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We study the problems of decomposition and sharing for userdefined aggregate functions in distributed and parallel computing. Aggregation usually needs to satisfy the distributive property to compute in parallel, and to leverage optimization in multidimensional data analysis and conjunctive query with aggregation. However, this property is too restricted to allow more aggregation to benefit from these advantages. We propose for user-defined aggregation functions a formal framework to relax the previous condition, and we map this framework to the MRC, an efficient computation model in MapReduce, to automatically generate efficient partial aggregation functions. Moreover, we identify the sound conditions for sharing the result of practical user-defined aggregation without scanning base data, and propose a hybrid solution, the symbolic index, pull-up rules, to optimize the sharing process.

INTRODUCTION

The ability to summarize information, the intrinsic feature of aggregation, is drawing increasing attention for information analysis [START_REF] Cuzzocrea | Aggregation and multidimensional analysis of big data for large-scale scientific applications: models, issues, analytics, and beyond[END_REF][START_REF] Gray | Data Cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-totals[END_REF]. Simultaneously under the progress of data explosive growth, processing aggregate function has to experience a transition to massively distributed and parallel framework, e.g. MapReduce, Spark, Flink etc. The inherent property of aggregation, taking several values as input and generating a single value based on certain criteria, requires a decomposed approach in order to be executed in a distributed architecture. Decomposition for aggregation functions enables to compute partial aggregation which can then be merged together to obtain the final result. These partial aggregation results also require an efficient method manage due to the fact that data scanning is usually costly in distributed and parallel computing. How to efficiently decompose user-defined aggregation functions and reuse their partial computation results is a hard nut to crack.

Decomposition of aggregation functions is a long-standing research problem that has been addressed in various fields. In a distributed computing framework like MapReduce, decomposability of aggregate function can push aggregation before the shuffle phase [START_REF] Liu | Automating distributed partial aggregation[END_REF][START_REF] Yu | Distributed Aggregation For Data-Parallel Computing: Interfaces and Implementations[END_REF]. This is usually called initial reduce, with which the size of data transmission on a network can be substantially reduced. For wireless sensor network, the need to reduce data transmission is more necessary because of the limitation of power supply [START_REF] Madden | TAG: a Tiny AGgregation Service for Ad-Hoc Sensor Networks[END_REF]. In online analytical processing (OLAP), decomposability of aggregate function enables aggregation across multi-dimensions, such that aggregation queries can be executed on pre-computation results instead of base data to accelerate query answering [START_REF] Chaudhuri | An overview of data warehousing and OLAP technology[END_REF]. An important point of query optimization in relational databases is to reduce input table size of join [START_REF] Garcia-Molina | Database System Implementation[END_REF], and decomposable aggregation brings interests [START_REF] Cohen | User-defined aggregate functions: bridging theory and practice[END_REF].

Previous works identify interesting properties for aggregation decomposition. A very relevant classification of aggregation functions, introduced in [START_REF] Gray | Data Cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-totals[END_REF], is based on the size of sub-aggregation (i.e., partial aggregation). This classification distinguishes between distributive and algebraic aggregation, having sub-aggregate with fixed sizes, and holistic functions, where there is no constant bound on the storage size needed to describe a subaggregation. Some algebraic properties, such as associativity and commutativity, are identified as sufficient conditions for aggregation decomposition [START_REF] Liu | Automating distributed partial aggregation[END_REF][START_REF] Yu | Distributed Aggregation For Data-Parallel Computing: Interfaces and Implementations[END_REF]. Compared to these works, our work provides a generic framework to identify the decomposability of any symmetric aggregation and generate generic algorithms to process it in parallel.

On the other side of sharing aggregation computation, [START_REF] Cranor | Gigascope: A stream database for network applications[END_REF][START_REF] Deshpande | Caching multidimensional queries using chunks[END_REF][START_REF] Venky Harinarayan | Implementing data cubes efficiently[END_REF][START_REF] Zhang | Multiple aggregations over data streams[END_REF] focus on aggregate functions with varying selection predicates and group-by attributes. In dynamic data processing, [START_REF] Guirguis | Optimized processing of multiple aggregate continuous queries[END_REF][START_REF] Huebsch | Sharing Aggregate Computation for Distributed Queries[END_REF][START_REF] Krishnamurthy | On-the-fly sharing for streamed aggregation[END_REF] concentrate on windowed aggregate queries with different ranges and slides. [START_REF] Wasay | Data Canopy: Accelerating Exploratory Statistical Analysis[END_REF] proposes a framework to manage the partial aggregation results, and it has shown performance improvement compared to modern data analysis library e.g. Numpy. Previous works focus on optimizing queries with aggregation functions having different group attributes, predicates, and windows (range and slide), while we concentrate on sharing computation results for completely different aggregation functions without these constraints (aggregation simply runs on input dataset). And our solutions can be trivially extended to relational queries with aggregation functions by exploiting the contribution of previous works.

We focus on designing a generic framework that enables to efficiently process user-defined aggregation functions and exhaustively reuse their computation results. To achieve this goal, we firstly identify a computation model and an associated cost model for parallel algorithms. We consider in our work the MapReduce (MR) framework and we use the MRC [START_REF] Karloff | A Model of Computation for MapReduce[END_REF] cost model to define 'efficient' MR algorithms. Then we rest on the well-formed aggregation [START_REF] Cohen | User-defined aggregate functions: bridging theory and practice[END_REF] as a generic framework for aggregation functions. This formal framework is mapped into the MRC model to generate a generic efficient MR algorithm for aggregation in section 4, noted by MR(α). Moreover, in section 5, we identify the widely used ⊕ functions in practice in the formal framework and analyze their effects on the efficiency of MR(α). On the side of sharing aggregation computation, at first, in section 6 we introduce the sharing strategy based on the formal framework. Then in section 7, we identify the sharing conditions for practical user-defined aggregation. In order to improve the sharing process, the symbolic index and pull-up rules are proposed to optimize the execution plan of aggregation.

We aim at providing a systematic approach for processing userdefined aggregation to fit the increasing application of aggregation functions in different fields of data analysis. The general outline can be concluded in figure 1. In this paper, we concentrate on the formal framework of user-defined aggregation and the theoretical aspects of the optimizing phase. All corresponding proofs and algorithms are supplemented in the technical report [START_REF]Decomposition and Sharing of User-defined Aggregation: from Theory to Practice[END_REF].

MRC ALGORITHM

Several research works concentrate on the complexity of parallel algorithms. MU D [START_REF] Feldman | On Distributing Symmetric Streaming Computations[END_REF] algorithm was proposed to transform a symmetric streaming algorithm to a parallel algorithm with decent bounds in terms of communication and space complexity, but without any bound on the time complexity. This disqualifies MU D as a possible candidate in our context. The trade-off between round numbers and reducer space has been analyzed in [START_REF] Goodrich | Sorting, Searching, and Simulation in the MapReduce Framework[END_REF], and reducer memory is relaxed to an arbitrary number to solve complex problems e.g. prefix sums and multi-searching. In [START_REF] Beame | Communication steps for parallel query processing[END_REF], the massively parallel communication model was proposed to analyze the trade-off between communication load and computation rounds for relational queries. MRC [START_REF] Karloff | A Model of Computation for MapReduce[END_REF] is another popular framework that has been used to evaluate whether a MapeReduce algorithm is efficient. The constraints enforced by MRC w.r.t. to the total bits of input n can be summarized in the follows:

• machine space: O(n 1-ϵ ), ϵ > 0;

• local computation time: O(n k ), for some constant k;

• machine numbers: O(n 1-ϵ ), ϵ > 0;

• computation round: R = O(loд i (n)).

The MRC model considers necessary parameters for parallel computing, communication time, computation space and computing time, and makes more realistic assumptions. Hence, a MapReduce algorithm satisfying these constraints is considered as an efficient parallel algorithm and will be called hereafter an MRC algorithm.

FORMAL FRAMEWORK

In this section, first of all, we formally define aggregation function. Then the symmetric (commutative) aggregation functions are introduced. Finally, we provide the formal framework for symmetric aggregation which is going to be used throughout this paper. According to this definition, corresponding to the notion of extended aggregation function in [START_REF] Grabisch | Aggregation function: Means[END_REF], an aggregation operates on a list of values to compute a single value as a result. Definition 3.2. (Symmetric aggregation function) Let I be a domain. An aggregation function α is symmetric iff α(X ) = α(σ (X )) for any X ∈ I l , l ∈ N >1 and any permutation σ , where σ (X ) = (x σ (1) , ..., x σ (l ) ).

Symmetric aggregation does not depend on the order of input data, therefore we consider the input of a symmetric aggregation is a multiset instead of an ordered list. For a given domain I , by noting {{I }} as the set of all nonempty finite multisets of elements of I, a symmetric aggregation function is a function: {{I }} → I .

To define the generic aggregation framework, we use the notion of well-formed aggregation [START_REF] Cohen | User-defined aggregate functions: bridging theory and practice[END_REF] as a canonical form. Definition 3.3. (Canonical form of symmetric aggregation function) Let α be a symmetric aggregation function defined over a domain I and let D i be a domain, called an intermediate domain.

A canonical form of α using an intermediate domain D i is a triple (F , ⊕,T ), where:

• F : I → D i is a translating function;

• ⊕ is a commutative and associative binary operation over

D i ; • T : D i → I is a terminating function;
such that for all {d 1 , ..., d l } ∈ {{I }}, α({d 1 , ...,

d l }) = T (F (d 1 ) ⊕ . . . ⊕ F (d l )).
F is a tuple at a time function operating on single values of I .

The binary operation ⊕ accumulates results of F and hence plays the role of an accumulator, and T operates on the accumulated results of ⊕ to finalize the computation of α . For instance, the aggregation averaдe(X ) with X ∈ {{I }} can be expressed in the following canonical form, called hereafter canaveraдe form:

• F (d) = (d, 1), ∀d ∈ X ; • (d, k) ⊕ (d ′ , k ′ ) = (d + d ′ , k + k ′ ); • T ((d, l)) = d l .
More examples are illustratd in table 6 with main SQL built-in aggregation functions available on some commercial and open-source DBMSs (Microsoft SQL Server [START_REF]Miscrosoft SQL functions[END_REF],IBM DB2 [START_REF]DB2 built-in functions[END_REF] and PostgreSQL [START_REF]PostgreSQL[END_REF]).

We make the following two observations [START_REF] Cohen | User-defined aggregate functions: bridging theory and practice[END_REF]: (i) a canonical form of an aggregation function is not unique, i.e., for the same function α, several canonical forms may exist, and (ii) an aggregation function α can always be expressed in a canonical form: taking F as the identity function, ⊕ as the multiset union and T as α itself. This latter form is called hereafter the naive canonical form of α.

EFFICIENT DECOMPOSITION OF AGGREGATION

In this section, we firstly decompose aggregation functions using the formal framework, then we illustrate the deficiency of the formal framework, lacking the consideration of computing efficiency.

Therefore, we map the formal framework into the MRC algorithm to generate the efficient decomposition framework. After this, we show how the formal framework deals with several algebraic properties of aggregation functions which are commonly used in the decomposition literature, from this we can see that the formal framework is more generic than the previous algebraic properties.

Mapping symmetric aggregation into MRC algorithm

Let (F , ⊕,T ) be a canonical form of an aggregation function α. The associative and commutative property of ⊕ can be exploited to derive a MapReduce implementation of α: processing F and ⊕ at mapper, ⊕ at combiner, and ⊕ and T at reducer. Table 1 depicts the corresponding generic MapReduce algorithm, MR(α), to compute α(X ) with X ∈ {{I }}, where mapper input is a multiset X i ⊆ X , the output of the mapper i is denoted by O i , and the symbol ⊕ denotes the summation using ⊕.

Hence, every symmetric aggregation function α given in a canonical form (F , ⊕,T ) can be turned into a MapReduce algorithm MR(α). However, the generated MR(α) algorithm is not necessarily an efficient algorithm (i.e., a MRC algorithm). For example, the algorithm MR(canaveraдe), derived from the canaveraдe form of the averaдe function is a MRC algorithm while the algorithm MR(naiveaveraдe), derived from the naive canonical form of averaдe, is not a MRC algorithm. Indeed, in the naive canonical form of averaдe, F is the identity function and ⊕ is the multiset union.

Hence, the total size of output of mappers is equal to n (the length of the input), and if, in the worst case, all the mapper outputs are sent to only one reducer it will need a space equal to n. However, MRC model requires that a reducer uses a sublinear space in n.

Therefore, we address in the sequel the following question: given an aggregation function α expressed in a canonical form, when the generated MR(α) algorithm is efficient? In other words, we are interested in characterizing under which conditions one can ensure that MR(α) is a MRC algorithm.

In order to have conditions to make MR(α) be a MRC algorithm, it is necessary to reason about partial aggregation output length which is related to the bounded space of reducer in MRC. Moreover, the extremely worst (EW) case in MapReduce is that all mapper outputs are sent to one reducer, and if the condition of partial aggregation result length can be satisfied in EW case, then the case of a general number of reducers can also be ensured. Note that, in (EW) cases, the communication cost is the space of one machine, O(n 1-ϵ 2 ). Our analysis is built on the EW case.

In MRC model, machine number P and machine space M are both restricted to O(n 1-ϵ ). However, this may bring a restricted condition that the bound of P and M must be same or same order of magnitude, which limits the feasibility under EW case of computing even trivial aggregation e.g. count(), because under EW case P •|O i |= M where |O i | is the length of a mapper output O i in bits, if P and M are same or same order of magnitude, |O i | can only be O [START_REF]DB2 built-in functions[END_REF]. Therefore, we assume machine number: P = O(n 1-ϵ 1 ), ϵ 1 > 0 and machine space: M = O(n 1-ϵ 2 ), ϵ 2 > 0, and both of them are still under the MRC sublinear requirement. In the following, we call MRC environment E = (X , ϵ 1 , ϵ 2 ) for an input X = {< k j ; v j >, for j ∈ [1, l]} of n = l j=1 (|k j |+|v j |) bits, and a cluster 

MapReduce phase operation mapper

⊕,d j ∈X i F (d j ) combiner ⊕ reducer T ( ⊕,i O i ) of P = O(n 1-ϵ 1 )
, ϵ 1 > 0 machines, and each of them having M = O(n 

environment E = (X , ϵ 1 , ϵ 2 ) iff for each mapper output O i , |O i |= O(n 1-ζ ), ζ max(ϵ 2 , 1 -ϵ 1 + ϵ 2 ).
Based on proposition 4.1, we propose the following reducible property to categorize when a symmetric aggregation has a MRC algorithm.

Definition 4.2. (Reducible symmetric aggregation functions)

Let α be a symmetric aggregation given in a canonical form (F , ⊕,T ) with the MRC environment E = (X , ϵ 1 , ϵ 2 ), α is reducible if it satisfies the following two conditions:

• F , ⊕ and T operate in time polynomial in n;

• | ⊕,d j ∈X i F (d j )|= O(n 1-ζ ), ζ max(ϵ 2 , 1 -ϵ 1 + ϵ 2 )
, where X i is a subset of X with the size of O(n 1-ϵ 2 ) in bits.

The second condition requires that the output length of partial aggregation is bounded by a precisely sublinear space in n. This ensures that the length of partial aggregation is smaller enough to make the underlying computation efficient. It is noteworthy that this constraint is more general than the MRC parallelizable property in [START_REF] Karloff | A Model of Computation for MapReduce[END_REF].

It is trivial to see that the formal framework is a one-round MR algorithm, then with reducible property we can conclude in the follows the MR(α) for a reducible α is a MRC algorithm, which means MR(α) can be efficiently computed in MR paradigm.

MR(α), α is reducible ⇔ MRC alдorithm.

(1)

Deriving MRC algorithm from algebraic properties

In this subsection, we investigate different algebraic properties of aggregation functions leading to a non-naive canonical form. If an aggregation α is in one of the following classes and α is also reducible, then the corresponding MR(α) is a MRC algorithm. Associative aggregation. An aggregate function α is associative [START_REF] Grabisch | Aggregation function: Means[END_REF] if for any multiset X = X 1 ∪ X 2 , α(X ) = α (α(X 1 ), α(X 2 )) . Associative and symmetric aggregation function can be transformed in a canonical form (F , ⊕,T ) defined as follows:

F = α, ⊕ = α, T = id. ( 2 
)
where id denotes the identity function. If α is reducible, then MR(α) is a MRC algorithm. Distributive aggregation. An aggregation α is distributive [START_REF] Gray | Data Cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-totals[END_REF] if there exists a combining function C such that α(X ) = C(α(X 1 ), α(X 2 )).

Distributive and symmetric aggregation can be rewritten in the canonical symmetric aggregation framework (F , ⊕,T ):

F = α, ⊕ = C, T = id. (3) 
Similarly, if α is reducible then the corresponding MR(α) is a MRC algorithm.

Commutative semigroup aggregation. Another kind of aggregate function having the same behavior as symmetric and distributive aggregation is the commutative semigroup aggregate function [START_REF] Sara Cohen | Rewriting queries with arbitrary aggregation functions using views[END_REF]. An aggregation α is in this class if there exists a commutative semigroup (H, ⊗), such that α(X ) = x i ∈X α(x i ). The corresponding canonical aggregation (F , ⊕,T ) is illustrated as following:

F = α, ⊕ = ⊗, T = id. ( 4 
)
If α is reducible then MR(α) is a MRC algorithm.

Preassociative and symmetric aggregation. A more general property than commutative semi-group aggregation is symmetric and preassociative aggregate function. An aggregation α is preassociative [START_REF] Jean-Luc | Preassociative Aggregation Functions[END_REF] 

if it satisfies α(Y ) = α(Y ′ ) =⇒ α(XYZ ) = α(XY ′ Z ).
According to [START_REF] Jean-Luc | Preassociative Aggregation Functions[END_REF], some symmetric and preassociative aggregation functions (unarily quasi-range-idempotent and continuous) can be constructed as α(X) = ψ n i=1 φ(x i ) , n ≥ 1, where ψ and φ are continuous and strictly monotonic unary function. A canonical form (F , ⊕,T ) for this kind of preassociative aggregation can be defined as following:

F = φ, ⊕ = +, T = ψ . (5) 
The corresponding MR(α) is also a MRC algorithm, if α is reducible. For instance, α(X ) = n i=1 2x i , where ψ = id and φ(x i ) = 2x i . Quasi-arithmetic mean. An aggregate function α is barycentrically associative [START_REF] Jean-Luc | Strongly Barycentrically Associative and Preassociative Functions[END_REF] 

mean: α(X) = f -quasi 1 l l i=1 f (x i ) , l ≥ 1
, where f is an unary function and f -quasi is a quasi-inverse of f . With different choices of f , α can correspond to different kinds of mean functions, e.g. arithmetic mean, quadratic mean, harmonic mean etc. An immediate canonical form (F , ⊕,T ) of such functions is given by:

F = (f , 1), ⊕ = (+, +), T = f -1 ( l i=1 f (x i ) l ). (6) 
The corresponding MR(α) is a MRC algorithm, if α is reducible.

PRACTICAL DECOMPOSITION

In this section, we firstly identify two widely used ⊕ functions, which are adequately generic to construct user-defined aggregation based on the analysis of table 6 (see at the last page). Then we analyze the relationship between these two ⊕ functions and the reducible property.

Efficient ⊕ function

According to the canonical forms of most common used aggregation (see table 6), the ⊕ function in the formal framework can be set union, addition, and multiplication, or a tuple of the combination of them. It is trivial to see that set union is not an efficient ⊕ function, because of materializing all data from slave nodes to master nodes. In practice, for aggregation functions which can only have set union as the ⊕ function, e.g. median, approximated algorithms are usually used to compute them, which is out the scope of this paper.

The reducible property gives the necessary and sufficient condition to identify when an arbitrary aggregation in the canonical form is a MRC algorithm. From definition 4.2, we observe that partial aggregation output length is bounded, which depends on input value length |v | in bits and the increasing bits by using ⊕ to accumulate values.

When it comes to practical computing, there is always a trade-off between the length of the result and the computation precision (unbounded-length result). For instance, in Java, the primitive data type double has a fixed length of 64-bit, but the precision of computation result using double is out of control. While, the BigDecimal provides arbitrary precision arithmetic, but the result has an unbounded length depending on precision. For the bounded-length data type, the MR(α) with ⊕ = + or ⊕ = × is always a MRC algorithm, because there is no increase on the size of accumulating values, in other words, the size of the mapper output is always the bounded number of bits, which could be O [START_REF]DB2 built-in functions[END_REF]. We analyze MR(α) with the unbounded-length data type in the follows, which is for the cases of arbitrary precision computing and exact computing with unlimited precision.

5.1.1 ⊕ = + . We show in the following theorem, under the case of unbounded data type, when a MR(α) with ⊕ = + in the MRC environment is a MRC algorithm. Theorem 5.1. Let α be a symmetric aggregation in a canonical form with ⊕ = + and F ,T operating in time polynomial in the length of input, and MR(α) be the corresponding generic algorithm with the MRC environment E = (X , ϵ 1 , ϵ 2 ), when

|F (v i ) + F (v j )|, ∀v i , v j ∈ X is unbounded, MR(α) is a MRC algorithm iff |avд(F (v i ))|= O(n 1-ζ ), ζ > max(ϵ 2 , 1 -ϵ 1 + ϵ 2 ), where avд(F (v i )) is the average value of ∪ v i ∈X F (v i ).
Proof. When |F (v i ) + F (v j )|, ∀v i , v j ∈ X is unbounded, then the intermediate size of accumulating values is increasing. Let every v in X initially occupy a fixed length denoted as |v max | bits. Assuming mapper i receives l i values, and the worst case of accumulating values with + is that every v has the maximum value of |v max | bits, then

l i × |F (v max )|= M (M is the machine space in the MRC envi- ronment). The encoded value of |F (v max )| bits is 2 |F (v max )| -1 (for easier discussion assuming it as 2 |F (v max ) | ), such that the result of summing l i values is 2 |F (v max ) | × l i . Finally, the maximum mapper output length is |O i |= loд(2 |F (v max ) | × l i ) = |F (v max )|+loд(l i ). According to proposition 4.1, |F (v max )|+loд(l i ) is required to be O(n 1-ζ ), ζ max(ϵ 2 , 1 -ϵ 1 + ϵ 2 ). In fact, we have loд(l i ) = loд( M |F (v max )| ) loд(M) = loд(O(n 1-ϵ 2 )), and loд(O(n 1-ϵ 2 )) is much smaller than O(n 1-ζ ) because it is a lower infinity of O(n 1-ζ ), lim n→+∞ loд(O(n 1-ϵ 2 )) O(n 1-ζ ) = 0. Therefore, we can conclude MR(α) is a MRC algorithm iff |F (v max )|= O(n 1-ζ ), ζ max(ϵ 2 , 1 -ϵ 1 + ϵ 2 ).

Table 2: Computation time and total partial result size for

x and x with unlimited precision.

x x Time (s) 12 1560 Size (KB) 6.8097e + 4 3.6793029e + 7

In fact, the bound of |avд(F (v i ))| is quite generic in practice. With respect to the MRC environment, the bound O(n 1-ζ ) equals to M P , which is the machine space in bits divided by the machine number. And this can be quite large in a practical environment. Therefore, under most reasonable cases, MR(α) with ⊕ = + is a MRC algorithm.

5.1.2 ⊕ = ×.
Generally, in the setting of processing aggregation in distributed systems, if an aggregation function is associative and commutative then the corresponding partial aggregation can be efficiently processed. We show the following counterexample of ⊕ = ×, that this widespread practice is in fact not correct with consideration of MRC cost model in the case of the unboundedlength data type.

Given the computation of the product aggregation α(X ) =

v j ∈X v j , let X = {v j , ∀j ∈ [1, l]
} where v j is a binary string. W.o.l.o.g., consider v j > 0. The total length of the input for α is v j ∈X |v j |= v j ∈X loд(v j ) bits. α is indeed commutative and associative. Hence the partial aggregation α(X i ), where X i ∈ X containing l i values, can be computed at the Accumulator. W.o.l.o.g., we ignore the Combiner phase since it does not impact our reasoning. The computation results of a partial aggregation α(X i ) is v j ∈X i v j , of which encoding requires loд( v j ∈X i v j ) = v j ∈X i loд(v j ) bits. In the worst case of MapReduce computing, all the results of the mappers (the case of one mapper at each machine) are sent to a unique reducer. Hence the reducer will need a space equal to X i ∈X ( v j ∈X i loд(v j )) bits, which is indeed v j ∈X loд(v j ). In another sense, the computation of product contains shuffling all input data on all mappers to one reducer.

Experiments.

Based on the above analysis, we make a simple experiment of computing x and x using arbitrary precision. The dataset we use is the store_sales table from TPC-DS generated by scale 10, and the size of the table is 3.72GB. We program the following two queries in the way of Spark RDD with different predefined precision and unlimited precision and run them on a spark cluster containing one master node and six slave nodes. The experiment results for the predefined precision case is illustrated in figure 2, and table 2 shows the computation time and total partial result size in the case of unlimited precision (exact computing).

SELECT Sum(ss_sales_price) FROM store_sales WHERE ss_sales_price != 0; SELECT Prod(ss_sales_price) FROM store_sales WHERE ss_sales_price != 0;

We can see both x and x can be efficiently processed with less digits in precision (smaller length of results). When using more digits and even unlimited digits, x stays on the same performance, while x will dramatically increase in terms of computation time and result size. x and x with different significant digits.

5.1.4

The scope of ⊕. The ⊕ function can be a binary function or a tuple of binary function (for the case of not only one partial aggregation). Then, the scope of the ⊕ function is

⊕ = ∪ n i=1 ⊕ i , ⊕ i ∈ (+, ×), i ∈ (1, ..., n), n ∈ N >0 .

SHARING AGGREGATION

In this section, we target the problem of how to reuse aggregation results to avoid data access. Let α and β be two aggregation functions and X be an input set, and we try to cache the computation results of α(X ) and reuse them to compute β(X ). We build aggregation pipelines based on the formal framework for α and β in figure 3, which are compared in the follows based on the size of data scanning and the scope of reusing.

The first one is caching the results of translating function. However, this is not interesting because the size of its output equals to the one of the original dataset such that it still needs a same-scale data scanning.

The second one is caching the results of ⊕ function. Let PA α be the total results of ⊕ function in α, which can be one or a tuple of values, and T α be the terminating function of α, then α(X ) = T α •PA α . Let R be one or a tuple of unary functions, then if possible β can be computed as β(X ) = T β • R • PA α . R contains only unary functions, then the results of R only depend on the input PA α instead of X . In fact, PA α is a tuple containing aggregation results, and the size of PA α is much smaller then the size of X .

The third one is caching the results of α(X ), which is a single value because α is an aggregation. Let T ′ be a unary function, then if possible β can be computed as β(X ) = T ′ • α(X ). The difference between the second and third caching choice is α(X ) can always be inferred from PA α , but if we have α(X ) we cannot always recover PA α from it, because it requires the inverse function of T α exists or T α is a uni-variate injection. This is a quite restricted condition because the terminating function is usually not a univariate function, e.g. the one of average, or an injection, e.g. the one of ( x) 2 . This difference determines the reusing scopes of them. If α(X ) can be reused then PA α must also be possible, but in the opposite way, it may not be possible. Such that, the reusing scope of the second caching choice always contain the scope of the third one.

Therefore, we choose the second caching and reusing choice. It is noteworthy that the unary functions in R may not be the identity function, such that α and β are not necessarily identical. 

Partial aggregation state

First of all, we illustrate the notion of partial aggregation based on the formal framework. Given an aggregation function α : l ∈N >1 I l → I with the formal framework (F , ⊕,T ), then for any input X ⊆ I the partial aggregation is m) is a unary function 1 . Partial aggregation can be trivially computed by processing it individually on all subsets of X and then combining these sub-results by ⊕. In this setting, the total result is cached and reused instead of sub-results in order to avoid data transferring over networks. As we can see, partial aggregation is a sequence containing aggregate functions. For instance, the partial aggregation of average is ( x j ∈X x j , x j ∈X 1).

⊕,x j ∈X F (x j ) = ( ⊕ 1 ,x j ∈X f 1 (x j ), ..., ⊕ m ,x j ∈X f m (x j )), m ∈ N >0 , where f k (x), k ∈ (1, ...,
Moreover, we define a notion having a smaller granularity than partial aggregation, which is named hereafter partial aggregation state. A partial aggregation state is just an element in partial aggregation. In the above example, the partial aggregation of α contains m partial aggregation states

⊕ k ,x j ∈X f k (x j ), k ∈ (1, ..., m).
Partial aggregation states can provide a more generic reusing method. We illustrate this benefit by using the previous sharing example between α and β . Assuming that γ is also an aggregation function, if ⊕ γ F γ ∈ ( ⊕ α F α , ⊕ α F α ), then the partial aggregation states of α and β can be reused for γ . Therefore, we formally define the sharing computation on aggregation state in the follows. Definition 6.1. (Sharing partial aggregation states) Let s = ⊕ f (x) and s ′ = ⊕ ′ 2 f ′ (x) be two partial aggregation states, then s ′ shares the result of s iff there exists a unary function r such that

s ′ = r • s.
Note that r is a unary function, which means it only depends on s instead of base data. Moreover, in the above sharing equation, if s = s ′ , then r is the identity function. If s ̸ = s ′ , by finding r , the results of s can also be reused for s ′ .

Non-trivial property: derivable set

Following the sharing definition 6.1, we consider the following decision problem, given two aggregation states s and s ′ , and an arbitrary input set, whether there exists a unary function r , such that the computation results of s can be reused for s ′ , i.e. s ′ = r • s.

In order to answer this decision problem, we firstly propose an abstract structure on partial aggregation states named derivable set. Then, we have that for an aggregation state s, the derivable set of s is a non-trivial and semantic property. Finally, we conclude this decision problem is undecidable, according to the Rice's theorem [START_REF] Hopcroft | Introduction to Automata Theory, Languages, and Computation[END_REF]. Definition 6.2. (Derivable set) Let s and s ′ be two partial aggregation states with an arbitrary input set, then s ′ belongs to the derivable set D(s), iff there exists a unary function r for

s ′ = r • s, D(s) = {s ′ |∃r (x), s ′ = r • s}.
Every derivable set contains at least one element, which is the case r can only be the identity function. Also, it is trivial to see the problem of deciding whether s ′ can share s is identical to decide whether s ′ ∈ D(s). Theorem 6.3. Given any two partial aggregation states s and s ′ , whether s ′ ∈ D(s) is undecidable.

Proof. We show the property of derivable set is non-trivial and semantic. Then according to the Rice's theorem, it is undecidable.

Let AGG be the set of all partial aggregation states. It is noteworthy that there are infinitive elements in AGG because of infinitive unary functions for partial aggregation states. For an aggregation state s ∈ AGG, D(s) ̸ = ∅ because D(s) contains at least one element s. Moreover, we can also have D(s) ̸ = AGG. In fact, deciding whether s ′ belongs to D(s) requires a specific condition that may not be satisfied by arbitrary aggregation states. We explain this in details. Let s = ⊕ f (x) and s ′ = ⊕ ′ f ′ (x). Assuming s ′ ∈ D(s), then ⊕ ′ f ′ (x) = r • ⊕ f (x). Without loss of generality, let X 1 be an input set, and ⊕,x ∈X 1 f (x) = a and ⊕ ′ ,x ∈X 1 f ′ (x) = b, then r (a) = b. However, because ⊕ f (x) is an aggregation, then it is trivial to have another different input set X 2 such that ⊕,x ∈X 2 f (x) = a. In this case, ⊕ ′ ,x ∈X 2 f ′ (x) must equal to b otherwise r is not a function. Therefore, the specific property for s ′ is given any two input sets X 1 and X 2 , if s satisfies s(X 1 ) = s(X 2 ), then s ′ must follow s ′ (X 1 ) = s ′ (X 2 ).

For instance, we want to identify the derivable set of x 2 , that D( x 2 ). First of all, D( x 2 ) contains x 2 . Moreover, D( x 2 ) also contains aggregation states ax 2 , ∀a ∈ R ̸ =0 . Furthermore, we show that D( x 2 ) does not contain x, that there does not exists a unary function r for x = r • x 2 . Without loss of generality, let (2, 3, 4) and (2, 5) be two simple inputs, we separately have r (29) = 9 and r (29) = 7. Then r does not exist because of having different outputs for the same input. Therefore, we have D( x 2 ) ̸ = ∅ and D( x 2 ) ̸ = AGG.

Such that, ∀s ∈ AGG, D(s) ̸ = AGG and D(s) ̸ = ∅, then derivable set is a non-trivial property on the total set AGG. Furthermore, it is trivial to see that if s ′ = s ′′ and s ′ ∈ D(s), then s ′′ also belongs to D(s). Then according to the Rice's theorem, whether s ′ ∈ D(s) is undecidable.

PRACTICAL SHARING

In this section, we firstly present the practical scope of aggregation states. After this, a naive algorithm is proposed to share aggregation state computation. Finally, in order to reduce time complexity, we 

(x) = a, x ∈ R, a ∈ R. Identity function f (x) = x, x ∈ R. Linear function f (x) = ax, x ∈ R, a ∈ R ̸ =0 . Logarithm f (x) = loд a x, x ∈ R >0 , a ∈ R >0,̸ =1 . Power function f (x) = x a , x ∈ R >0 , a ∈ R ̸ =0 . x a , x ∈ R <0 , a ∈ Z ̸ =0 . Exponential function f (x) = a x , x ∈ R, a ∈ R >0 .
propose a hybrid method containing a symbolic index and several pull-up rules to better share aggregation states.

Practical framework

Let s = ⊕ f (x) be a partial aggregation state. We already illustrate the practical scope of the ⊕ function in aggregation states, that ⊕ ∈ (+, ×). We introduce the scope of the unary function f by the following observation.

Observation We firstly observe that combining two unary functions by a functional composition or a bianry function is also a unary function. For instance, given

f 1 (x) = x b , b ̸ = 0 and f 2 (x) = ax, a ̸ = 0, both f 2 • f 1 (x) = ax b and f 2 (x) + f 1 (x) = x b +ax
are unary functions. Moreover, we also observe from table 6 (see in the appendix) that there are several primitive types of unary functions used in practice, e.g linear functions and power functions, and the other ones are built on top of these primitive functions.

Based on this observation, we identify several primitive types of unary and binary functions, which we summarize as the primitive unary function set (PU ) and the primitive binary function set (PB).

• PU : let p be a unary function, then p ∈ PU if p is one of constant functions, the identity function, linear functions, power functions, logarithmic functions, and exponential functions (see table 3 for the primitive functions). • PB : let ⊙ be a binary function, then ⊙ ∈ PB if ⊙ is one of arithmetic addition, subtraction, multiplication and division.

According to our observation, two types of unary functions can be built on top of PU using the functional composition • and the binary functions in PB, which we summarize as the composing unary function set PU • and the concatenating unary function set PU ⊙ .

• PU • : let д be a unary function, then д ∈ PU

• if д = p l • ... • p 1 , p j ∈ PU , j ∈ (1, ..., l), l ∈ N >0
, where p 1 is the first primitive function of д, and p l is the last one, and the length of д is l, denoted as |д|= l . • PU ⊙ : let r be a unary function, then r

∈ PU ⊙ if r = д k ⊙ k -1 ... ⊙ 1 д 1 , д j ∈ PU • , j ∈ (1, ..., k), ⊙ z ∈ PB, z ∈ (1, ..., k - 1), k ∈ N >1 .
We illustrated some properties for the elements in PU • and PU ⊙ , which will be used later to identify sharing conditions. For f ∈ PU • and f is not a constant function, we can have either f is an injection or f satisfying f (x) = f (-x), because all primitive functions p besides constant functions are either injection or p(x) = p(-x). Moreover, most unary functions in PU ⊙ are not injections because of the binary functions ⊙. However, some specific elements in PU ⊙ can be transformed to PU • and become injections, e.g. a 1 x b +a 2 x b = (a 1 + a 2 )x b = (a 1 + a 2 )x • x b . These transformations require very specific conditions and can be trivially recognized by exhaustive analysis, such that we implement them but do not cover the details in the following part where we consider they have already been transformed.

With the scope of ⊕ and f , we present the following scope of user-defined aggregation functions covered by our decomposition and sharing framework. Definition 7.1. Let α be an aggregation function with the formal framework (F α , ⊕ α ,T α ) and X be the input of α, then α is in the universe U if

• X ⊆ R l , l ∈ N >1 ; • F α = (f 1 , ...f m ), f i ∈ PU ⊙ ∪ PU • , i ∈ (1, ..., m), m ∈ N >0 ; • ⊕ α = (⊕ 1 , ..., ⊕ m ), ⊕ i ∈ (+, ×), i ∈ (1, ..., m), m ∈ N >0 .
T is released to be any function, because T is the one computed at master node locally, such that no matter in decomposition phase or in sharing phase, T does not need special consideration.

Sharing practical aggregation states

In this subsection, we mainly propose sound conditions for sharing aggregation states having unary functions in PU • , and two transforming rules for those having ones in PU ⊙ . Before analyzing unary functions in PU • or PU ⊙ , we show in the following theorem that the sharing possibility is related to whether unary functions are injections, which will be used to analysis PU • and PU ⊙ . Theorem 7.2. Let s 1 = ⊕ 1 f 1 (x) and s 2 = ⊕ 2 f 2 (x) be two partial aggregation states, then there exists non-identity unary function r 12 for s 1 = r 12 • s 2 only under the following two situations, 1. f 2 is an injection; 2. neither f 1 nor f 2 is an injection.

Proof. r 12 is a unary function taking results of s 2 as input and giving the results of s 1 , such that for any two input sets X 1 and X ′

1 , if we have s 2 (X 1 ) = s 2 (X ′ 1 ), then we must have s 1 (X 1 ) = s 1 (X ′ 1 ), otherwise r 12 will not be a function.

Without loss of generality, let X 1 = (x 1 , ..., x n ), n ∈ N >0 be an input for s 1 and s 2 . Because ⊕ is a commutative and associative binary function, then let

X ′ 1 = (x ′ 1 , x ′
2 ) be another input where

x ′ 1 = f -quasi 2 (f 2 (x 1 ) ⊕ 2 ... ⊕ 2 f 2 (x n-1 )), x ′ 2 = x n , and f -quasi 2 is a quasi-inverse function 2 of f 2 . Then for s 2 , we indeed have s 2 (X 1 ) = s 2 (X ′ 1 ). For s 1 , we have s 1 (X 1 ) = f 1 (x 1 ) ⊕ 1 ... ⊕ 1 f 1 (x n ), and s 1 (X ′ 1 ) = f 1 (x ′ 1 ) ⊕ 1 f 1 (x n )
. f 2 can have only one quasi-inverse function (the inverse function of f 2 ) in the case that f 2 is an injection, otherwise f 2 can have multiple quasi-inverse functions. For the latter case, the value x ′ 1 is not fixed (there exists more than one x ′ 1 for s 2 (X 1 ) = s 2 (X ′ 1 )), and s 1 (X ′ 1 ) can equal to several values. Therefore, in order to make s 1 (X 1 ) = s 1 (X ′ 1 ), f 1 must not be an injection either, otherwise r 12 does not exist. Finally, can r 12 exist under two situations: (1) f 2 is an injection; (2) neither f 2 nor f 1 is an injection. -x). We firstly illustrate complete conditions for the former case, and then transforming the latter case into the former cases by proposing the siдn(x) function. Note that, if f 1 is a constant function, it is trivial to compute it by using the aggregation results of count . Such that, we let f 1 be a non-constant function.

7.2.1 f ∈ PU • . If f ∈ PU • , we can have either f 2 is an injec- tion or f 2 satisfying f 2 (x) = f 2 (
Case 1: f 2 , f 2 ∈ PU • is an injection. We analyze the sharing conditions between s 1 and s 2 in an exhaustive way with respect to the practical scope of ⊕ function. Based on the two possible choices of ⊕ functions in aggregation states, there exists four different combinations for ⊕ 1 and ⊕ 2 in s 1 and s 2 , that (1)

⊕ 1 = +, ⊕ 2 = +, (2) ⊕ 1 = +, ⊕ 2 = ×, (3) ⊕ 1 = ×, ⊕ 2 = +, (4) ⊕ 1 = ×, ⊕ 2 = ×.
We present the sharing conditions for these four cases in the following four theorems.

Theorem 7.3. Let s 1 = f 1 (x) and s 2 = f 2 (x) be two partial aggregation states having inputs of a set of real numbers, where f 1 (x) is a continuous non-constant unary function and f 2 (x) is a continuous injection, then there exists a non-identity unary function r 12 for s 1 =

r 12 • s 2 , if and only if f 1 • f -1 2 (x) = r 12 (x) = ax, x ∈ R, a ∈ R ̸ =0 . Proof. (Sufficiency) From f 1 • f -1 2 (x) = r 12 (x) = ax, we have r 12 • s 2 = ax • f 2 (x) = ax • f 2 (x) = f 1 • f -1 2 • f 2 (x) = s 1 . (Necessity) Let f -1 2 be the inverse function of f 2 and д(x) = f 1 • f -1 2 (x), such that д(x) = r 12 • x . Let (x 1 , ..., x n ), x i ∈ R, i ∈ (1, ..., n), n ∈ N >1 be an input set of the above equation. Then, r 12 (x 1 + ... + x n ) = д(x 1 ) + ... + д(x n ).
Moreover, let (y 1 , y 2 ) be another input set of the above equation where y 1 = x 1 + ... + x n-1 and y 2 = x n . Then, r 12 (y 1 + y 2 ) = д(y 1 ) + д(y 2 ). Furthermore, because of x 1 + ... + x n = y 1 + y 2 , then r 12 (x 1 + ... +x n ) = r 12 (y 1 +y 2 ). Therefore, from these three equations we have д(x 1 ) + ... + д(x n ) = д(y 1 ) + д(y 2 ), also x 1 + ...

+ x n-1 = y 1 , such that д(x 1 ) + ... + д(x n-1 ) = д(x 1 + ... + x n-1 ). (a)
The following part is benefited from the proof of Cauchy's functional equation. For equation (a), let x i = 0, i ∈ (1, ..., n -1) we can have д(0) = 0. When x > 0, let

x i = x, i ∈ (1, ..., n -1), we have n = 3, 2д(x) = д(2x), such that ∀c ∈ N >0 , cд(x) = д(cx). Let x = u c and u > 0, then we have cд( u c ) = д(u). Such that ∀d ∈ N >0 , dд( u c ) = d c д(u), then д( d c u) = d c д(u). Finally, let q = d c and u = 1, then д(q) = qд(1), q ∈ Q >0 . When q ∈ Q <0 , we have д(-q) = -д(1)q.
According to the equation (a), let n = 3,

x 1 = x, x 2 = -x, then -д(x) = д(-x). Such that д(x) = д(1)x, ∀x ∈ Q <0 .
In fact, д(1) can be any real number besides 0, otherwise д(x) will be a constant function which contradicts to the condition of non-constant f 1 and f 2 . Moreover, д is continuous, by the fact of Q is dense on R, then

д(x) = ax, x ∈ R, a ∈ R ̸ =0 . Therefore, from д(x) = r 12 • x, we have д • x = r 12 • x . Such that f 1 • f -1 2 (x) = r 12 (x) = ax, x ∈ R, a ∈ R ̸ =0 .
Theorem 7.4. Let s 1 = f 1 (x) and s 2 = f 2 (x) be two partial aggregation states having inputs of a set of real numbers, where f 1 (x) is a continuous non-constant unary function and f 2 is a continuous injection, then there exists a non-identity unary function r 12 (x) for s 1 = r 12 • s 2 , if and only if

f 1 •f -1 2 (x) = r 12 (x) = a(loд b x), x ∈ R >0 , b ∈ R >0,̸ =1 , a ∈ R ̸ =0 ; a(loд b (-x)), x ∈ R <0 , b ∈ R >0,̸ =1 , a ∈ R ̸ =0 . Proof. (Sufficiency) From f 1 • f -1 2 (x) = r 12 (x) = a(loд b |x |), we have r 12 • s 2 = a(loд b |x |) • f 2 (x) = a(loд b |x |) • f 2 (x) = f 1 • f -1 2 • f 2 (x) = s 1 . (Necessity) Similarly, let f -1 2 be the inverse function of f 2 and д(x) = f 1 • f -1 2 (x), then д(x) = r 12 • x . Let (x 1 , ..., x n ), x i ∈ R, i ∈ (1, ..., n), n ∈ N >1 be an input set of the above equation. Then, r (x 1 × ... × x n ) = д(x 1 ) + ... + д(x n ).
Moreover, let (y 1 , y 2 ) be an another input set of the above equation where x 1 ×...×x n-1 = y 1 and x n = y 2 . Then, r (y 1 ×y 2 ) = д(y 1 )+д(y 2 ). Furthermore, because of y 1 × y 2 = x 1 × ... × x n , then r (x 1 × ... × x n ) = r (y 1 × y 2 ). Therefore, from these three equations, we have д(x 1 ) + ... + д(x n ) = д(y 1 ) + д(y 2 ), also

x 1 × ... × x n-1 = y 1 , such that д(x 1 × ... × x n-1 ) = д(x 1 ) + ... + д(x n-1 ). (b)
From equation (b), we can have д(x) does not define on 0, otherwise д(x) = 0, which is a contradiction to the condition of nonconstant f 1 and f 2 . Such that д(x) can be defined on either R >0 or R <0 .

For x > 0, let x = b u and h

(x) = д(b u ), u ∈ R, b ∈ R >0,̸ =1 , then we have h(x 1 + ... + x n-1 ) = д(b u 1 +...+u n-1 ) = д(b u 1 ) + ... +д(b u n-1 ) = h(x 1 ) + ... + h(x n-1
). Then, according to the proof of theorem 7.3,

we have h(x) = h(1)x, x ∈ R >0 , h(1) ∈ R ̸ =0 . Then д(b u ) = h(1)u and u = loд b x, such that д(x) = a(loд b x), x ∈ R >0 , b ∈ R >0,̸ =1 , a ∈ R ̸ =0 .
From equation (b), we can have д(1) = 0, then д(-1) = 0 either, such that д(x) = д(-x). Then for x < 0, we have

д(x) = a(loд b (-x)), x ∈ R <0 , b ∈ R >0,̸ =1 , a ∈ R ̸ =0 . Therefore, from a(loд b |x |) = r 12 • x, we have a(loд b |x |)• x = r 12 • x . Such that f 1 • f -1 2 (x) = r 12 (x) = a(loд b |x |), x ∈ R ̸ =0 , b ∈ R >0,̸ =1 , a ∈ R ̸ =0 . Theorem 7.5. Let s 1 = f 1 (x)
and s 2 = f 2 (x) be two partial aggregation states having inputs of a set of real numbers, where f 1 is a continuous non-constant unary function and f 2 is a continuous injection, then there exists a non-identity unary function r 12 for s 1 =

r 12 • s 2 , if and only if f 1 • f -1 2 (x) = r 12 (x) = b ax , x ∈ R, b ∈ R >0,̸ =1 , a ∈ R ̸ =0 . Proof. (Sufficiency) From f 1 • f -1 2 (x) = r 12 = b ax , we have r 12 • s 2 = b ax • f 2 (x) = b ax • f 2 (x) = f 1 • f -1 2 • f 2 (x) = s 1 . (Necessity) Similarly, let f -1 2 be the inverse function of f 2 and д(x) = f 1 • f -1 2 (x), such that д(x) = r 12 • x . Let (x 1 , ..., x n ), x i ∈ R, д(x n ) ̸ = 0, i ∈ (1, ..., n), n ∈ N >1
be an input set of the above equation. Then, r (x 1 + ... + x n ) = д(x 1 ) × ... × д(x n ). Moreover, let (y 1 , y 2 ) be an another input set of the above equation where x 1 + ... + x n-1 = y 1 and x n = y 2 . Then, r (y 1 +y 2 ) = д(y 1 )×д(y 2 ). Furthermore, because of y 1 +y 2 = x 1 +...+x n , then r (x 1 +...+x n ) = r (y 1 +y 2 ). Therefore, from these three equations, we have д(x 1 ) × ... × д(x n ) = д(y 1 ) × д(y 2 ), also x 1 + ... + x n-1 = y 1 , such that д(x 1 + ... + x n-1 ) = д(x 1 ) × ... × д(x n-1 ).

(c)

From equation (c), we can prove that ∀x ∈ R, д(x) > 0. Without loss of generality, let n = 3, x 1 = 0, x 2 = x, then д(x) = д(0) × д(x), which infers д(0) ̸ = 0, otherwise д(x) = 0 and д(x) is a constant function contradicting to the non-constant f 1 and f 2 . Such that, we have д(0) = 1. Moreover, д(x) × д(-x) = д(xx) = д(0) = 1, from this we have ∀x ∈ R, д(x) ̸ = 0. Furthermore, we have д

(x) = д( x 2 + x 2 ) = д( x 2 ) 2
. Therefore, we have ∀x ∈ R, д(x) > 0.

Let

h(x) = loд b д(x), x ∈ R, b ∈ R >0,̸ =1 , then we have h(x 1 + ... + x n-1 ) = loд b (д(x 1 + ... + x n-1 )) = loд b (д(x 1 )) + ... + loд b (д(x n-1 )) = h(x 1 ) + ... +h(x n-1
). Then, according to the proof of theorem 7.3, we

have h(x) = h(1)x, x ∈ R, h(1) ∈ R ̸ =0 , then loд b д(x) = h(1)x . Such that д(x) = b ax , x ∈ R, b ∈ R >0,̸ =1 , a ∈ R ̸ =0 . Therefore, from b ax = r 12 • x, we have b ax • x = r 12 • x . Such that f 1 • f -1 2 (x) = r 12 = b ax , x ∈ R, b ∈ R >0,̸ =1 , a ∈ R ̸ =0 .
Theorem 7.6. Let s 1 = f 1 (x) and s 2 = f 2 (x) be two partial aggregation states having inputs of a set of real numbers, where f 1 is a continuous non-constant unary function and f 2 is a continuous injection, then there exists a non-identity unary function r 12 for s 1 = r 12 • s 2 , if and only if

f 1 • f -1 2 (x) = r (x) =              0, x = 0; x a , x ∈ R >0 , a ∈ R; x a , x ∈ R <0 , a ∈ Z ̸ =0 ; (-x) a , x ∈ R <0 , a ∈ {2k + 1 : k ∈ Z}. Proof. (Sufficiency) From f 1 • f -1 2 (x) = r (x) = x a , we have r 12 • s 2 = x a • f 2 (x) = x a • f 2 (x) = f 1 • f -1 2 • f 2 (x) = s 1 . (Necessity) Similarly, let f -1 2 be the inverse function of f 2 and д(x) = f 1 • f -1 2 (x), such that д(x) = r 12 • x . Let (x 1 , ..., x n ), x i ∈ R, д(x n ) ̸ = 0, i ∈ (1, ..., n), n ∈ N >1
be an input set of the above equation. Then, r (x 1 × ... × x n ) = д(x 1 ) × ... × д(x n ). Moreover, let (y 1 , y 2 ) be an another input set of the above equation where x 1 × ... × x n-1 = y 1 and x n = y 2 . Then, r (y 1 × y 2 ) = д(y 1 ) × д(y 2 ). Furthermore, because of

x 1 × ... × x n = y 1 × y n , then r (x 1 × ... × x n ) = r (y 1 × y 2 )
. Therefore, from these three equations,

we have д(x 1 ) × ... × д(x n ) = д(y 1 ) × д(y 2 ), also x 1 × ... × x n-1 = y 1 , such that д(x 1 × ... × x n-1 ) = д(x 1 ) × ... × д(x n-1 ). (d)
From equation (c), we can prove that ∀x ∈ R >0 , д(x) > 0. Without loss of generality, let n = 3, x 1 = 1, x 2 = x, then д(x) = д(1)×д(x), which infers д(1) ̸ = 0, otherwise д(x) = 0 and д is a constant function contradicting to the non-constant f 1 and f 2 . Such that we have д(1) = 1. Moreover, ∀x ̸ = 0, we have д(x)×д(

1 x ) = д(x× 1 x ) = д(1) = 1,
such that д(x) ̸ = 0. Furthermore, we have д(x 2 ) = д 2 (x). Therefore, ∀x ∈ R >0 , д(x) > 0.

Let h(u) = ln(д(e u )), u ∈ R, then we have h(u 1 + ... + u n-1 ) = ln(д(e u 1 +...+u n-1 )) = ln(д(e u 1 )) + ... + ln(д(e u n-1 )) = h(u 1 ) + ... + h(u n-1 ). Then, according to the proof of theorem 7.3, we have

h(u) = h(1)u, u ∈ R, h(1) ∈ R ̸ =0 , then ln(д(e u )) = h(1)u. Such that, let x = e u , u = ln(x), we have д(x) = x a , x ∈ R >0 , a = h(1) ∈ R ̸ =0 .
For ∀x ∈ R <0 , we have д(x) = д(-1)д(-x) = д(-1)(-x) a = д(-1)(-1) a x a . First of all, we have a ∈ Z ̸ =0 , otherwise д(x) may equal to a complex number. Moreover, we can prove that д(-1)(-1) a = 1. From д(x) = д(-1)(-1) a x a , we have д(-1)(-1) a д(x) = x a because д(-1)д(-1) = д(1) = 1 and (-1

) 2a = 1, a ∈ Z ̸ =0 . Therefore, д(x)(1 -д(-1)(-1) a ) = x a (д(-1)(-1) a -1), then (д(x) + x a )(1 - д(-1)(-1) a ) = 0.
Then, we can have д(x) = -x a , or д(-1)(-1) a = 1. For the former case, we have д(-1)(-1) a = 1, such that

д(x) = x a , x ∈ R <0 , a ∈ Z ̸ =0 .
For the latter case, according to equation (b), a can only be an odd number, such that

д(x) = (-x) a , x ∈ R <0 , a ∈ {2k + 1 : k ∈ Z ̸ =0 }. Case 2: f 2 , f 2 ∈ PU • satisfies f 2 (x) = f 2 (-x).
In this case, f 2 is not an injection, such that the above theorems can not be directly applied. However, f 2 satisfies the property f 2 (x) = f 2 (-x), which can be used to transform f 2 to be an injection. In order to accomplish this, we propose a function called siдn(x) defined in the following. Then we let u = siдn(x) × x . Then, it is trivial to see that u 0. Without loss of generality, we take u > 0 because some functions are not defined on 0.

siдn(x) =          1, x > 0; 0, x = 0; -1, x < 0.
With the siдn(x) function and the variable u, in order to check the sharing possibility of s 1 = ⊕ 1 f 1 (x) and s 2 = ⊕ 2 f 2 (x), the following two ones are verified s ′ 1 = ⊕ 1 f 1 (u) and s ′ 2 = ⊕ 2 f 2 (u). In this case, we indeed have f 2 (u) is an injection, such that the above four theorems can be directly applied.

After transforming the variable from x to u, we identify the relation between aggregation states on x and aggregation states on u. It is trivial to see that s 2 = s ′ 2 because of f 2 (x) = f 2 (u), u = siдn(x). Then, for the cases f 1 also satisfying f 1 (x) = f 1 (-x), we also have

s 1 = s ′
1 , such that the sharing problem of s ′ 1 and s ′ 2 is equivalent to the one of s 1 and s 2 .

Finally the only left case is f 1 (x) is an injection, and f 2 (x) satisfies f 2 (x) = f 2 (-x). According to theorem 7.2, there does not exist a unary function r 12 for s 1 = r 12 • s 2 . However, a precomputation can be proceeded to make r 12 to be an 'unary' function. Similarly, we mainly analyze the relation between s 1 and s ′ 1 because we already have s 2 = s ′ 2 . We firstly separate the input data sets into positive and negative parts, then we compensate ⊕ 1 f 1 (-x -) where x -is ∀x < 0. Then we have and⊕ -1 1 is the inverse function ⊕ 1 , e.g.is the inverse function for +, or / is the one for and ×. Such that,

s 1 = s ′ 1 ⊕ 1 C, where C = ( ⊕ 1 f 1 (x -) ⊕ -1 1 ⊕ 1 f 1 (-x -)),
s ′ 1 = s 1 ⊕ -1 1 C. Therefore, if there exists r ′ 12 for s ′ 1 = r ′ 12 • s ′ 2 , then we can have s 1 = (r ′ 12 • s 2 ) ⊕ 1 C. It is noteworthy
that, C is also an aggregation function which only takes the negative part of a input set, and in order to share computation in this case C requires to be precomputed.

7.2.2 f ∈ PU ⊙ .
In this case, generally, f is not an injection because of the binary function ⊙. We propose the splitting transformations for some cases, with which the previous solution can also be used.

First of all, the binary operators in PB are classified into two families, the addition family ADD = {+, -} and the multiplication family MU L = {×, /}. Without loss of generality, let f = д 1 (x) ⊙ д 2 (x), д 1 , д 2 ∈ PU • , then we can have following two splitting rules,

д 1 (x) ⊙ д 2 (x) = д 1 (x) ⊙ д 2 (x), ⊙ ∈ ADD, (split1) д 1 (x) ⊙ д 2 (x) = д 1 (x) ⊙ д 2 (x), ⊙ ∈ MU L. ( split2 
) With these two rules, the original aggregation state ⊕ д 1 (x) ⊙ д 2 (x) is split into two aggregation states ⊕ д 1 (x) and ⊕ д 2 (x), for which the previous solution is still feasible. In another sense, the ⊙ operator is pushed to the terminating function. For the left cases that are not covered by split rules, the current sharing condition is whether they have the identical expressions.

Equivalent expressions

Let f (x) = f 1 • f -1 2 (x), and f = p l • ... •p 1 , p i ∈ PU , i ∈ (1, ..., l), l ∈ N 2 .
Note that every p i is not the identity function and constant functions, otherwise it can be trivially removed, or f becomes a constant function. Such that, p i can be one of the four different types of primitive functions, (ax, loд a x, a x , x a ). The type of the expression f is verified to check whether sharing is possible between s 1 and s 2 . According to theorem 7.3, 7.4, 7.5, and 7.6, the expression f needs to be one of the following target types (x, ax, a(loд

b |x |), b ax , x a ), a ∈ R ̸ =0 , b ∈ R ̸ =0,1
, which is determined by ⊕ 1 and ⊕ 2 in s 1 and s 2 . We propose a recursive method to answer this problem for the practical framework in this subsection.

In order to answer the question, all equivalent expressions of f need to be identified. However, generating all arbitrary equivalent expressions for a unary function may not be possible, and not all of them are useful for our question. From all the target types we can have that any of them is either a primitive unary function or a composition of two primitive unary functions, such that a target type has two properties: [START_REF]DB2 built-in functions[END_REF] it is an element in PU • ; (2) its length is 1 or 2. Therefore, we concentrate on the equivalent expressions of f , which are also in PU • and have a length of 1 or 2. We formally define the equivalent expressions in the follows.

Definition 7.7. (Equivalent expression) Let f be a unary function in PU • , then the equivalent expression of f , EE(f ), is a set containing all unary functions f ′ which are also in PU • , satisfy f ′ (x) = f (x), and have a length 2,

EE(f ) = { f ′ |∀x, f (x) = f ′ (x), f ′ ∈ PU • , 1 | f ′ | 2}.
We firstly illustrate the algorithm G_EE 2 () for generating EE(f ), | f |= 2, by using the mathematical transformation of f , then we propose the recursive algorithm G_EE() for generating

EE(f ), | f |∈ N >2 . Case 1: G_EE 2 (f ), | f |= 2.
Based on the target types, we exhaustively illustrate the mathematical transformations for the composition of a pair of the four types of primitive functions in table 4.

Then, there only exist three different situations for the mathematical transformations: (1) merging transformations; (2) type changing;

(3) no transforming. With this table, we define the function T rans() generating the other equivalent expression for f = p 2 • p 1 , and the function T _Trans() returning the type of the transformation. Trans(p 2 • p 1 ) takes the type of p 2 and p 1 , finds the corresponding one in table 4, and returns the other equivalent expression, while T _Trans(p 2 • p 1 ) returns the corresponding type of transformation.

We take the first column of table 4 as an example for T rans() and T _Trans() to illustrate the three different transforming situations,

• type merging: Trans(ax • bx) = abx and T _Trans(ax

• bx) = T M; • type changing: Trans(ax •x b ) = x b •a 1/b x and T _T rans(ax • x b ) = TC; • no transforming: Trans(ax • b x ) = null and T _T rans(ax • b x ) = NT .
With Trans(), we can have

G_EE(f ) = { f ,Trans(f )}, | f |= 2. Case 2: G_EE(f ), | f |∈ N >2 . Let | f |= l,
we firstly propose the following recursive equation based on the associative property of functional composition to reduce this problem. 7) By recursively applying equation 7, the problem of generating EE(f ) in the general situation can be reduced to the case of generating EE(p l • p l -1 ), which can be generated by G_EE 2 (p l • p l -1 ).

EE(p l • ... • p 1 ) = EE(f ′ l →2 • p 1 ), f ′ l →2 ∈ EE(p l • ... • p 2 ). (
Secondly, we propose the following lemma for the backward phase of the recursive algorithm.

Lemma 7.8. Let f (x) = p l •...•p 1 (x), l ∈ N >1 , if ∃ д(x), д•p 1 (x) ∈ EE(f ), then EE(д) = EE(p l • ... • p 2 ). Proof. Let f ′ (x) ∈ EE(f ), then f ′ (x) = p l • ... • p 1 (x). From д • p 1 (x) ∈ EE(f ), we have д • p 1 (x) = f ′ (x). Such that д • p 1 (x) = p l • ... • p 1 (x).
Then we present the general reducing steps of G_EE() in the follows.

Firstly, for a unary function in PU • , we define two functions дetLast() getting the last primitive function and rmLast() removing the last primitive function. For instance, if f is the input, then дetLast(f ) = p l and after rmLast(f

), f = p l -1 • ... • p 1 . After having EE(p l • p l -1 ), every element f ′ l →l -1 in EE(p l • p l -1 ) is composed with p l -2 to generate EE(f ′ l →l -1 • p l -2
), and all of the composition are merged together to have EE(p l • p l -1 • p l -2 ). Through repeating this procedure, EE(f ) will be eventually generated.

A key step in the backward phase of G_EE() is how to generate EE(f ′ l →l -1 • p l -2 ) with f ′ l →l -1 and p l -2 . We solve this problem by exhaustively analyzing the situations. It is trivial to see that if

| f ′ l →l -1 |= 1, then we can use G_EE 2 (f ′ l →l -1 • p l -2 ). For the other case | f ′ l →l -1 |= 2, let f ′ l →l -1 = p ′ l •p ′ l -1 . Then a first transformation is called, that Trans(p ′ l -1 • p l -2
). As illustrated previously, there only exist three different types of transformations. For the case of type merging, Trans(p ′ l ,Trans(p ′ l -1 • p l -2 )) can be directly called. For the case of no transforming, we can have

p ′ l • p ′ l -1 • p l -2 is the only transformation of p ′ l • p ′ l -1 • p l -2
, and the length is bigger than 2, such that this candidate is deprecated. For the case of type changing, we continue the second transformation, that T rans(p ′ l • 

′ (x) p(x) ax, a ̸ = 1, 0 x a , a ̸ = 0 loд a x, a > 0, a ̸ = 1 a x , a > 0, a ̸ = 1 bx, b ̸ = 1, 0 ax • bx = abx, or x, ab = 1 x a • bx = b a x • x a loд a x • bx = loд a x • bx a x • bx = (a b ) x x b , b ̸ = 0 ax • x b = x b • a 1/b x, a > 0 x a • x b = x ab , or x, ab = 1 log a x • x b = bx • log a x a x • x b = a x • x b loд b x, b > 0, ̸ = 1 ax • log b x = log b x • x a x a • loд b = x a • loд b x loд a x • loд b x = loд a x • loд b x a x • loд b x = a loд b x ,or x, a = b b x , b > 0, ̸ = 1 ax • b x = ax • b x x a • b x = (b a ) x log a x • b x = (log a b)x, or x, log a b = 1 a x • b x = a x • b x дetLast(T rans(p ′ l -1 • p l -2
)), of which based on the different cases of the outputs the above procedure can be repeated. Assuming that both the first and second transformation are type changing and we have an output

p ′′ l • p ′′ l -1 • p ′ l -2 , then another transformation is called T rans(p ′′ l -1 • p ′ l -2 )
. If this transformation is not the type merging case, then the length can not be reduced to 2. Such that, the candidate

p ′ l • p ′ l -1 • p l -2 is also deprecated. Finally, if for every f ′ l →l -1 ∈ EE(p l • p l -1 ), EE(f ′ l →l -1 • p l -2
) is still empty, we have EE(p l •...•p 1 ) is empty. Otherwise, the following primitive function p l -3 will be taken. Theorem 7.3,7.4,7.5,7.6 completely identify the sharing condition. In order to keep the completeness of the sharing solution, we illustrate in the following theorem that G_EE(f ) completely generates EE(f ). Theorem 7.9. The set of equivalent expressions of a unary function

f , f ∈ PU • , | f | 2, generated by G_EE(f ) is complete.
Proof. We proof this theorem by using the mathematical induction.

For the initial case, that | f |= 2, we can have EE(f ) = { f ,Trans(f )}. Based on the exhaustive transformations of primitive functions in table 4, EE(f ) is complete.

For a general case, we assume that G_EE() can completely generate the equivalent expression set for an input with a length l, l ∈ N >2 . Than we proof EE(f • p 0 ), p 0 ∈ PU , generated by G_EE(f • p 0 ) is also complete. Without loss of generalities, let

f ′ ∈ EE(f ), f ′ = p ′ 1 or f ′ = p ′ 2 • p ′ 1 .
We exhaustively analyze the following two cases.

If

f ′ = p ′ 1 , then p ′ 1 • p 0 is still a feasible input for G_EE(); If f ′ = p ′ 2 •p ′ 1 , according to equation 7, we have EE(p ′ 2 •p ′ 1 •p 0 ) = EE(p ′ 2 • f ′ 1,0 ), f ′ 1,0 ∈ EE(p ′ 1 •p 0 ), and EE(p ′ 1 •p 0 ) = {p ′ 1 •p 0 ,Trans(p ′ 1 • p 0 )}. We can have three exhaustive cases for the results ofTrans(p ′ 1 • p 0 ). IfT _T rans(p ′ 1 •p 0 ) is type merging, then p ′ 2 •Trans(p ′ 1 •p 0 ) is also a feasible input for G_EE(). If T _Trans(p ′ 1 • p 0 ) is no transforming, then we have the length p ′ 2 • p ′ 1 • p 0 can
not be decreased to 2, such that it dose not satisfy the equivalent expression condition, then it is deprecated. The last case is type changing. Let

Trans(p ′ 1 • p 0 ) = p ′′ 1 • p ′ 0 . Then, we have EE(p ′ 2 • p ′′ 1 • p ′ 0 ) = EE(f ′ 2,1 • p ′ 0 ), f ′ 2,1 ∈ EE{p ′ 2 • p ′′ 1 }, and EE{p ′ 2 • p ′′ 1 } = {p ′ 2 • p ′′ 1 ,Trans(p ′ 2 • p ′′ 1 )}. Based on the results of T rans(p ′ 2 • p ′′ 1 )
, we can do another exhaustive analysis. If a merging transformation or no transforming is met, this procedure will be directly stopped. Otherwise, an additional transformation is necessary for the case of two continuous type changing. We explain the reason in the follows.

Firstly, according to table 4, the transformation of type changing is only feasible among three types of primitive functions, linear functions, logarithmic functions and power functions, and the results of type changing is also inside the three types. Moreover, not any combination of two of the three types have type changing transformation. For instance, two linear functions or two power functions have type merging transformation, and two logarithmic functions do not have transformation. Therefore, we simulate the exhaustive cases for two continuous type changing, then all the exhaustive cases can be classified into two cases, the outputs have type merging transformation, or no transformation. Therefore, another Trans() on the first two primitive functions in the outputs is proceeded to select the feasible candidate.

Finally, the above procedure is repeated on every f ′ ∈ EE(f ) to ensure the completeness.

Complexity of sharing

In order to verify the sharing possibilities between a given aggregation state s 1 and a cached aggregation state s 2 , both of them will be given as the input for G_EE(). If there are more than one aggregation state cached in memory, they will be verified in turn until one is satisfied. Therefore the sharing complexity is related to two factors: (1) the complexity of G_EE(), (2) the number of cached aggregation states,

We firstly analyze the time complexity of G_EE(). For f = p l • .... • p 1 , in worst cases, the recursive algorithm G_EE(f ) proceed one time of Trans() for one continuous pair of primitive function, which can be l -1 in total. Such that the complexity of G_EE(f ) is O(l). Secondly, it is trivial to see that if m aggregation states are cached in memory, then the complexity for the second step is O(m). Therefore, in the case that the length of the unary function f 1 in s 1 is l 1 , and m different aggregation states s 2 cached in memory, where every one of them contains a unary function with the length l i 2 , i ∈ (1, ..., m), then the total sharing complexity can be Ω(l 1 + l i 2 ) in best cases and O(ml 1 + m i=1 l i 2 ) in worst cases.

Symbolic index

In this subsection, we propose the symbolic index to organize the cached aggregation states, such that the total sharing complexity can be decreased to Ω(1) in best cases and O(l 1 + loдl 0 + m) in worst cases, where l 0 is the maximum length of aggregation state cached in memory.

Observation According to theorem 7.3,7.4,7.5 and 7.6, we mainly need to check whether

f 1 • f -1 2 (x) or f 1 • f -1 2 (u), u = siдn(x)
, is a specific type of unary functions, and algorithm 2 only needs the class of primitive functions in f 1 • f -1 2 (x) or f 1 • f -1 2 (u) as input. Therefore, if the type data of unary functions is stored, this typechecking phase can be preprocessed. Moreover, the computation results of aggregation state s 2 can only be reused for the elements in its derivable set D(s 2 ), and derivable sets can be equivalent because the reusing functions r 12 can injections. Therefore, the searching space m can be decreased by organizing the cached aggregation states using derivable set and equivalent derivable sets.

We firstly propose the notion of symbolic primitive functions to store the type data of primitive functions. Computing every primitive function requires inputs of a variable x and a parameter a. x is given at the time of scanning base data, while a is received at the time of declaring functions. For instance, linear functions have the shape of ax, which takes x and a and proceeds a simple multiplication on them. We define symbolic primitive function in the follows.

Definition 7.10. (Symbolic primitive function) A symbolic primitive function is a function p (a) (x) taking a parameter a and a variable x as the input and return an output, and for a constant a, p (a) (x) ∈ PU .

Then the symbolic aggregation state is formally defined in the follows.

Definition 7.11. (Symbolic aggregation state) A symbolic aggregation state sy_s(X , ā) is an aggregation function taking two inputs, a set of variables X and a sequence of parameters ā = (a l , ..., a 1 ), sy_s(X , ā) = ⊕,x ∈X p

(a l ) l • ... • p (a 1 ) 1 (x), ⊕ ∈ (+, ×), l ∈ N >1 , where p (a i ) i (x), i ∈ (1, ..., l) is a symbolic primitive function.
A symbolic aggregation state sy_s can be generated from a concrete one s. A concrete aggregation state can be also obtained from a symbolic aggregation sate and a sequence ā = (a l , ..., a 1 ). Such that, based on the definition of concrete derivable set, we can have the symbolic derivable set in the follows, D(sy_s) = {sy_s ′ |∃ ā′ , ā, ∀X , sy_s ′ (X , ā′ ) = r • sy_s(X , ā)}.

For a fixed length l 0 , the following symbolic derivable set of a symbolic aggregation state sy_s, |sy_s | l 0 , can be built, D l 0 (sy_s) = {sy_s ′ |sy_s ′ ∈ D(sy_s), |sy_s ′ | l 0 }.

We explain the reason in the follows. Although there exists infinitive concrete aggregation states s, |s | l 0 , the symbolic ones sy_s, |sy_s | l 0 is countable, of which the total number in the practical sharing framework is 2 × (4 l 0 + ... + 4 

i . Let sy_s(X , ā) = ⊕,x ∈X p (a i ) i • ... • p (a 1 )
1 (x), i ∈ (1, ..., l 0 ). Firstly, symbolic aggregation states are obtained by selecting one type of ⊕ from (+, ×) and one type of p (a j ) j , j ∈ (1, ..., i) from linear, logarithm, exponential, power, which will produce 2 × 4 i rows in T i . And in the case of i = 1, two addition ones are added, x and x . Moreover, all the rows in T i are classified into two parts with ⊕ = + and ⊕ = ×, and we define offset(+) = 0 and offset(×) = 4 i . Then, for every type of linear, logarithm, exponential, power, a encoded integer is assigned, that en(linear ) = 0, ... and en(power ) = 3. Then the encoded function EN () is defined to generate the ID, EN (sy_s) = en(p

(a i ) i ) × 4 i-1 + ... + en(p (a 1 ) 1 ) × 4 0 + o f f set(⊕). (8)
For the special two cases x and x, we assign their ID as -2 and -1. Thirdly, sy_s is added in D l 0 (sy_s), and the function G_EE() is ran with the input of any combination of sy_s and another symbolic aggregation state from (T 1 , ...,T l 0 ) to generate D l 0 (sy_s). At fourth, we iterate on the column of symbolic derivable set to find identical ones, where only the symbolic state with the shortest length will be put in the sharing candidate column. Otherwise, symbolic aggregation state sy_s will be registered in the sharing candidate column of every element in D l 0 (sy_s). Finally, for every table T i , all the rows are sorted based on the ID column.

It is noteworthy that, the sharing candidates column may store one or several symbolic aggregation states. In the latter case, all the sharing candidates are sorted based on two criteria: (1) whether a sharing candidate contains a concrete computation; (2) the length of the sharing candidates. And the first criteria always has the higher priority than the second one. This machinery can help find a sharing candidate that can be feasible to reuse in O(1) time.

Index searching. Given an aggregation state s, firstly the following three types of data are retrieved from s, the length of |s |, symbolic aggregation state sy_s, and the sequence ā. Then according to |s |, the corresponding table T i , i = |s | is located by a first binary search. Furthermore, based on the encoded formula (equation 8), the ID of sy_s is computed. Following this, a second binary search is proceeded to find sy_s in T i . Afterward, if the first sharing candidate has a concrete computing result, it will be retrieved for computing s, otherwise, the real computation will be launched. Which concrete computation is launched will depend on the number of sharing candidates for sy_s. If sy_s contains only one sharing candidate, then the only sharing candidate will be launched to compute, e.g. the row with ID=0 and ID=6 in table 5. Otherwise, the current sy_s with the received ā will be computed. Finally, the result of s is returned.

Index updating. If a real computation of a concrete aggregation state s is launched, an index update is proceeded because of the sorting machinery in the sharing candidate column. Updating a symbolic index is simply telling every element in D l 0 (sy_s) that sy_s has a concrete computation, such that sy_s will be ranked nearer to the front in the set of sharing candidates of every element in D l 0 (sy_s).

Search complexity. Therefore, the best cases can take Ω(1), while the worst cases can take O(i + loдl 0 + m).

Building and space complexity. The building time complexity of the symbolic index is O(4 3l o ). The total number of rows in all tables T i , i ∈ (l 0 , ..., 1), are 4 l 0 +1 -2 3

. Note that, if the practical framework is not extended, the symbolic index will remain unchanged, then it is only necessary to build it one time. Such that, once the symbolic index is built, it can be serialized to disk and be deserialized to memory at the running time.

Pull-up rules

Choosing a bigger length l 0 of the symbolic index may still consume some memory, and the tables with bigger lengths may not be often used based on the composition of realistic functions. Therefore, we propose a hybrid solution, that we fix a reasonable length l 0 for generating the symbolic index, and for aggregation states with length l l 0 , the symbolic index is used to share computation. For the left cases l > l 0 , instead of directly verifying sharing condition with cached elements, we propose pull-up rules to reduce the length l to l ′ , then if l ′ l 0 , aggregation states will be passed to symbolic index, otherwise the sharing conditions are verified. The purpose of this method can be summarized that reducing aggregation state length and using the symbolic index in an exhaustive way. The intuition of reducing the length of aggregation states is pushing some unary functions to terminating function in the formal framework. Specifically, for an aggregation state s = ⊕ p l • ... • p 1 , p i ∈ PU , i ∈ (1, ..., l), if s can be transformed to p l • ⊕ ′ p l -1 • .. • p 1 , then p l can be pulled up to terminating functions and the length of s is reduced to l -1. This process can be repeated for p l -1 and the follows if possible, until a minimum length is obtained.

We propose the complete pull-up conditions. From the exhaustive combination of ⊕ and ⊕ ′ in the practical scope, that ( , ), ( , ), ( , ), and ( , ), we propose the following four pull-up rules for each of them to pull one primitive function up.

ax → ax • x, a ∈ R ̸ =1,0 . (R2) loд a x → log a x • x, a ∈ R >0,̸ =1 . (R3) x a → x a • x, a ∈ R ̸ =0 . (R4) a x → a x • x, a ∈ R ̸ =0,1 . (R5) 
From theorem 7.3,7.4,7.6 and 7.5, we can have that these four rules are the complete conditions for pulling one primitive function up. For instance, R2 describe the transformation ax = ax • x, which can also be considered as the case of sharing computation between ax and x, and from theorem 7.3 we know only ax is possible.

Counting for free If the computation of the aggregation function count is admitted for free, we can have an additional transformation, ax = a × x = a count x • x . Generally, a count x is a bivariate function instead of a unary one (this is the reason why it is not identified in theorem 7.6). However, with the stored count value, the function a count can be computed and a count x is changed to a linear function because a count is a constant at this moment. Moreover, due to the fact count is necessary for frequently used aggregate functions e.g averaдe, and priori data statistics for query optimization, the aggregation count is computed for free. Then, we propose the following transformation rule R6, which is also a kind of pull-up rules due to its feature of pulling a 'linear function' up.

ax = (a count x) • x, a ∈ R ̸ =1,0 . (R6) 
Supplementary pull-up rules. We propose supplementary pull-up rules to transform a non-feasible pull-up candidate to a feasible one. In fact, in the cases that s contains several primitive functions and the last primitive function p l is not a feasible pull-up candidate, the length of s may be still possible decreased because of the type changing transformation of primitive functions. We exhaustively analyze these supplementary pull-up rules in the following five exhaustive cases.

Case 1: ⊕ = +, and exploring supplementary transforming candidates for R2. When ⊕ = +, then if p l is linear or logarithm, then R2 and R3 can be applied. Therefore, the non-feasible cases are power and exponential. And we are searching candidates for R2, then the target type is linear.

When p l is a power function, we firstly identify that power function and linear function has the reordering feature (see in table 4), that x a •bx = b a x • x a . Therefore, we propose the transforming rule R6, which we call the linear-up rule due to its linear-type reordering feature, power • linear ↔ linear • power .

(R7)

By applying R7, a linear function can still be pulled up by R2. Moreover, power functions can absorb power functions, that x a • x b = x ab . Then several continuous power functions and a linear function is also feasible for R7. According to the second column in table 4, R7 is the only type changing when p l is a power function. Therefore, no matter how to transform the following functions, if there does not exist linear functions behind power functions, then the transformations are still not interesting for R2. We also found two cases that can produce linear functions in table 4, which can be the supplementary rules for R7. Transforming rules R8 and R9 are proposed to cover these two sub-situations, which we call the linear-birth rules due to its feature of two non-linear functions producing a linear function. loдarithm • exponential → linear , (R8)

loдarithm • power → linear • loдarithm. (R9)
Such that, sequential applying R8, R7, R2 or R9, R7, R2, can still pull up some functions. And R7, R8, R9 are the complete supplementary rules for R2. When p l is an exponential function, according to the fourth column in table 4, no matter how to transform primitive functions, the type of the first function cannot be changed. Therefore, none functions can be pulled up.

Case 2: ⊕ = +, and exploring supplementary transforming candidates for R3. Similarly, we are searching candidates for R3, then p l can be a power or exponential function and the target type is logarithm. However, according to the second and fourth column in table 4, no matter p l is an exponential or power function, none transformations can change the type of p l to be loдarithm. Therefore, in this case, it is impossible to have transforming candidates for R3.

Similarly, in the case 3: ⊕ = ×, exploring supplementary rules for R4, and the case 4: ⊕ = ×, exploring supplementary rules for R5, there does not exist supplementary transforming candidates.

Case 5: ⊕ = ×, and exploring supplementary transforming candidates for R6. In this case, we are searching candidates for R6, and p l is a logarithmic function and the target type is linear. Two complete cases can be identified based on linear-birth rules R8 and R9 (see the third column of table 4). Moreover, because power functions can absorb power functions and can be reordered with linear functions, therefore these two patterns can be also supplementary transformations of R9 in this case, loд a

x • x b 1 • x b 2 = loд a x • x b 1 b 2 = b 1 b 2 x • loд a x, and loд a x • b 1 x • x b 2 = loд a x • x b 2 • b 1/b 2 1 x = b 2 x • loд a x • b 1/b 2 1
x, b 1 > 0. Therefore, in this case, by sequential applying R8, R6, or R9, R6, or R7, R8, R6, the length of aggregation state can still be decreased.

The application of pull-up rules has linear time complexity O(l), because it visits each primitive function one time at most.

CONCLUSION AND ONGOING WORK

We analyze how to efficiently decompose user-defined aggregation functions and reuse their computation results. A generic framework for aggregation functions is firstly identified, which is mapped to the MRC model to generate the efficient and generic algorithm MR(α). Then, we analyze the effects of two widely used ⊕ functions in practice on MR(α), + and ×.

On the side of sharing aggregation computation, we concentrate on reusing partial aggregation results, which is more generic than total aggregation result. Then we illustrate the sharing problem is undecidable for arbitrary partial aggregation. Hereafter, we identify several primitive classes of unary and binary functions that are widely used in practical aggregation functions. Then, for this practical framework, sharing conditions are proposed. Consequently, we propose the symbolic index and pull-up rules to reduce the sharing complexity.

Based on the practical framework of UDA and corresponding theoretical propositions, we are implementing the library DS4Alpha aiming at providing a systematic approach to process user-defined aggregation in distributed computing. Skewness ( (x -µ) 3 )/n (( (x -µ) 2 )/n) 3/2 ((x i -µ(X )) 3 , (x iµ(X )) 2 , 1) (+, +, +) s 1 /s 3 (s 2 /s 3 ) 3/2 Kurtosis ( (x -µ) 4 )/n (( (x -µ) 2 )/n) 2 ((x i -µ(X )) 4 , (x iµ(X )) 

Figure 1 :

 1 Figure 1: Outline of processing user-defined aggregation.

Definition 3 . 1 .

 31 (Aggregation function) Let I be a domain (i.e., a set of infinite number of values). An aggregation function α over I is a function: l ∈N >1 I l → I .

  if it satisfies α(XYZ ) = α(Xα(Y ) |Y | Z ), where |Y | denotes the number of elements contained in multiset Y and α(Y ) |Y | denotes |Y | occurrences of α(Y ). A well-known class of symmetric and barycentrically associative aggregation is quasiarithmetic

Figure 2 :

 2 Figure 2: Computation time and total partial result size forx and x with different significant digits.

Figure 3 :

 3 Figure 3: Sharing aggregation pipeline.

Table 1 :

 1 MR(α): a generic MR algorithm for symmetric aggregation.

  1-ϵ 2 ), ϵ 2 > 0 space. Proposition 4.1. Given a MapReduce program A with the MRC computing environment, then under the EW case, A can be computed in the MRC

Table 3 :

 3 Primitive types of unary functions.

	Function name	Formula
	Constant function	f

Table 4 :

 4 Mathematical transformations of p • p ′ (x), p(x), p ′ (x) ∈ PU ̸ =ident ity,const ant .

	P p	P P	P P	P P

Table 5 :

 5 1 ) + 2, because two types of ⊕ functions, four types of primitive functions, and two additional ones, x and x . Moreover, symbolic aggregation states indeed contain the type information of ⊕ and unary functions. Such that, the sharing possibility of sy_s and sy_s ′ can be verified by G_EE(). Therefore, for a given sy_s, |sy_s | l 0 , we take any sy_s ′ , |sy_s ′ | l 0 , and sy_s as the input of G_EE() to generate D l 0 (sy_s). With this intuition, we propose the following symbolic index.Index structure. A symbolic index is a set of tables {T 1 , ...,T l 0 }. Every T i , i ∈ (1, ..., l 0 ), has five columns (ID, Symbolic Aggregation State, Symbolic Derivable Set, Sharing Candidate, Concrete Aggregation State). T i only stores symbolic aggregation states with the length i. In the column symbolic aggregation state, every row of T i stores the information of one symbolic aggregation state sy_s, |sy_s |= i. The column ID stores the encoded number of sy_s.The column symbolic derivable set stores the D l 0 (sy_s) of sy_s. The column sharing candidate simply store all sharing candidates for T 1 in the symbolic index. which is a set SC(sy_s) = {sy_s ′ |sy_s ∈ D l 0 (sy_s ′ )}. The last column is a set of pairs {( ā, R), ...} for concrete aggregation states, where R is a computation result of a concrete aggregation state, and ā is the a parameter sequence. An example T 1 is illustrated in

	ID sy_s -2 x	D l0 (sy_s) { x, a 1 x, a x 1 , ...}	SC(sy_s) { x }	s {R}
	-1	x	{ x, x a1 , loд a1 x, ...} { x }	{R}
	0	a 1 x	{ a 1 x, x, a x 1 , ...}	{ x }	null
	1	loд a1 x { loд a1 x, ...}	{ x, ...}	null
	2	a x 1	{ a x 1 , ...}	{ a x 1 }	{( ā, R), ...}
	3	x a1	{ x a1 , ...}	{ x a1 }	{( ā, R), ...}
	4	a 1 x	{ a 1 x, ...}	{ a 1 x }	{( ā, R), ...}
	5	loд a1 x { loд a1 x, ...}	{ loд a1 x } {( ā, R), ...}
	6	a x 1	{ a x 1 , x, a 1 x, ...}	{ x }	null
	7	x a1	{ x a1 , ...}	{ x }	null
	sy_s,				

table 5 .

 5 Index building. Building a symbolic index contains for every row in every table T i , i ∈ (1, ..., l 0 ), generating the four attributes, symbolic aggregation states, ID, symbolic derivable sets and sharing candidates, and sorting rows according to ID in T

  For an aggregation state s, |s |= i, i l 0 , the searching time complexity of sy_s in the symbolic index can be Ω(1) in best cases and O(i + loдl 0 + m) in worst cases (m concrete aggregation stated results cached in memory). We explain the analysis in the follows. The first search is locating the tableT

i , which can take Ω(1) in best cases and O(loдl 0 ) in the worst cases. The second search is finding sy_s in T i , which can take Ω(1) in best cases and O(loд|T i |) in worst cases, where

|T i | is the total number of rows in T i , |T i |= 2 × 4 i , then O(loд|T i |) = O(i).

If a sharing candidate contains only one concrete computation result, it can be directly retrieved. While, if all the m concrete results are cached in the sharing candidate, it will take O(m) to locate the required one.

Table 6 :

 6 Symmetric aggregation functions in canonical forms.

	Aggregation	Formula	F (x i )	F (x i ) ⊕ F (x j )		T (S)
	Max	-			id		max			id
	Min	-			id		min			id
	Sum		x i		id		+			id
	Count		1		id		+			id
	Avg µ		x i n		(id, 1)	(+, +)			s 1 s 2
	Variance σ 2		(x i -µ(X )) 2 n	((x i -µ(X )) 2 , 1)	(+, +)			s 1 s 2
	Std_variance σ		(x i -µ(X )) 2 n	((x i -µ(X )) 2 , 1)	(+, +)			s 1 s 2
	Covariance cov(X , Y ) Correlation corr (X , Y )	(x i -µ(X ))(y i -µ(Y )) n cov(X , Y ) (σ (X )σ (Y ))	((x i -µ(X ))(y i -µ(Y )), 1) ((x (+, +, +, +) (+, +)		s 1 s 2 s 3 /s 4 s 1 /s 4 √ √ s 2 /s 4
							(+, +, +, +)	(	s 3 /s 4 s 1 /s 4 √ s 2 /s 4 √	) 2
	Sum of squares Cumulative distance(r)	x 2 i -( x i ) 2 n count x i r count	(x 2 i , id, 1) (x i r ? 1 : 0, 1)	(+, +, +) (+, +)		s 1 -s 2 s s 4 s 1 s 2
	First_value	-			id		First_value()			id
	Last_value	-			id		Last_value()			id
	Median	-			id		∪		median
	Percentile	-			id		∪		percentile
	Rank	-			id		∪		rank
	Product		x i		id		×			id
	Geometric_mean	( x i ) 1/n	(id, 1)	(×, +)		(s 1 ) 1/s 2
	Power_mean	(	(x i ) p n	) p	(x	p i , 1)	(+, +)		(	s 1 s 2	) p

i -µ(X )) 2 , (y iµ(Y )) 2 , (x i -µ(X ))(y i -µ(Y )), 1) corr (X , Y ) 2 cov(X , Y ) (σ (X )σ (Y )) ((x i -µ(X )) 2 , (y iµ(Y )) 2 , (x i -µ(X ))(y i -µ(Y )), 1) 3 Sum of squares(X , Y ) x i × y i -( x i ) × ( y i ) n (x i × y i , x i , y i , 1) (+, +, +) s 1 -s 2 × s 3

In this paper, the term unary function is used to denote a function taking only one argument as input, e.g. an element in an input set.

Every function has a quasi-inverse function by theAxiom of Choice. If д is a quasiinverse of f , then f • д • f = f or f • д = the identity function