer is also used
in this phase to direct the execution traces to the proper
monitors. Upon reception of a violation, the operator
decides whether it corresponds to a false or a true alert
given the activity, the scope and the impacted actuator.

3.2 Fundamental definitions

{act↑}

0

e1 e2

{e1, e2}

1

e3e4e5

{e3, e4, e5}

2

e6 e7e5

{e6, e7, e5}

3

0 1 2 3 4

4

{act↓}

event observed trace path

Fig. 3. Relation between events, observed traces and paths

We define AP to be a finite set of boolean variables where
each variable refers to a state of a component (sensor
or actuator) in the system. Components with continuous
values are discretized and mapped to boolean variables.
For instance, a level sensor tl reporting continuous values
can be discretized to boolean states (tl ≥ th) and (tl < th)
with th a threshold. Events are changes in the states’
values. For a state a ∈ AP , a↑ (resp. a↓) corresponds
to a rising edge (resp. falling edge) of state a.

From the set AP , we generate the set of all possible
component events E =

⋃
a∈AP

{a↑, a↓}. We refer to the

power set of E as P(E).

Moreover, we also define boolean variables act ∈ Act,
which indicate whether the activity act is currently active.
To mark the beginning (activation of the first step) and
the end (deactivation of the last step) of activity act, we
use a pair of events (act↑, act↓). We thus define the set
EAct =

⋃
act∈Act

{act↑, act↓}.

Definition 1. (Observed trace). An observed trace t of size
n ∈ N∗ over an activity act is an application :

t : {0, 1, . . . , n− 1} → {act↑, act↓} ∪ P(E){
t(0) = {act↑}, t(n− 1) = {act↓}
∀0 < i < n− 1, t(i) ∩ {act↑, act↓} = ∅

Our view of the process is based on supervisory trafic with
periodic sampling of actuator and sensor states. Thus,
events are observed at some discrete points in time. An
observed trace maps each observation point to a set of

observed events. An observed trace necessarily begins with
the activation of an activity and ends with its deactivation.
These activity-specific events do not occur anywhere on
the trace. Figure 3 provides an example of an observed
trace of size 4 over an activity act. Each position in the
observed trace corresponds to a set of observed events. For
instance, events {e1, e2} are mapped to position 1 while
events {e3, e4, e5} are mapped to position 2.

In what follows, we consider t to be an observed trace of
size n ∈ N∗ over an activity act. We refer to the domain
{0, 1, . . . , n− 1} of t as Dom(t).

Recall that our objective is to reduce the number of
mined process specifications by avoiding scope overlaps.
To characterize scope overlaps, we formally introduce the
notion of scope and scope cover.

Definition 2. (Scope). A scope is a pair of events (e1, e2)
where e1, e2 ∈ Act ∪ E
Definition 3. (Scope cover). Let s = (e1, e2) be a scope.
The cover of s over t, denoted by Ct(s), is the set :

Ct(s) = {(i, j) ∈ Dom(t)2|i < j ∧ e1 ∈ t(i) ∧ e2 ∈ t(j)}

The cover of a scope returns all the pairs of ordered time
positions in the observed trace where the events making
up the scope occur. For instance, in Figure 3, the scope
(e1, e6) has cover Ct((e1, e6)) = {(1, 3)} since e1 occurs at
position 1 and e4 occurs at position 3.

Remark 4. (Size of scope cover). Given a scope s, the size
of its cover |Ct(s)| can be greater than 1. For instance, in
Figure 3, Ct((e1, e5)) = {(1, 2), (1, 3)}

To mine valid properties, we focus in this paper on the
absence and universality scope-based LTL specification
patterns introduced in Dwyer et al. (1999). These patterns
refer to recurring specifications which have been identified
through an extensive review of the literature, and hierar-
chically organized to ease their reuse and interpretation.

Definition 5. (Absence and universality properties). Let S
be a set of scopes, APAc ⊂ AP the set of actuator states,
and EAc ⊂ E the set of actuator events.

• An absence property is a predicate abs(e1, e2, ea)
where (e1, e2) ∈ S, ea ∈ EAct ∪APAc

• A universality property is a predicate univ(e1, e2, a)
where (e1, e2) ∈ S, a ∈ APAc

Informally, an absence property asserts that a certain
event or state never occurs within the cover of a scope.
A universality property asserts that a certain state al-
ways holds within the cover of a scope. Formally, each
property is an LTL formula which can be interpreted
over the execution traces. See Dwyer et al. (1999) and
Puaun and Chechik (2003) for the LTL syntactic formu-
lation of absence and universality properties using scopes,
and Leucker and Schallhart (2009) for the formal seman-
tics of LTL formulae. For example, the absence property
abs(A↓, C↑, B↑) is the LTL formula :

�(((A∧X¬A)∧♦(¬C∧XC))⇒ ¬(¬B∧XB)U(¬C∧XC))

This property asserts that event B↑ never happens be-
tween events A↓ and C↑.

Remark 6. (Restriction on universality properties). Since
an event refers to a change in the state of an actuator, it

does not make sense to assert that an event occurs at every
position within the cover of a scope. Thus, universality
properties cannot be defined over actuator events.

3.3 Requirements on the set of scopes

The mining step of our approach consists in finding the
properties satisfied by the attack-free execution traces
collected from supervisory flows between a supervisor
and PLCs. Following Definition 5, properties express con-
straints on sets of actuator states and events, and are
defined using different scopes belonging to a set of scopes
S. The set of actuator states and events is fixed and
depends on the components in the system. On the other
hand, the set of scopes S is not fixed a priori. A standard
approach to specification mining would explore all possible
scopes. However, as discussed in Section 3.1, this leads to a
significant number of redundancies. Our main objective is
to avoid such redundancies through a careful pre-selection
of the scopes in S such that they do not exhibit overlaps.

We also need to ensure that the scopes in S collectively
cover each observed trace and no property is missed. Oth-
erwise, an attack might go unnoticed due to the absence
of a constraint on a subsequence of the observed traces.
Intuitively, this means that we need to limit redundancies
without sacrificing coverage. In the following, we discuss
four requirements that match these observations : (i) each
scope must cover one pair of time positions, (ii) avoiding
unconstrained parts of an observed trace, (iii) avoiding
scope redundancies, and (iv) avoiding over-specifications.

Requirement (i) reduces the cover of each scope to only one
pair of time positions. The reason behind this requirement
lies in the form of the LTL specification patterns (see
Definition 5) and the corresponding finite state automa-
ton. When the automaton detects a violation, it enters a
deadlock state with no outgoing transitions. This means
that all the pairs of time positions occuring after the first
violation are ignored. To ensure that all pairs of time
positions are considered, we restrict the cover of each scope
to only one pair of time positions.

From requirement (ii), the cover of the selected scopes
should span all time positions in each observed trace.
Otherwise, attacks might be missed if they occur within
uncovered time positions. The set of scopes S = {(e1, e4),
(e4, act

↓)} does not cover all time positions in the observed
trace of Figure 3 since the combined covers of (e1, e4) and
(e4, act

↓) is {(1, 2), (2, 4)} which does not include (0, 1).

Redundancies (requirement (iii)) happen when two scopes
overlap, i.e when the intersection of their covers is not
empty. For instance, in Figure 3, the scope (e1, e4) with
cover {(1, 2)} overlaps with the scope (e1, e6) with cover
{(1, 3)} since their cover intersect on (1, 2). Avoiding re-
dundancies is our main objective since it leads to a reduc-
tion in the number of deployed monitors which otherwise
overload the operator with redundant information.

Over-specifications (requirement (iv)) occur when the
scopes are too broad, i.e their covers unnecessarily span
too many time positions within the observed trace. This
lead to missing some properties during the mining phase.
To illustrate this case, consider the set of scopes S =
{(act↑, e1), (e1, act

↓)} on Figure 3. Suppose that a property

p holds on the pair of time positions (1, 3) but not on
(3, 4). Then p does not hold on (1, 4). Since the cover of
(e1, act

↓) is {(1, 4)}, mining the properties directly on S
would miss the fact that p holds on (1, 3). To avoid this
issue, the scopes need to be of maximal precision, i.e their
cover must span the closest time positions possible.

We now give a formal expression of the four requirements.

Proposition 7. A set of scopes S satisfies requirements (i)
over a trace t of size n iff ∀s ∈ S, |Ct(s)| = 1.

We assume that the sets of scopes used in the following
satisfy Proposition 7.

Proposition 8. Let I = {(i, j) ∈ Dom(t)2, j − i = 1} be
the set of all successive time position pairs in Dom(t). A
set of scopes S is non-redundately covering (requirements
(ii) and (iii) above) a trace t iff 1 :

∀(i, j) ∈ I, ∃!s ∈ S | Ct(s) = {(k, l)} ∧ k ≤ i < j ≤ l

Proposition 7 ensures that the cover of each scope in S
reduces to a single pair of time positions on t. Propo-
sition 8 makes sure that each pair of time positions
on t is covered once and only once by a scope in
S. For instance, regarding Figure 3, the set of scopes
S = {(act↑, e4), (e1, act

↓)} satisfies Proposition 7 since
Ct((act

↑, e4)) = {(0, 2)},Ct((e1, e6)) = {(1, 4)} and thus
|Ct((e1, e4))| = |Ct((e1, e6))| = 1. However, S does not
satisfy Proposition 8 since (1, 2) is covered by two scopes :
(act↑, e4) and (e1, act

↓).

We now assume that the sets of scopes used in the following
satisfy Proposition 7 and 8.

Proposition 9. A set of scopes S is of maximal precision
over trace t (requirement (iv)) iff for every other set of
scopes S′ :

∀(e′i, e′j) ∈ S′,∃(ei, ej) ∈ S |{
Ct((ei, ej)) = {(ci, cj)}, Ct((e

′
i, e
′
j)) = {(c′i, c′j)}

c′i ≤ ci < cj ≤ c′j

Proposition 9 says that for any scope (e′i, e
′
j) in a set of

scopes S′, S contains a scope (ei, ej) at least as precise
as (e′i, e

′
j). For instance, consider the two sets of scopes

S = {(act↑, e4), (e4, act
↓)} and S′ = {(act↑, act↓)} on

Figure 3. Both sets satisfy Propositions 7 and 8. We have
Ct((act

↑, act↓)) = {(0, 4)}, Ct((act
↑, e4)) = {(0, 2)}, and

Ct((e4, act
↓)) = {(2, 4)}. Since the time position pairs

(0, 2) and (2, 4) are within (0, 4), the scopes in S are more
precise than S′ on (0, 2).

3.4 Generation of the set of scopes

In Section 3.3, we discussed the requirements which a
set of scopes needs to meet. In this section, we show
how such a set of scopes can be generated first for a
single observed trace, then for a set of observed traces.
To do so, we introduce the notion of a path. A path is an
application which uniquely associates each time position
in the observed trace with a single event. This event must
not appear anywhere else in the observed trace, i.e it
must characterize the position. The goal of a path is to
uniquely characterize every time position in the observed
1 ∃! means there is one and only one

with an event. Using these characterizing events, we will
show that a set of scopes satisfying the requirements in
Section 3.3 exists. In Figure 3, a possible path derived
from the observed trace associates act↑ to position 0, e1 to
position 1, e4 to position 2, e6 to position 3, and act↓ to
position 4. Given this path, e1 uniquely identifies position
1, i.e e1 is never observed at any other position in the
observed trace. Events e4 and e6 perform a similar task for
positions 1 and 2. On the other hand, position 2 cannot be
associated with event e5 since e5 occurs also in position 3.

Definition 10. (Path). A path pt over t is an application :

pt : Dom(t)→ E such that :{∀i ∈ Dom(t), pt(i) ∈ t(i)
∀(i, j) ∈ Dom(t)2, i 6= j =⇒ pt(i) 6∈ t(j)

Given an observed trace t, we denote by Πt the set of all
possible paths over t.

Remark 11. (Existence of a path over an observed trace).
Generally, one cannot guarantee the existence of a path
over an observed trace. A path cannot be generated if one
of the time positions can only be assigned events appearing
elsewhere on the observed trace. In this case, the position
cannot be uniquely characterized. Later, we discuss a so-
lution to this issue which isolates and treats separately
the events appearing in the conflicting positions. In the
worst case, when no position can be distinguished within
the observed trace, our solution reduces to a standard
specification mining approach which explores all possible
scopes and results in redundancies.

Remark 12. (Number of paths over an observed trace).
Given an observed trace t, the number of paths |Πt| can be
greater than 1. In the previous example, position 1 could
have been associated either with e1 or e2. Thus, different
paths are compatible with the observed trace in Figure 3.

In what follows, we refer to the image of a path pt over t
as Img(pt).

Remark 13. (Path bijection). From Definition 10, pt de-
fines a bijective application from Dom(t) to Img(pt) since
each time position in Dom(t) is associated with a unique
event in Img(pt).

Proposition 14. Given an observed trace t a set of scopes
S satisfying Propositions 7, 8, and 9 exists if a derived
path exists.

Proof. [Sketch] Let t be an observed trace and pt ∈ Pt a
derived path. We set S = {(pt(0), pt(1)), (pt(1), pt(2)), · · · ,
(pt(n − 2), pt(n − 1))}. We show that S satisfies Prop. 7,
8 and 9.

Prop. 7 : Let (pt(i), pt(j)) ∈ S. From Remark 13, we know
that each pt defines a bijective mapping from Dom(t)
to Img(pt). Thus, (pt(i), pt(j)) is uniquely associated to
the pair (i, j) ∈ Dom(t)2. Then, using Definition 3,
C((pt(i), pt(j))) = {(i, j)} and thus ∀s ∈ S, |C(s)| = 1.

Prop. 8 : Let (i, j) ∈ I be a pair of successive time
positions in Dom(t) as defined in Prop 8. By construction,
the scopes in S cover all time positions in Dom(t). Thus,
there exists a scope in S, namely (pt(i), pt(j)), covering
(i, j). This scope is unique due to the bijectivity of pt.

Prop. 9 : Let S′ be another set of scopes satisfying Prop. 7
and 8. Let (e′1, e

′
2) ∈ S′ and (c′1, c

′
2) the unique pair of time

positions (by Prop 7) to which Ct((e
′
1, e
′
2)) reduces. Since,

by construction, S covers all successive time positions in
Dom(t), we can always map (e′1, e

′
2) to a scope (e1, e2) ∈ S

with Ct((e1, e2)) = {(c1, c2)} such that c′1 ≤ c1 < c2 ≤ c′2.

To find Pt, i.e. the set of all possible paths of the observed
trace t, we identify, for each time position j in t, the
set of events Et(j) which do not happen elsewhere on t
(see Definition 10). Then, to construct Pt, we generate all
applications pt such that ∀j ∈ Dom(t), pt(j) ∈ Et(j).

Up to this point, we have only considered how to generate
a set of scopes S satisfying requirements i)-iv) from a single
observed trace (Proposition 14). However, we generally
have several observed traces each corresponding to a run
of an activity. To generate S for a set of observed traces
T = {t1, t2, · · · , tn} using Proposition 14, we rely on
the corresponding set of possible derived path sets ΠT =
{Pt1 ,Pt2 , · · · ,Ptn} as shown in Figure 4. Then, the scope
identification step determines whether a unique derived
path can be obtained from the set ΠT , and if so derives
the mining scopes using Proposition 14.

0: {e1, e2, . . .}
...

l: {e1, e2, . . .}
...

0: {e1, e2, . . .}
...

m: {e1, e2, . . .}

Observed traces
T = {t1, t2, . . . , tn}

0: e1
...

l: el

...
0: e1

...
m: em

Paths

ΠT = {Pt1 ,Pt2 , . . . ,Ptn}

Scopes
identification

< e1, e2 >

...
< ep−1, ep >

Scopes
S

Fig. 4. Scope selection approach based on paths derived
from the observed traces

Remark 15. Given a set of observed traces T = {t1, t2, · · ·
, tn} and its set of possible derived paths sets ΠT =
{Pt1 ,Pt2 , · · · ,Ptn}, a non-redundately covering set of
scopes of maximal precision exists if :⋂

1≤i≤n

Pti 6= ∅

Remark 15 covers the case when a common path exists
among the observed traces. Next, we consider the genera-
tion of a set of scopes for the situation where a common
path cannot be found. Our solution consists in identifying
a minimal set of events, called conflicting events, whose
removal allows for the generation of a common path. Then,
the conflicting events are used with a standard mining
approach with no guarantee of non-redundancy while the
common path, free of conflicting events, can generate a
non-redundant set of scopes.

The main drawback of this solution is the increase in
the number of redundant alerts. In the worst case, if all
events are conflicting, our solution reduces to a standard
mining approach with redundancies. However, due to the
regularity of the observed traces generated from activities,
we expect the set of conflicting events to be minimal. As
we discuss in our evaluation analysis, substantial improve-
ments can still be gained in terms of redundancy compared

to a standard approach. In the following, we explore two
exhaustive cases where the determination of a common
path is impossible. For each case, we discuss how to : (i)
identify the set of conflicting events and, (ii) decide on a
common path to generate a non-redundant set of scopes.

Case 1. (∃Pt ∈ ΠT | Pt = ∅). This case corresponds to the
situation where a path cannot be generated for an observed
trace t, i.e one or more positions can only be assigned
events appearing elsewhere in the trace. Let CPt be the
set of such positions, then CPt = {i ∈ Dom(t) | ∀e ∈
t(i),∃j ∈ Dom(t), j 6= i ∧ e ∈ t(j)}. Note that CPt can
never include the first and last position in t, since these
characterize the start and end of an activity and do not
appear elsewhere in the observed trace.

We identify the conflicting events as those appearing on
the positions in CPt. The set of conflicting events is given
by CE = {e ∈ Img(t) | ∃j ∈ CPt, e ∈ t(j)}. A path can
then be generated from t|Dom(t)\CPt

, the restriction of t to
Dom(t) \ CPt.

Case 2. ((∀Pti ∈ ΠT ,Pti 6= ∅) ∧
⋂

1≤i≤n
Pti = ∅). In contrast

to Case 1, we assume that paths can be generated for
all the observed traces. However, in this case, due to
differences in the sequence of events across several runs of
an activity, no common path can be found. To determine
a common path, we start from the sets of derived paths :
Pt1 ,Pt2 , · · · ,Ptn . We then identify, for each observed trace
ti, the minimal set of positions CPi whose events can be
removed from a path in Pti to generate a common path.
Thus, the sets CPi are determined such that :

∃p1 ∈ Pt1 , p2 ∈ Pt2 , · · · , pn ∈ Ptn |
p1|Dom(t1)\CP1

= p2|Dom(t2)\CP2
= · · · = pn|Dom(tn)\CPn

Where pi|Dom(ti)\CPi
is the restriction of path pi to

Dom(ti) \CPi. Then, the set of conflicting events is given
by CE =

⋃
pi

{e ∈ Img(pi) | ∃j ∈ CPi, e = pi(j)}. A

common path is given by p1|Dom(t1)\CP1
.

To generate CPi for each trace ti, we compute the longest
common subsequence (see Irving and Fraser (1992)) that
can be found between any paths (p1, p2, · · · , pn), pi ∈
Pti . The longest common subsequence finds a common
subsequence across the paths by discarding a minimal set
of positions CPi in each path pi.

After determining the set of scopes S, we generate all
the valid absence and universality properties over all the
scopes in S, as indicated in Definition 5. Then, we keep all
the properties that are valid on the attack-free training
dataset. If conflicting events exist, we use a standard
mining approach and only retain valid properties which
involve a conflicting event in their scope.

4. EVALUATION

We evaluate our approach, on a hardware-in-the-loop
testbed with a simulated physical process controlled by
real PLCs. The process is a chemical plant producing ben-
zene by hydrodealkylation of toluene (see Turton (2012)).

The physical process is simulated using OpenModelica 2 .
Its parameters (tank dimensions, heating temperatures,

2 https://openmodelica.org

mixing time, etc.) are set so that the physical process
undergoes several cycles during our simulations. Control
is distributed using three PLCs (Schneider M340 and
M580 and Wago IPC-C6 with additional RTU 750-873).
Each PLC sends commands and receives sensor informa-
tion from the real-time OpenModelica simulation via in-
put/output (I/O) interface cards. Control logics are imple-
mented in SFC. To carry its control logics, a PLC may need
to communicate with other PLCs to query sensor states
or send commands. HMI associated with each allows the
operators to monitor and perform manual interventions.

We now describe the simulated physical process and dis-
cuss the implementation.

4.1 Testbed Description

Fig. 5. Physical process model used in our evaluation

The simulated physical process is shown in Figure 5. This
process takes input products P1 to P5 and yields output
products P6 to P10. The main objective of the process
consists in carrying a chemical reaction to synthesize
product P10 from reactants in the silos S1 and S2. These
reactants are manufactured from initial products in several
stages involving mixing (motors M1 to M4) and quality
testing (QC1). The reaction occurs in the reactor RE1
and residual reactants are recycled by feeding them back
to the silos S1 and S2.

The physical process involves 71 sensors and actuators
and has two modes : manual and automatic. The manual
mode allows the operators to carry interventions on the
process. Upon receiving a command for manual mode, the
PLCs put the physical process in a stable condition by
manipulating actuators. All in all, the physical process is
divided into 18 activities : 10 activities for the generation
of the reactants in S1 and S2, and 8 activities for the actual
chemical reaction and recycling phase.

4.2 Implementation and datasets

Mining, monitoring, and activity recognition are imple-
mented in C++/Phyton. Analysis is performed on an Intel

Dual Core i7 2.6 Ghz machine with 16 GB of RAM and
Linux kernel 4.4.0. Evaluation uses 4 network captures
during which the physical process goes through several
cycles for every activity. The fastest activity goes through
tens of cycles in the longest network capture (3 hours). A
2-hours long training traffic is used to build the IDS base
profiles and generate the scopes used in mining process
specifications. Concurrently, we perform a pre-defined set
of legitimate operator interventions. The training dataset
reflects realistic conditions where certain legitimate behav-
iors are absent due to the limited training window. For
evaluation purposes, we use 3 captures spanning 3 hours
each and containing a total 36 sequence attacks. These
attacks occur during all the activities and are performed
by sending sequences of malicious Modbus commands from
supervisor or engineering stations to the PLCs.

5. ANALYSIS

The first step of the mining process is to identify the scopes
to be used in the search for valid properties. Table 1 shows
the results of this identification step on the 18 activities
in the physical process (A1-A18). The table displays the
number of SFC steps in each activity, the number of
possible scopes given the actuators and sensors involved in
the activity, the time elapsed to identify the scopes and the
number of identified scopes to be used in the mining phase.
The number of possible scopes is the number of possible
pairs of events and can be computed using M = |E∪Act|2
where E is the set of events and Act is the set of the
activity’s beginning and end markers.

We observe from Table 1 that the number of mining scopes
is always greater or equal than the number of SFC steps for
each activity. This indicates that, in general, more precise
constraints can be mined on the traces at the level of
events and scopes compared to the level of SFC steps.
Since the scopes are able to represent finer distinctions
within the observed traces, they are more suitable to avoid
over-specification issues.

Out of the 18 activities, only A1 and A5 exhibited con-
flicting events. Each time, discarding one event was suffi-
cient to generate the set of scopes. The conflicting events
(tp1vid↑ and tp2vid↑) indicate that buffer tanks TP1 and
TP2 are empty. These buffer tanks act as intermediate
containers between parallel activities for the generation of
reactants in, respectively, TK1,TK2, and TK3,TK4. Thus,
the levels of buffer tanks TP1 and TP2 do not depend
only on one activity, but is influenced by actions performed
at parallel activities. This means that events tp1vid↑ and
tp2vid↑ cannot uniquely characterize a position in the
observed traces of each of the parallel activities, which
ultimately results in conflicting events.

The second step of the mining process is to find the
valid properties on the training dataset using the scopes.
Table 1 shows the mining results for all 18 activities.
For each activity, the table displays the amount of time
needed for the mining process along with the number of
mined properties for this paper’s approach, the approach
in Koucham et al. (2016) and the approach in Lemieux
et al. (2015) using Texada 3

3 http://bitbucket.org/bestchai/texada

Table 1. Mining results

Activity A1∗ A2 A3 A4 A5∗ A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18

SFC Steps 4 1 1 6 4 1 1 3 3 2 11 4 1 1 1 2 1 1
Pos. scopes 324 64 64 484 324 64 64 196 144 36 1444 100 36 100 64 100 64 64

Scopes’ id. time (s) 0.044 0.039 0.054 0.052 0.044 0.062 0.039 0.043 0.045 0.046 2.019 0.042 0.041 0.043 0.039 0.037 0.033 0.034
Scopes 7 2 2 6 7 2 2 3 4 3 19 5 2 2 2 3 2 2

Mining time (s) 0.354 0.029 0.021 0.376 0.387 0.025 0.022 0.489 0.108 0.130 0.045 2.387 0.034 0.012 0.034 0.022 0.062 0.033

Mined properties

This paper 43 4 4 38 35 4 4 10 10 6 237 6 4 3 4 4 4 4
KMH+16 297 8 8 750 196 8 8 38 56 21 5088 17 8 14 8 28 8 8
LPB15 533 8 8 1498 431 8 8 77 155 37 8029 33 8 32 8 41 8 8

Pos. : Possible, id. : identification, KMH+16 : Koucham et al. (2016), LPB15 : Texada, Lemieux et al. (2015)

Compared to other approaches we consistently reduce the
number of mined properties. This is especially apparent
for long activities such as A11 where we only retain 4.67%
(KMH+16) and 2.95% (LPB15) of the properties mined
by the other approaches. Generally, longer activities in-
volve more actuators and sensors, increasing the number
of possible scopes and of possible properties. In our case,
for each activity, the number of scopes on which mining
is performed is significantly lower than the number of
possible scopes. This provides an advantage over other ap-
proaches which do not perform any pre-selection of scopes
and produce a large amount of overlapping properties.

To evaluate the performance of our intrusion detection
approach, we deploy the monitors and run the three eval-
uation datasets. All attacks were successfully identified
across all datasets. We also record false alarms (35% of
the reported violations) due to operator interventions not
seen in the training dataset. Generally, we observe one vio-
lation per operator action. This follows from the precision
requirement on the scope set which ensures that violations
report the most precise scopes. Maintaining a limited
number of alerts is important to avoid overwhelming the
security analyst. In contrast, due to the large amount of
redundant mined properties, the other approaches produce
10 to 30 times as much number of violated properties for
every operator’s action during the longer activities. In this
case, the analyst needs to sift through a larger number of
violations to discrimate attacks from false alarms.

6. CONCLUSION

Detecting process-aware attacks in ICS requires adequate
intrusion detection measures which take into account the
physical process. In this paper, we present an approach to
efficiently mine safety properties on execution traces of the
physical process. The mined properties can then be synthe-
sized as monitors that report any violation to the operator.
The proposed mining procedure aims at minimizing re-
dundant properties while ensuring maximum coverage and
precision over the execution traces. Finally, we analyze the
efficiency of our approach through a hardware-in-the-loop
evaluation on a complex physical process model subject
to attacks and legitimate operator manipulations. The
main prospects of this work concern the handling of false
positives. In particular, the integration of feedback from
the operator on reported violations and of alerts from other
IDS might help achieve lower rates of false positives.

REFERENCES

Bauer, A., Leucker, M., and Schallhart, C. (2006). Model-
based runtime analysis of distributed reactive systems.
In ASWEC’06, 10 pp.

Carcano, a., Coletta, a., and al. (2011). A multidimen-
sional critical state analysis for detecting intrusions in
SCADA systems. IEEE Trans. on Industrial Informat-
ics, 7(2), 179–186.

Caselli, M., Zambon, E., and Kargl, F. (2015). Sequence-
aware Intrusion Detection in Industrial Control Sys-
tems. In Proc. 1st ACM Workshop CPSS, 13–24.

D’Amorim, M. and Roşu, G. (2005). Efficient monitoring
of ω-languages. In Proc. CAV’05, 364–378.

Dubey, A., Karsai, G., and Mahadevan, N. (2011). Model-
based software health management for real-time sys-
tems. In 2011 Aerospace Conference, 1–18.

Dwyer, M.B., Avrunin, G.S., and Corbett, J.C. (1999).
Patterns in property specifications for finite-state veri-
fication. In Proc. ICSE’99.

Irving, R.W. and Fraser, C. (1992). Two algorithms for the
longest common subsequence of three (or more) strings.
In Proc. of the 3rd Annual Symposium on Combinatorial
Pattern Matching, 214–229. Springer-Verlag, London.

John, K.H. and Tiegelkamp, M. (2010). IEC 61131-3:
Programming Industrial Automation. Springer.

Koucham, O., Mocanu, S., Hiet, G., Thiriet, J.M., and
Majorczyk, F. (2016). Detecting Process-Aware Attacks
in Sequential Control Systems. In Proc. NordSec’16.

Larsen, J. (2008). Breakage - Black Hat. online paper.
Accessed 2017-10.

Lemieux, C., Park, D., and Beschastnikh, I. (2015). Gen-
eral LTL specification mining. In Proc. ASE’15, 81–92.

Leucker, M. and Schallhart, C. (2009). A brief account
of runtime verification. Journal of Logic and Algebraic
Programming, 78(5), 293–303.

Mitchell, R. and Chen, I.R. (2014). Behavior Rule
Specification-based Intrusion Detection for Safety Crit-
ical Medical Cyber Physical Systems. IEEE Tran. on
Depend. and Sec. Comp., 12(1), 16–30.

Pnueli, A. (1977). The temporal logic of programs. In
Proc. SFCS’77, 46–57. Washington, DC, USA.

Puaun, D.O. and Chechik, M. (2003). On Closure Under
Stuttering. FAC, 14, 342–368.

Robert T. Marsh, C. (1997). The report to the president’s
commission on critical infrastructure protection. Tech-
nical report, USA.

Turton, R. (2012). Analysis, Synthesis, and Design of
Chemical Processes. Prentice-Hall international series
in engineering. Prentice Hall.

