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ABSTRACT
We study the problems of decomposing and sharing user-defined

aggregate functions in distributed and parallel computing. Aggre-

gation usually needs to satisfy the distributive property to compute

in parallel, and to leverage optimization in multidimensional data

analysis and conjunctive query with aggregation. However, this

property is too restricted to allow more aggregation to benefit from

these advantages. We propose for user-defined aggregation func-

tions a formal framework to relax the previous condition, and we

map this framework to the MRC, an efficient computation model

in MapReduce, to automatically generate efficient partial aggrega-

tion functions. Moreover, we identify the complete conditions for

sharing the result of practical user-defined aggregation without

scanning base data, and propose a hybrid solution, the symbolic

index, pull-up rules, to optimize the sharing process.

KEYWORDS
MapReduce, Large-scale, user-defined aggregation, decomposing

aggregation, sharing computation.

1 INTRODUCTION
The ability to summarize information, the intrinsic feature of ag-

gregation, is drawing increasing attention for information analysis

[9, 18]. Simultaneously under the progress of data explosive growth,

processing aggregate function has to experience a transition to mas-

sively distributed and parallel framework, e.g. MapReduce, Spark,

Flink etc. The inherent property of aggregation, taking several val-

ues as input and generating a single value based on certain criteria,

requires a decomposing approach in order to be executed in a dis-

tributed architecture. Decomposing aggregation functions enables

to compute partial aggregation which can then be merged together

to obtain the final result. These partial aggregation results also

require an efficient managing method for exhaustively reusing due

to the fact that data scanning is usually costly in distributed and

parallel computing. How to efficiently decompose user-defined ag-
gregation functions and exhaustively reuse their partial computation
results is a hard nut to crack.

Decomposition of aggregation function is a long-standing re-

search problem that has been addressed in various fields. In a dis-

tributed computing framework like MapReduce, decomposability

of aggregate function can push aggregation before the shuffle phase

[5, 26]. This is usually called initial reduce, with which the size of

data transmission on a network can be substantially reduced. For

wireless sensor network, the need to reduce data transmission is

more necessary because of the limitation of power supply [23]. In

online analytical processing (OLAP), decomposability of aggregate

function enables aggregation across multi-dimensions, such that

aggregation queries can be executed on pre-computation results

instead of base data to accelerate query answering [24]. An impor-

tant point of query optimization in relational databases is to reduce

input table size of join [16], and decomposable aggregation brings

interests [6].

Previous works identify interesting properties for decomposing

aggregation. A very relevant classification of aggregation func-

tions, introduced in [18], is based on the size of sub-aggregation

(i.e., partial aggregation). This classification distinguishes between

distributive and algebraic aggregation, having sub-aggregate with

fixed sizes, and holistic functions, where there is no constant bound

on the storage size needed to describe a subaggregation. Some alge-

braic properties, such as associativity and commutativity, are iden-

tified as sufficient conditions for decomposing aggregation [5, 26].

Compared to these works, our work provides a generic framework

to identify the decomposability of any symmetric aggregation and

generate generic algorithms to process it in parallel.

On the other side of sharing aggregation computation, [8, 10, 15,

27] focus on aggregate functions with varying selection predicates

and group-by attributes. In dynamic data processing, [14, 17, 20]

concentrate on windowed aggregate queries with different ranges

and slides. [25] proposes a framework tomanage the partial aggrega-

tion results, and it has shown performance improvement compared

to modern data analysis library e.g. Numpy. Previous works focus

on optimizing queries with aggregation functions having differ-

ent group attributes, predicates, and windows (range and slide),

while we concentrate on sharing computation results for completely

different aggregation functions without these constraints (aggre-

gation simply runs on input dataset). And our solutions can be

trivially extended to relational queries with aggregation functions

by exploiting the contribution of previous works.

We focus on designing a generic framework that enables to

efficiently process user-defined aggregation functions and exhaus-

tively reuse their computation results. To achieve this goal, we

firstly identify a computation model and an associated cost model

for parallel algorithms. We consider in our work the MapReduce

(MR) framework and we use the MRC [19] cost model to define

’efficient’ MR algorithms. Then we rest on the well-formed aggre-

gation [6] as a generic framework for aggregation functions. This

formal framework is mapped into theMRC model to generate a

generic efficient MR algorithm for aggregation in section 4, noted

by MR(α ). Moreover, in section 5, we identify the widely used ⊕

functions in practice in the formal framework and analyze their ef-

fects on the efficiency ofMR(α ). On the side of sharing aggregation

computation, at first, in section 6 we introduce the sharing strategy

based on the formal framework. Then in section 7, we completely

identify the sharing conditions for practical user-defined aggrega-

tion. In order to improve the sharing process, the symbolic index
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Figure 1: Outline of processing user-defined aggregation.

and pull-up rules are proposed to optimize the execution plan of

aggregation.

This research is aiming at providing a systematic approach for

processing user-defined aggregation to fit the increasing application

of aggregation functions in different fields of data analysis. The

general outline can be concluded in figure 1. In this paper, we

concentrate on the formal framework of user-defined aggregation

and the theoretical aspects of the optimizing phase.

2 MRC ALGORITHM
Several research works concentrate on the complexity of paral-

lel algorithms. MUD [11] algorithm was proposed to transform

a symmetric streaming algorithm to a parallel algorithm with de-

cent bounds in terms of communication and space complexity,

but without any bound on the time complexity. This disqualifies

MUD as a possible candidate in our context. The trade-off between

round numbers and reducer space has been analyzed in [12], and

reducer memory is relaxed to an arbitrary number to solve complex

problems e.g. prefix sums and multi-searching. In [4], the mas-

sively parallel communication model was proposed to analyze the

trade-off between communication load and computation rounds for

relational queries.MRC [19] is another popular framework that has

been used to evaluate whether a MapeReduce algorithm is efficient.

The constraints enforced byMRC w.r.t. to the total bits of input n
can be summarized in the follows:

• machine space: O(n1−ϵ
), ϵ > 0;

• local computation time: O(nk ), for some constant k ;

• machine numbers: O(n1−ϵ
), ϵ > 0;

• computation round: R = O(loдi (n)).

TheMRC model considers necessary parameters for parallel com-

puting, communication time, computation space and computing

time, and makes more realistic assumptions. Hence, a MapReduce

algorithm satisfying these constraints is considered as an efficient

parallel algorithm and will be called hereafter anMRC algorithm.

3 FORMAL FRAMEWORK
In this section, first of all, we formally define aggregation function.

Then the symmetric (commutative) aggregation functions are in-

troduced. Finally, we provide the formal framework for symmetric

aggregation which is going to be used throughout this paper.

Definition 3.1. (Aggregation function) Let I be a domain (i.e.,

a set of infinite number of values). An aggregation function α over

I is a function:
⋃
l ∈N>1

I l → I .

According to this definition, corresponding to the notion of

extended aggregation function in [13], an aggregation operates on

a list of values to compute a single value as a result.

Definition 3.2. (Symmetric aggregation function) Let I be a
domain. An aggregation function α is symmetric iff α (X ) = α (σ (X ))

for any X ∈ I l , l ∈ N>1 and any permutation σ , where σ (X ) =

(xσ (1)
, ...,xσ (l )).

Symmetric aggregation does not depend on the order of input

data, therefore we consider the input of a symmetric aggregation

is a multiset instead of an ordered list. For a given domain I , by
noting {{I }} as the set of all nonempty finite multisets of elements

of I , a symmetric aggregation function is a function: {{I }} → I .
To define the generic aggregation framework, we use the notion

of well-formed aggregation in [6] as the canonical form.

Definition 3.3. (Canonical form of symmetric aggregation
function) Let α be a symmetric aggregation function defined over

a domain I and let Di be a domain, called an intermediate domain.

A canonical form of α using an intermediate domain Di is a triple

(F , ⊕,T ),

• F : I → Di is a translating function;

• ⊕ is a commutative and associative binary operation over

Di ;

• T : Di → I is a terminating function;

such that for all {d1, ...,dl } ∈ {{I }}, α ({d1, ...,dl }) =T (F (d1)⊕ . . . ⊕

F (dl )).

F is a tuple at a time function operating on single values of I .
The binary operation ⊕ accumulates results of F and hence plays

the role of an accumulator, and T operates on the accumulated

results of ⊕ to finalize the computation of α . For instance, the
aggregation averaдe(X ) with X ∈ {{I }} can be expressed in the

following canonical form, called hereafter canaveraдe form:

• F (d) = (d, 1), ∀d ∈ X ;

• (d,k) ⊕ (d ′,k ′) = (d + d ′,k + k ′);

• T ((d, l )) =

d

l
.

More examples are illustratd in table 6 with main SQL built-in ag-

gregation functions available on some commercial and open-source

DBMSs (Microsoft SQL Server [2],IBM DB2 [1] and PostgreSQL

[3]).

We make the following two observations: (i) a canonical form of

an aggregation function is not unique, i.e., for the same function α ,
several canonical forms may exist, and (ii) an aggregation function

α can always be expressed in a canonical form: taking F as the

identity function, ⊕ as the multiset union and T as α itself. This

latter form is called hereafter the naive canonical form of α .

4 EFFICIENT DECOMPOSING AGGREGATION
In this section, we firstly decompose aggregation functions using

the formal framework, then we illustrate the deficiency of the for-

mal framework, lacking the consideration of computing efficiency.

Therefore, we map the formal framework into theMRC algorithm
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to generate the efficient decomposing framework. After this, we

show how the formal framework deals with several algebraic prop-

erties of aggregation functions which are commonly used in the

decomposing literature, from this we can see that the formal frame-

work is more generic than the previous algebraic properties.

4.1 Mapping symmetric aggregation intoMRC

algorithm
Let (F , ⊕,T ) be a canonical form of an aggregation function α . The
associative and commutative property of ⊕ can be exploited to

derive a MapReduce implementation of α : processing F and ⊕ at

mapper, ⊕ at combiner, and ⊕ and T at reducer. Table 1 depicts the

corresponding generic MapReduce algorithm,MR(α ), to compute

α (X ) with X ∈ {{I }}, where mapper input is a submultiset Xi ⊆ X ,

the output of the mapper i is denoted by Oi , and the symbol

∑
⊕

denotes the summation using ⊕.

Hence, every symmetric aggregation function α given in a canon-

ical form (F , ⊕,T ) can be turned into aMapReduce algorithmMR(α ).

However, the generated MR(α ) algorithm is not necessarily an

efficient algorithm (i.e., a MRC algorithm). For example, the al-

gorithm MR(canaveraдe), derived from the canaveraдe form of

the averaдe function is a MRC algorithm while the algorithm

MR(naiveaveraдe), derived from the naive canonical form ofaveraдe ,
is not a MRC algorithm. Indeed, in the naive canonical form of

averaдe , F is the identity function and ⊕ is the multiset union.

Hence, the total size of output of mappers is equal to n (the length

of the input), and if, in the worst case, all the mapper outputs are

sent to only one reducer it will need a space equal to n. However,
MRC model requires that a reducer uses a sublinear space in n.

Therefore, we address in the sequel the following question: given

an aggregation function α expressed in a canonical form, when
the generatedMR(α ) algorithm is efficient? In other words, we are

interested in characterizing under which conditions one can ensure

thatMR(α ) is aMRC algorithm.

In order to have conditions to make MR(α ) be a MRC algo-

rithm, it is necessary to reason about partial aggregation output

length which is related to the bounded space of reducer in MRC.

Moreover, the extremely worst (EW) case in MapReduce is that

all mapper outputs are sent to one reducer, and if the condition

of partial aggregation result length can be satisfied in EW case,

then the case of a general number of reducers can also be ensured.

Therefore, our analysis is built on the EW case.

In MRC model, machine number P and machine space M are

both restricted to O(n1−ϵ
). However, this may bring a restricted

condition that the bound of P andM must be same or same order of

magnitude, which limits the feasibility under EW case of computing

even trivial aggregation e.g. count(), because under EW case P · |Oi |=

M where |Oi | is the length of a mapper output Oi in bits, if P
and M are same or same order of magnitude, |Oi | can only be

O(1). Therefore, we assume machine number: P = O(n1−ϵ1
), ϵ1 >

0 and machine space: M = O(n1−ϵ2
), ϵ2 > 0, and both of them

are still under theMRC sublinear requirement. In the following,

we call MRC environment E = (X , ϵ1, ϵ2) for an input X = {<

kj ;vj >, for j ∈ [1, l]} of n =

∑l
j=1

(|kj |+|vj |) bits, and a cluster

Table 1:MR(α ): a generic MR algorithm for symmetric aggre-
gation.

MapReduce phase operation

mapper

∑
⊕,dj ∈Xi

F (dj )

combiner ⊕

reducer T (

∑
⊕,i

Oi )

of P = O(n1−ϵ1
), ϵ1 > 0 machines, and each of them having M =

O(n1−ϵ2
), ϵ2 > 0 space.

Proposition 4.1. Given an MapReduce program A with the
MRC computing environment, then under the EW case, A can be
computed in the MRC environment E = (X , ϵ1, ϵ2) iff for each map-
per output Oi , |Oi |= O(n1−ζ

), ζ >max (ϵ2, 1 − ϵ1 + ϵ2).

Based on proposition 4.1, we propose the following reducible

property to categorize when a symmetric aggregation has a MRC

algorithm.

Definition 4.2. (Reducible symmetric aggregation functions)
Let α be a symmetric aggregation given in a canonical form (F , ⊕,T )

with theMRC environment E = (X , ϵ1, ϵ2), α is reducible if it sat-

isfies the following two conditions:

• F , ⊕ and T operate in time polynomial in n;

• |
∑

⊕,dj ∈Xi

F (dj )|= O(n1−ζ
), ζ >max (ϵ2, 1−ϵ1 +ϵ2),whereXi

is a subset of X with the size of O(n1−ϵ2
) in bits.

The second condition requires that the output length of partial

aggregation is bounded by a precisely sublinear space in n. This

ensures that the length of partial aggregation is smaller enough

to make the underlying computation efficient. It is noteworthy

that this constraint is more general than theMRC parallelizable

property in [19].

It is trivial to see that the formal framework is a one-roundMR
algorithm, then with reducible property we can conclude in the

follows the MR(α ) for a reducible α is a MRC algorithm, which

meansMR(α ) can be efficiently computed inMR paradigm.

MR(α ),α is reducible ⇔ MRC alдorithm. (1)

4.2 Deriving MRC algorithm from algebraic
properties

In this subsection, we investigate different algebraic properties of

aggregation functions leading to a non-naive canonical form. If

an aggregation α is in one of the following classes and α is also

reducible, then the correspondingMR(α ) is aMRC algorithm.

Associative aggregation. An aggregate function α is associa-
tive [13] if for any multiset X = X1 ∪ X2, α (X ) = α (α (X1),α (X2)) .

Associative and symmetric aggregation function can be transformed

in a canonical form (F , ⊕,T ) defined as follows:

F = α , ⊕ = α , T = id . (2)

where id denotes the identity function. If α is reducible, thenMR(α )

is a MRC algorithm.

Distributive aggregation.An aggregation α is distributive [18]
if there exists a combining function C such thatα (X ) = C(α (X1),α (X2)).
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Distributive and symmetric aggregation can be rewritten in the

canonical symmetric aggregation framework (F , ⊕,T ):

F = α , ⊕ = C, T = id . (3)

Similarly, if α is reducible then the correspondingMR(α ) is aMRC

algorithm.

Commutative semigroup aggregation. Another kind of ag-

gregate function having the same behavior as symmetric and dis-

tributive aggregation is the commutative semigroup aggregate func-

tion [7]. An aggregation α is in this class if there exists a commu-

tative semigroup (H , ⊗), such that α (X ) =

⊗
xi ∈X α (xi ). The corre-

sponding canonical aggregation (F , ⊕,T ) is illustrated as following:

F = α , ⊕ = ⊗, T = id . (4)

If α is reducible thenMR(α ) is a MRC algorithm.

Preassociative and symmetric aggregation A more general

property than commutative semi-group aggregation is symmetric

and preassociative aggregate function. An aggregation α is preas-
sociative [21] if it satisfies α (Y ) = α (Y ′

) =⇒ α (XYZ ) = α (XY ′Z ).

According to [21], some symmetric and preassociative aggregation

functions (unarily quasi-range-idempotent and continuous) can be

constructed as α (X) = ψ
(∑n

i=1
φ(xi )

)
,n ≥ 1, where ψ and φ are

continuous and strictly monotonic unary function. A canonical

form (F , ⊕,T ) for this kind of preassociative aggregation can be

defined as following:

F = φ, ⊕ = +, T = ψ . (5)

The correspondingMR(α ) is also aMRC algorithm, ifα is reducible.

For instance, α (X ) =

∑n
i=1

2xi , whereψ = id and φ(xi ) = 2xi .
Quasi-arithmeticmean.An aggregate functionα is barycentri-

cally associative [22] if it satisfies α (XYZ ) = α (Xα (Y )
|Y |Z ), where

|Y | denotes the number of elements contained in multiset Y and

α (Y )
|Y |

denotes |Y | occurrences of α (Y ). A well-known class of

symmetric and barycentrically associative aggregation is quasi-

arithmetic mean: α (X) = f −quasi
(

1

l

∑l
i=1

f (xi )

)
, l ≥ 1, where f

is an unary function and f −quasi is a quasi-inverse of f . With

different choices of f , α can correspond to different kinds of mean

functions, e.g. arithmetic mean, quadratic mean, harmonic mean etc.

An immediate canonical form (F , ⊕,T ) of such functions is given

by:

F = (f , 1), ⊕ = (+, +), T = f −1
(

∑l
i=1

f (xi )

l
). (6)

The correspondingMR(α ) is a MRC algorithm, if α is reducible.

5 PRACTICAL DECOMPOSING
In this section, we firstly identify two widely used ⊕ functions,

which are adequately generic to construct user-defined aggregation

based on the analysis of table 6 (see at the last page). Then we

analyze the relationship between these two ⊕ functions and the

reducible property.

5.1 Efficient ⊕ function
According to the canonical forms of most common used aggregation

(see table 6), the ⊕ function in the formal framework can be set

union, addition, and multiplication, or a tuple of the combination of

them. It is trivial to see that set union is not an efficient ⊕ function,

because of materializing all data from slave nodes to master nodes.

In practice, for aggregation functions which can only have set union

as the ⊕ function, e.g. median, approximated algorithms are usually

used to compute them, which is out the scope of this paper.

The reducible property gives the necessary and sufficient con-

dition to identify when an arbitrary aggregation in the canonical

form is a MRC algorithm. From definition 4.2, we observe that

partial aggregation output length is bounded, which depends on

input value length |v | in bits and the increasing bits by using ⊕ to

accumulate values.

When it comes to practical computing, there is always a trade-off

between the length of the result and the computation precision

(unbounded-length result). For instance, in Java, the primitive data

type double has a fixed length of 64-bit, but the precision of compu-

tation result using double is out of control. While, the BigDecimal

provides arbitrary precision arithmetic, but the result has an un-

bounded length depending on precision. For the bounded-length

data type, the MR(α ) with ⊕ = + or ⊕ = × is always a MRC al-

gorithm, because there is no increase on the size of accumulating

values, in other words, the size of the mapper output is always the

bounded number of bits, which could be O(1).We analyzeMR(α )

with the unbounded-length data type in the follows, which is for

the cases of arbitrary precision computing and exact computing

with unlimited precision.

5.1.1 ⊕ = + . We show in the following theorem, under the case

of unbounded data type, when a MR(α ) with ⊕ = + in the MRC

environment is aMRC algorithm.

Theorem 5.1. Let α be a symmetric aggregation in a canoni-
cal form with ⊕ = + and F ,T operating in time polynomial in
the length of input, and MR(α ) be the corresponding generic algo-
rithm with the MRC environment E = (X , ϵ1, ϵ2), when |F (vi ) +

F (vj )|,∀vi ,vj ∈ X is unbounded, MR(α ) is a MRC algorithm iff
|avд(F (vi ))|= O(n1−ζ

), ζ > max (ϵ2, 1− ϵ1 + ϵ2), where avд(F (vi )) is
the average value of the ∪vi ∈X F (vi ).

In fact, the bound of |avд(F (vi ))| is quite generic in practice.

With respect to the MRC environment, the bound O(n1−ζ
) equals

to

M

P
, which is the machine space in bits divided by the machine

number. And this can be quite large in a practical environment.

Therefore, under most reasonable cases, MR(α ) with ⊕ = + is a

MRC algorithm.

5.1.2 ⊕ = ×. Generally, in the setting of processing aggregation
in distributed systems, if an aggregation function is associative and

commutative then the corresponding partial aggregation can be

efficiently processed. We show the following counterexample of

⊕ = ×, that this widespread practice is in fact not correct with

consideration ofMRC cost model in the case of the unbounded-

length data type.

Given the computation of the product aggregationα (X ) =

∏
vj ∈X

vj ,

let X = {vj ,∀j ∈ [1, l]} where vj is a binary string. W.o.l.o.g., con-

sider vj > 0. The total length of the input for α is

∑
vj ∈X |vj |=∑

vj ∈X loд(vj ) bits. α is indeed commutative and associative. Hence

the partial aggregation α (Xi ), where Xi ∈ X containing li val-
ues, can be computed at the Accumulator. W.o.l.o.g., we ignore



Decomposing and Sharing User-defined Aggregation:
from Theory to Practice BDA, 2018, Bucarest

Table 2: Computation time and total partial result size for∑
x and

∏
x with unlimited precision.∑

x
∏

x

Time (s) 12 1560

Size (KB) 6.8097e + 4 3.6793029e + 7
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Figure 2: Computation time and total partial result size for∑
x and

∏
x with different significant digits.

the Combiner phase since it does not impact our reasoning. The

computation results of a partial aggregation α (Xi ) is
∏

vj ∈Xi vj ,
of which encoding requires loд(

∏
vj ∈Xi vj ) =

∑
vj ∈Xi loд(vj ) bits.

In the worst case of MapReduce computing, all the results of the

mappers (the case of one mapper at each machine) are sent to

a unique reducer. Hence the reducer will need a space equal to∑
Xi ∈X (

∑
vj ∈Xi loд(vj )) bits, which is indeed

∑
vj ∈X loд(vj ). In an-

other sense, the computation of product contains shuffling all input

data on all mappers to one reducer.

5.1.3 Experiments. Based on the above analysis, we make a sim-

ple experiment of computing

∑
x and

∏
x using arbitrary precision.

The dataset we use is the store_sales table from TPC-DS generated

by scale 10, and the size of the table is 3.72GB. We program the

following two queries in the way of Spark RDD with different pre-

defined precision and unlimited precision and run them on a spark

cluster containing one master node and six slave nodes. The ex-

periment results for the predefined precision case is illustrated in

figure 2, and table 2 shows the computation time and total partial

result size in the case of unlimited precision (exact computing).

SELECT Sum(ss_sales_price) FROM store_sales WHERE ss_sales_price != 0;

SELECT Prod(ss_sales_price) FROM store_sales WHERE ss_sales_price != 0;

We can see both

∑
x and

∏
x can be efficiently processed with

less digits in precision (smaller length of results). When using more

digits and even unlimited digits,

∑
x stays on the same performance,

while

∏
x will dramatically increase in terms of computation time

and result size.

5.1.4 The scope of ⊕. The ⊕ function can be a binary function

or a tuple of binary function (for the case of not only one partial

aggregation). Then, the scope of the ⊕ function is ⊕ = ∪ni=1
⊕i , ⊕i ∈

(+,×), i ∈ (1, ...,n),n ∈ N>0.

6 SHARING AGGREGATION
In this section, we target the problem of how to reuse aggrega-

tion results to avoid data access. Let α and β be two aggregation

Figure 3: Sharing aggregation pipeline.

functions and X be an input set, and we try to cache the compu-

tation results of α (X ) and reuse them to compute β(X ).We build

aggregation pipelines based on the formal framework for α and β
in figure 3, which are compared in the follows based on the size of

data scanning and the scope of reusing.

The first one is caching the results of translating function. How-

ever, this is not interesting because the size of its output equals to

the one of the original dataset such that it still needs a same-scale

data scanning.

The second one is caching the results of ⊕ function. Let PAα be

the total results of ⊕ function in α , which can be one or a tuple

of values, and Tα be the terminating function of α , then α (X ) =

Tα ◦PAα . Let R be one or a tuple of unary functions, then if possible

β can be computed as β(X ) = Tβ ◦ R ◦ PAα . R contains only unary

functions, then the results of R only depend on the input PAα
instead of X . In fact, PAα is a tuple containing aggregation results,

and the size of PAα is much smaller then the size of X .
The third one is caching the results of α (X ), which is a single

value because α is an aggregation. Let T ′
be a unary function, then

if possible β can be computed as β(X ) = T ′ ◦ α (X ). The difference

between the second and third caching choice is α (X ) can always be

inferred from PAα , but if we have α (X ) we cannot always recover

PAα from it, because it requires the inverse function of Tα exists

or Tα is a uni-variate injection. This is a quite restricted condition

because the terminating function is usually not a univariate func-

tion, e.g. the one of average, or an injection, e.g. the one of (

∑
x )

2.

This difference determines the reusing scopes of them. If α (X ) can

be reused then PAα must also be possible, but in the opposite way,

it may not be possible. Such that, the reusing scope of the second

caching choice always contain the scope of the third one.

Therefore, we choose the second caching and reusing choice. It

is noteworthy that the unary functions in R may not be the identity

function, such that α and β are not necessarily identical.

6.1 Partial aggregation state
First of all, we illustrate the notion of partial aggregation based on

the formal framework. Given an aggregation function α :

⋃
l ∈N>1

I l

→ I with the formal framework (F , ⊕,T ), then for any input X ⊆ I
the partial aggregation is∑

⊕,x j ∈X
F (x j ) = (

∑
⊕1,x j ∈X

f1(x j ), ...,
∑

⊕m,x j ∈X
fm (x j )),m ∈ N>0,
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where fk (x ),k ∈ (1, ...,m) is a unary function
1
. Partial aggregation

can be trivially computed by processing it individually on all sub-

sets of X and then combining these sub-results by ⊕. In this setting,

the total result is cached and reused instead of sub-results in order

to avoid data transferring on networks. As we can see, partial aggre-

gation is a sequence containing aggregate functions. For instance,

the partial aggregation of average is (

∑
x j ∈X x j ,

∑
x j ∈X 1).

Moreover, we define a notion having a smaller granularity than

partial aggregation, which is named hereafter partial aggregation
state. A partial aggregation state is just an element in partial aggre-

gation. In the above example, the partial aggregation of α contains

m partial aggregation states∑
⊕k ,x j ∈X

fk (x j ),k ∈ (1, ...,m).

Partial aggregation states can provide a more generic reusing

method. We illustrate this benefit by using the previous sharing

example between α and β . Assuming that γ is also an aggregation

function, if

∑
⊕γ Fγ ∈ (

∑
⊕α Fα ,

∑
⊕α Fα ), then the partial aggrega-

tion states of α and β can be reused for γ . Therefore, we formally

define the sharing computation on aggregation state in the follows.

Definition 6.1. (Sharing partial aggregation states) Let s =∑
⊕ f (x ) and s ′ =

∑
⊕′

2

f ′(x ) be two partial aggregation states, then

s ′ shares the result of s iff there exists a unary function r such that

s ′ = r ◦ s .

Note that r is a unary function, which means it only depends

on s instead of base data. Moreover, in the above sharing equation,

if s = s ′, then r is the identity function. If s ̸= s ′, by finding r , the
results of s can also be reused for s ′.

6.2 Non-trivial property: derivable set
Following the sharing definition 6.1, we consider the following

decision problem, given two aggregation states s and s ′, and an
arbitrary input set, whether there exists a unary function r , such
that the computation results of s can be reused for s ′, s ′ = r ◦ s .
In order to answer this decision problem, we firstly propose an

abstract structure on partial aggregation states named derivable set.

Then, we have that for an aggregation state s, the derivable set of
s is a non-trivial and semantic property. Finally, we conclude this

decision problem is undecidable, according to the Rice’s theorem.

Definition 6.2. (Derivable set) Let s and s ′ be two partial ag-

gregation states with an arbitrary input set, then s ′ belongs to the

derivable set D(s), iff there exists a unary function r for s ′ = r ◦ s,

D(s) = {s ′ |s ′ = r ◦ s}.

Every derivable set contains at least one element, which is the

case r can only be the identity function. Also, it is trivial to see the

problem of deciding whether s ′ can share s is identical to decide

whether s ′ ∈ D(s).

Theorem 6.3. Given any two partial aggregation states s and s ′,
whether s ′ ∈ D(s) is undecidable.

1
In this paper, the term unary function is used to denote a function taking only one

argument as input, e.g. an element in an input set.

Table 3: Primitive types of unary functions.

Function name Formula

Constant function f (x ) = a,x ∈ R,a ∈ R.

Identity function f (x ) = x ,x ∈ R.

Linear function f (x ) = ax ,x ∈ R,a ∈ R ̸=0
.

Logarithm f (x ) = loдa |x |,x ∈ R ̸=0
,a ∈ R>0, ̸=1

.

Power function f (x ) =

{
xa , x ∈ R>0,a ∈ R ̸=0

.

xa , x ∈ R<0,a ∈ Z ̸=0
.

Exponential function f (x ) = ax ,x ∈ R,a ∈ R>0.

7 PRACTICAL SHARING
In this section, we firstly present the practical scope of aggrega-

tion states, where the decision problem is decidable. After this, a

naive algorithm is proposed to share aggregation state computation.

Finally, in order to reduce time complexity, we propose a hybrid

method containing a symbolic index and several pull-up rules to

better share aggregation states.

7.1 Practical framework
Let s =

∑
⊕ f (x ) be a partial aggregation state. We already illustrate

the practical scope of the ⊕ function in aggregation states, that

⊕ ∈ (+,×).We introduce the scope of the unary function f by the

following observation.

ObservationWe firstly observe that combining two unary func-

tions by a functional composition or a bianry function is also a unary

function. For instance, given f1(x ) = xb ,b ̸= 0 and f2(x ) = ax ,a ̸= 0,

both f2 ◦ f1(x ) = axb and f2(x )+ f1(x ) = xb +ax are unary functions.

Moreover, we also observe from table 6 (see in the appendix) that

there are several primitive types of unary functions used in practice,

e.g linear functions and power functions, and the other ones are

built on top of these primitive functions.

Based on this observation, we identify several primitive types of

unary and binary functions, which we summarize as the primitive

unary function set (PU ) and the primitive binary function set (PB).

• PU : let p be a unary function, then p ∈ PU if p is one of con-
stant functions, the identity function, linear functions, power
functions, logarithmic functions, and exponential functions
(see table 3 for the primitive functions).

• PB : let ⊙ be a binary function, then ⊙ ∈ PB if ⊙ is one of

arithmetic addition, subtraction, multiplication and division.

According to our observation, two types of unary functions can

be built on top of PU using the functional composition ◦ and the

binary functions in PB, which we summarize as the composing

unary function set PU ◦
and the concatenating unary function set

PU ⊙ .

• PU ◦
: let д be a unary function, then д ∈ PU ◦

if д = pl ◦
... ◦ p1, pj ∈ PU , j ∈ (1, ..., l ), l ∈ N>0, where p1 is the first

primitive function of д, and pl is the last one, and the length

of д is l , denoted as |д |= l .
• PU ⊙

: let r be a unary function, then r ∈ PU ⊙
if r = дk ⊙k−1

... ⊙1 д1, дj ∈ PU ◦, j ∈ (1, ...,k), ⊙z ∈ PB, z ∈ (1, ...,k −

1), k ∈ N>1.

We illustrated some properties for the elements in PU ◦
and PU ⊙,

which will be used later to identify sharing conditions. For f ∈ PU ◦
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and f is not a constant function, we can have either f is an injection
or f satisfying f (x) = f (−x), because all primitive functions p
besides constant functions are either injection or p(x) = p(−x).

Moreover, most unary functions in PU ⊙
are not injections because

of the binary functions ⊙. However, some specific elements in PU ⊙

can be transformed to PU ◦
and become injections, e.g.a1x

b
+a2x

b
=

(a1 + a2)xb = (a1 + a2)x ◦ xb . These transformations require very

specific conditions and can be trivially recognized by exhaustive

analysis, such that we implement them but do not cover the details

in the following part where we consider they have already been

transformed.

With the scope of ⊕ and f , we present the following scope of

user-defined aggregation functions covered by our decomposing

and sharing framework.

Definition 7.1. Let α be an aggregation function with the formal

framework (Fα , ⊕α ,T α
) and X be the input of α , then α is in the

universe U if

• X ⊆ Rl , l ∈ N>1;

• Fα = (f1, ... fm ), fi ∈ PU ⊙ ∪ PU ◦, i ∈ (1, ...,m),m ∈ N>0;

• ⊕α = (⊕1, ..., ⊕m ), ⊕i ∈ (+,×), i ∈ (1, ...,m),m ∈ N>0.

T is released to be any function, because T is the one computed

at master node locally, such that no matter in decomposing phase

or in sharing phase, T does not need special consideration.

7.2 Sharing practical aggregation states
In this subsection, we mainly propose complete conditions for shar-

ing aggregation states having unary functions in PU ◦, and two

transforming rules for those having ones in PU ⊙ . Before exhaus-

tively analyzing unary functions in PU ◦
or PU ⊙, we show in the

following theorem that the sharing possibility is related to whether

unary functions are injections, which will be used to analysis PU ◦

and PU ⊙ .

Theorem 7.2. Let s1 =

∑
⊕1

f1(x ) and s2 =

∑
⊕2 f2(x ) be two par-

tial aggregation states, then there exists non-identity unary function
r12 for s1 = r12 ◦ s2 only under the following two situations,

1. f2 is an injection;
2. neither f1 nor f2 is an injection.

7.2.1 f ∈ PU ◦. If f ∈ PU ◦, we can have either f2 is an injec-

tion or f2 satisfying f2(x) = f2(−x).We firstly illustrate complete

conditions for the former case, and then transforming the latter case

into the former cases by proposing the siдn(x ) function. Note that,

if f1 is a constant function, it is trivial to compute it by using the

aggregation results of count . Such that, we let f1 be a non-constant

function.

Case 1: f2, f2 ∈ PU ◦ is an injection. We analyze the sharing

conditions between s1 and s2 in an exhaustive way with respect to

the practical scope of ⊕ function. Based on the two possible choices

of ⊕ functions in aggregation states, there exists four different

combinations for ⊕1 and ⊕2 in s1 and s2, that (1) ⊕1 = +, ⊕2 = +, (2)

⊕1 = +, ⊕2 = ×, (3) ⊕1 = ×, ⊕2 = +, (4) ⊕1 = ×, ⊕2 = ×.We present

the sharing conditions for these four cases in the following four

theorems.

Theorem 7.3. Let s1 =

∑
f1(x) and s2 =

∑
f2(x) be two partial

aggregation states having inputs of a set of real numbers, where f1(x )

is a continuous non-constant unary function and f2(x ) is a continuous
injection, then there exists a non-identity unary function r12 for s1 =

r12 ◦ s2, if and only if f1 ◦ f −1

2
(x ) = r12(x ) = ax ,x ∈ R,a ∈ R̸

=0
.

Theorem 7.4. Let s1 =

∑
f1(x) and s2 =

∏
f2(x) be two partial

aggregation states having inputs of a set of real numbers, where f1(x )

is a continuous non-constant unary function and f2 is a continuous
injection, then there exists a non-identity unary function r12(x) for
s1 = r12 ◦ s2, if and only if f1 ◦ f −1

2
(x) = r12(x) = a(loдb |x |),x ∈

R ̸=0
,b ∈ R>0, ̸=1

,a ∈ R ̸=0
.

Theorem 7.5. Let s1 =

∏
f1(x) and s2 =

∑
f2(x) be two partial

aggregation states having inputs of a set of real numbers, where f1
is a continuous non-constant unary function and f2 is a continuous
injection, then there exists a non-identity unary function r12 for s1 =

r12 ◦ s2, if and only if f1 ◦ f −1

2
(x) = r12(x) = bax ,x ∈ R,b ∈

R>0, ̸=1
,a ∈ R̸

=0
.

Theorem 7.6. Let s1 =

∏
f1(x) and s2 =

∏
f2(x) be two partial

aggregation states having inputs of a set of real numbers, where f1
is a continuous non-constant unary function and f2 is a continuous
injection, then there exists a non-identity unary function r12 for s1 =

r12 ◦ s2, if and only if f1 ◦ f −1

2
(x) = r (x) = xa , x ∈ R>0,a ∈ R, or

f1 ◦ f −1

2
(x ) = r (x ) = xa , x ∈ R<0,a ∈ Z̸

=0
,

Case 2: f2, f2 ∈ PU ◦ satisfies f2(x) = f2(−x). In this case, f2 is
not an injection, such that the above theorems can not be directly

applied. However, f2 satisfies the property f2(x) = f2(−x), which

can be used to transform f2 to be an injection. In order to accomplish

this, we propose a function called siдn(x ) defined in the following.

Then we let u = siдn(x) × x . Then, it is trivial to see that u > 0.

Without loss of generality, we take u > 0 because some functions

are not defined on 0.

siдn(x ) =


1,x > 0;

0,x = 0;

−1,x < 0.

With the siдn(x) function and the variable u, in order to check

the sharing possibility of s1 =

∑
⊕1

f1(x) and s2 =

∑
⊕2

f2(x), the

following two ones are verified s ′
1

=

∑
⊕1

f1(u) and s ′
2

=

∑
⊕2

f2(u).

In this case, we indeed have f2(u) is an injection, such that the

above four theorems can be directly applied.

After transforming the variable from x to u, we identify the

relation between aggregation states on x and aggregation states on

u . It is trivial to see that s2 = s ′
2
because of f2(x ) = f2(u),u = siдn(x ).

Then, for the cases f1 also satisfying f1(x) = f1(−x), we also have

s1 = s ′
1
, such that the sharing problem of s ′

1
and s ′

2
is equivalent to

the one of s1 and s2.

Finally the only left case is f1(x ) is an injection, and f2(x ) satisfies

f2(x) = f2(−x). According to theorem 7.2, there does not exist a

unary function r12 for s1 = r12 ◦ s2. However, a precomputation can

be proceeded to make r12 to be an ’unary’ function. Similarly, we

mainly analyze the relation between s1 and s ′
1
because we already

have s2 = s ′
2
.We firstly separate the input data sets into positive

and negative parts, then we compensate

∑
⊕1

f1(−x−) where x− is

∀x < 0. Then we have

s1 = s ′
1
⊕1 C,
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where C = (

∑
⊕1

f1(x−) ⊕−1

1

∑
⊕1

f1(−x−)), and ⊕−1

1
is the inverse

function ⊕1, e.g. − is the inverse function for +, or / is the one for

and ×. Such that, s ′
1

= s1 ⊕−1

1
C . Therefore, if there exists r ′

12
for

s ′
1

= r ′
12

◦ s ′
2
, then we can have s1 = (r ′

12
◦ s2) ⊕1 C . It is noteworthy

that,C is also an aggregation function which only takes the negative

part of a input set, and in order to share computation in this caseC
requires to be precomputed.

7.2.2 f ∈ PU ⊙ . In this case, generally, f is not an injection

because of the binary function ⊙.We propose the splitting trans-

formations for some cases, with which the previous solution can

also be used.

First of all, the binary operators in PB are classified into two

families, the addition family ADD = {+,−} and the multiplication

family MUL = {×, /}. Without loss of generality, let f = д1(x) ⊙

д2(x ),д1,д2 ∈ PU ◦, then we can have following two splitting rules,∑
д1(x ) ⊙ д2(x ) =

∑
д1(x ) ⊙

∑
д2(x ), ⊙ ∈ ADD, (split1)∏

д1(x ) ⊙ д2(x ) =

∏
д1(x ) ⊙

∑
д2(x ), ⊙ ∈ MUL. (split2)

With these two rules, the original aggregation state

∑
⊕ д1(x) ⊙

д2(x ) is split into two aggregation states

∑
⊕ д1(x ) and

∑
⊕ д2(x ), for

which the previous solution is still feasible. In another sense, the ⊙

operator is pushed to the terminating function. For the left cases

that are not covered by split rules, the current sharing condition is

whether they have the identical expressions.

7.3 Equivalent expressions
Let f (x ) = f1 ◦ f

−1

2
(x ), and f = pl ◦ ... ◦p1,pi ∈ PU , i ∈ (1, ..., l ), l ∈

N>2
. Note that every pi is not the identity function and constant

functions, otherwise it can be trivially removed, or f becomes

a constant function. Such that, pi can be one of the four differ-

ent types of primitive functions, (ax , loдax ,a
x ,xa ). The type of

the expression f is verified to check whether sharing is possi-

ble between s1 and s2. According to theorem 7.3, 7.4, 7.5, and 7.6,

the expression f needs to be one of the following target types

(x ,ax ,a(loдb |x |),b
ax ,xa ),a ∈ R ̸=0

,b ∈ R ̸=0,1, which is determined

by ⊕1 and ⊕2 in s1 and s2.We propose a recursive method to answer

this problem for the practical framework in this subsection.

In order to answer the question, all equivalent expressions of f
need to be identified. However, generating all arbitrary equivalent

expressions for a unary function may not be possible, and not all

of them are useful for our question. From all the target types we

can have that any of them is either a primitive unary function or a

composition of two primitive unary functions, such that a target

type has two properties: (1) it is an element in PU ◦
; (2) its length is

1 or 2. Therefore, we concentrate on the equivalent expressions of

f , which are also in PU ◦
and have a length of 1 or 2.We formally

define the equivalent expressions in the follows.

Definition 7.7. (Equivalent expression) Let f be a unary func-

tion in PU ◦, then the equivalent expression of f , EE(f ), is a set

containing all unary functions f ′ which are also in PU ◦, satisfy

f ′(x ) = f (x ), and have a length of 1 or 2,

EE(f ) = { f ′ |∀x , f (x ) = f ′(x ), f ′ ∈ PU ◦, 1 6 | f ′ |6 2}.

We firstly illustrate the algorithmG_EE2() for generating EE(f ),

| f |= 2 by using the mathematical transformation of f , then we

propose the recursive algorithm G_EE() for generating EE(f ), | f |∈
N>2.

Case 1:G_EE2(f ), | f |= 2. Based on the target types, we exhaus-

tively illustrate the mathematical transformations for the compo-

sition of a pair of the four types of primitive functions in table 4.

Then, there only exist three different situations for the mathemati-

cal transformations: (1) merging transformations; (2) type changing;

(3) no transforming. With this table, we define the functionTrans()
generating the other equivalent expression for f = p2 ◦ p1, and

the function T_Trans() returning the type of the transformation.

Trans(p2 ◦ p1) takes the type of p2 and p1, finds the corresponding

one in table 4, and returns the other equivalent expression, while

T_Trans(p2 ◦p1) returns the corresponding type of transformation.

We take the first column of table 4 as an example for Trans() and
T_Trans() to illustrate the three different transforming situations,

• type merging:Trans(ax ◦bx ) = abx andT_Trans(ax ◦bx ) =

TM ;

• type changing:Trans(ax◦xb ) = xb ◦a1/bx andT_Trans(ax◦

xb ) = TC;

• no transforming: Trans(ax ◦ bx ) = null and T_Trans(ax ◦

bx ) = NT .

With Trans(), we can have G_EE(f ) = { f ,Trans(f )}, | f |= 2.

Case 2:G_EE(f ), | f |∈ N>2. Let | f |= l ,we propose the following
recursive equation based on the associative property of functional

composition.

EE(pl ◦ ... ◦ p1) = EE(f ′l→2
◦ p1), f ′l→2

∈ EE(pl ◦ ... ◦ p2). (7)

Then we present the general steps of G_EE() in the follows. Firstly,

for a unary function in PU ◦, we define two functions дetLast ()
getting the last primitive function and rmLast () removing the last

primitive function. For instance, if f is the input, then дetLast (f ) =

pl and after rmLast (f ), f = pl−1
◦ ... ◦ p1.

By recursively applying equation 7, the problem of generating

EE(f ) in the general situation can be reduced to the case of gener-

ating EE(pl ◦ pl−1
), which can be generated by G_EE2(pl ◦ pl−1

).

After having EE(pl ◦ pl−1
), every element f ′l→l−1

in EE(pl ◦ pl−1
)

is composed with pl−2
to generate EE(f ′l→l−1

◦ pl−2
), and all of

the composition are merged together to have EE(pl ◦ pl−1
◦ pl−2

).

Through repeating this procedure, EE(f ) will be eventually gener-

ated.

A key step in the backward phase of G_EE() is how to generate

EE(f ′l→l−1
◦ pl−2

) with f ′l→l−1
and pl−2

. We solve this problem

by exhaustively analyzing the situations. It is trivial to see that if

| f ′l→l−1
|= 1, then we can use G_EE2(f ′l→l−1

◦ pl−2
). For the other

case | f ′l→l−1
|= 2, let f ′l→l−1

= p′l ◦p
′
l−1
. Then a first transformation

is called, that Trans(p′l−1
◦ pl−2

). As illustrated previously, there

only exist three different types of transformations. For the case of

type merging, Trans(p′l ,Trans(p
′
l−1

◦ pl−2
)) can be directly called.

For the case of no transforming, we can have p′l ◦ p
′
l−1

◦ pl−2
is the

only transformation of p′l ◦ p
′
l−1

◦ pl−2
, and the length is bigger

than 2, such that this candidate is deprecated. For the case of type

changing, we continue the second transformation, that Trans(p′l ◦

дetLast (Trans(p′l−1
◦ pl−2

)), of which based on the different cases

of the outputs the above procedure can be repeated. Assuming that

both the first and second transformation are type changing and

we have an output p′′l ◦ p′′l−1
◦ p′l−2

, then another transformation
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Table 4: Mathematical transformations of p ◦ p′(x ),p(x ),p′(x ) ∈ PU ̸=identity,constant .

PPPPPPPp′(x )

p(x )

ax ,a ̸= 1, 0 xa ,a ̸= 0 loдa |x |,a > 0,a ̸= 1 ax ,a > 0,a ̸= 1

bx ,b ̸= 1, 0 ax ◦ bx = abx, or x, ab = 1 xa ◦ bx = bax ◦ xa loдa |x |◦bx = loдa |x |◦bx a
x ◦ bx = (a

b
)
x

xb ,b ̸= 0 ax ◦ xb = xb ◦ a1/bx, a > 0 x
a ◦ x

b
= x

ab, or x, ab = 1 loga |x|◦xb = bx ◦ loga |x| ax ◦ xb = ax ◦ xb

loдbx ,b > 0, ̸= 1 ax ◦ logb |x|= logb |x|◦xa xa ◦ loдb |x |= xa ◦ loдb |x | loдa |x |◦loдb |x |= loдa |x |◦loдb |x | ax ◦ loдbx = aloдbx ,or |x|, a = b

bx ,b > 0, ̸= 1 ax ◦ bx = ax ◦ bx x
a ◦ b

x
= (b

a
)
x

loga |x|◦b
x

= (logab)x, or x, logab = 1 ax ◦ bx = ax ◦ bx

is called Trans(p′′l−1
◦ p′l−2

). If this transformation is not the type

merging case, then the length can not be reduced to 2. Such that,

the candidate p′l ◦p
′
l−1

◦pl−2
is also deprecated. Finally, if for every

f ′l→l−1
∈ EE(pl ◦ pl−1

), EE(f ′l→l−1
◦ pl−2

) is still empty, we have

EE(pl ◦ ...◦p1) is empty. Otherwise, the following primitive function

pl−3
will be taken.

7.4 Complexity of sharing
In order to verify the sharing possibilities between a given aggre-

gation state s1 and a cached aggregation state s2, both of them

will be given as the input for G_EE(). If there are more than one

aggregation state cached in memory, they will be verified in turn

until one is satisfied. Therefore the sharing complexity is related to

two factors: (1) the complexity ofG_EE(), (2) the number of cached

aggregation states,

We firstly analyze the time complexity of G_EE(). For f = pl ◦
.... ◦ p1, in worst cases, the recursive algorithm G_EE(f ) proceed

one time of Trans() for one continuous pair of primitive function,

which can be l − 1 in total. Such that the complexity of G_EE(f )

is O(l ). Secondly, it is trivial to see that ifm aggregation states are

cached in memory, then the complexity for the second step isO(m).

Therefore, in the case that the length of the unary function f1 in

s1 is l1, andm different aggregation states s2 cached in memory,

where every one of them contains a unary function with the length

l i
2
, i ∈ (1, ...,m), then the total sharing complexity can be Ω(l1 + l i

2
)

in best cases and O(ml1 +

∑m
i=1

l i
2
) in worst cases.

7.5 Symbolic index
In this subsection, we propose the symbolic index to organize the

cached aggregation states, such that the total sharing complexity

can be decreased to Ω(1) in best cases andO(l1 + loдl0 +m) in worst

cases, where l0 is the maximum length of aggregation state cached

in memory.

ObservationAccording to theorem 7.3,7.4,7.5 and 7.6, wemainly

need to check whether f1◦ f
−1

2
(x ) or f1◦ f

−1

2
(u),u = siдn(x ), is a spe-

cific type of unary functions, and algorithm 2 only needs the type

of primitive functions in f1 ◦ f
−1

2
(x ) or f1 ◦ f

−1

2
(u). Therefore, if the

type data of unary functions is stored, this type-checking phase can

be preprocessed. Moreover, the computation results of aggregation

state s2 can only be reused for the elements in its derivable setD(s2),

and derivable sets can be equivalent because the reusing functions

r12 in theorem 7.3 and 7.5 are injections. Therefore, the searching

spacem can be decreased by organizing the cached aggregation

states using derivable set and equivalent derivable sets.

We firstly propose the notion of symbolic primitive functions

to store the type data of primitive functions. Computing every

primitive function besides constant functions requires inputs of an

element of base data x and a parameter a. x is given at the time

of scanning base data, while a is received at the time of declaring

functions. For instance, linear functions have the shape of ax ,which
takes x and a and proceeds a simple multiplication on them. We

define symbolic primitive function in the follows.

Definition 7.8. (Symbolic primitive function) A symbolic prim-

itive function is a function p(a)
(x) taking two real numbers a and

x as the input and return a real number as the output, and for a

constant a′, p(a′)
(x ) ∈ PU .

Then the symbolic aggregation state is formally defined in the

follows.

Definition 7.9. (Symbolic aggregation state) A symbolic ag-

gregation state sy_s(X , ā) is an aggregation function taking two

inputs, a set of real numbers X and a sequence of real numbers ā =

(al , ...,a1), sy_s(X , ā) =

∑
⊕,x ∈X p

(al )
l ◦ ... ◦ p

(a1)

1
(x), ⊕ ∈ (+,×), l ∈

N>1, where p
(ai )
i (x ), i ∈ (1, ..., l ) is a symbolic primitive function.

A symbolic aggregation state sy_s can be generated from a con-

crete one s . A concrete aggregation state can be also obtained from

a symbolic aggregation sate and a sequence ā = (al , ...,a1). Such

that, based on the definition of concrete derivable set, we can have

the symbolic derivable set in the follows,

D(sy_s) = {sy_s ′ |∃ā′, ā,∀X , sy_s ′(X , ā′) = r ◦ sy_s(X , ā)}.

For a fixed length l0, the following symbolic derivable set of a

symbolic aggregation state sy_s, |sy_s |6 l0, can be built,

Dl0 (sy_s) = {sy_s ′ |sy_s ′ ∈ D(sy_s), |sy_s ′ |6 l0}.

We explain the reason in the follows. Although there exists in-

finitive concrete aggregation states s, |s |6 l0, the symbolic ones

sy_s, |sy_s |6 l0 is countable, of which the total number in the prac-

tical sharing framework is 2 × (4
l0

+ ... + 4
1
) + 2, because two types

of ⊕ functions, four types of primitive functions, and two addi-

tional ones,

∑
x and

∏
x . Moreover, symbolic aggregation states

indeed contain the type information of ⊕ and unary functions.

Such that, the sharing possibility of sy_s and sy_s ′ can be veri-

fied by G_EE(). Therefore, for a given sy_s, |sy_s |6 l0, we take

any sy_s ′, |sy_s ′ |6 l0, and sy_s as the input of G_EE() to generate

Dl0 (sy_s).With this intuition, we propose the following symbolic

index.

Index structure.A symbolic index is a set of tables {Tl0 , ...,T1}.

Every Ti , i ∈ (1, ..., l0), has five columns (ID, Symbolic Aggregation

State, Symbolic Derivable Set, Sharing Candidate, Concrete Ag-

gregation State). In the column symbolic aggregation state, every

row of Ti stores the information of one symbolic aggregation state

sy_s, |sy_s |= i . The column ID stores the encoded number of sy_s .
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Table 5: T1 in the symbolic index.

ID sy_s Dl0 (sy_s) SC(sy_s) s

-2

∑
x {

∑
x ,
∑
a1x ,

∏
ax

1
, ...} {

∑
x} {R}

-1

∏
x {

∏
x ,
∏

xa1 ,
∑
loдa1

|x |, ...} {
∏

x , ...} {R}

0

∑
a1x {

∑
a1x ,

∑
x ,
∏

ax
1
, ...} {

∑
x} null

1

∑
loдa1

|x | {
∑
loдa1

|x |, ...} {
∏

x , ...} {(ā,R), ...}

2

∑
ax

1
{
∑
ax

1
, ...} {

∑
ax

1
, ...} {(ā,R), ...}

3

∑
xa1 {

∑
xa1 , ...} {

∑
xa1 , ...} {(ā,R), ...}

4

∏
a1x {

∏
a1x , ...} {

∏
a1x , ...} {(ā,R), ...}

5

∏
loдa1

|x | {
∏

loдa1
|x |, ...} {

∏
loдa1

x , ...} {(ā,R), ...}

6

∏
ax

1
{
∏

ax
1
,
∑
x ,
∑
a1x , ...} {

∑
x} null

7

∏
xa1 {

∏
xa1 , ...} {

∏
x , ...} {(ā,R), ...}

The column symbolic derivable set stores the Dl0 (sy_s) of sy_s . The
column sharing candidate simply store all sharing candidates for

sy_s, which is a set SC(sy_s) = {sy_s ′ |sy_s ∈ Dl0 (sy_s ′)}. The last
column is a set of pairs {(ā,R), ...} for concrete aggregation states,

where R is the computation result of a concrete aggregation state,

and the concrete aggregation state is generated by the symbolic

state and the sequence ā. An example T1 is illustrated in table 5,

where only subsets are contained in the column symbolic derivable

set and sharing candidate.

Index building. Building a symbolic index contains for ev-

ery row in every table Ti , i ∈ (1, ..., l0), generating the four at-

tributes, symbolic aggregation states, ID, symbolic derivable sets

and sharing candidates, and sorting rows according to ID in Ti .

Let sy_s(X , ā) =

∑
⊕,x ∈X p

(ai )
i ◦ ... ◦ p

(a1)

1
(x), i ∈ (1, ..., l0). Firstly,

symbolic aggregation states are obtained by selecting one type of ⊕

from (+,×) and one type of p
(aj )
j , j ∈ (1, ..., i) from linear, logarithm,

exponential, power, which will produce 2 × 4
i
rows in Ti . And

in the case of i = 1, two addition ones are added,

∑
x and

∏
x .

Moreover, all the rows inTi are classified into two parts with ⊕ = +

and ⊕ = ×, and we define offset(+) = 0 and offset(×) = 4
i . Then,

for every type of linear, logarithm, exponential, power, a encoded

integer is assigned, that en(linear ) = 0, ... and en(power ) = 3. Then

the encoded function EN () is defined to generate the ID,

EN (sy_s) = en(p
(ai )
i ) × 4

i−1
+ ... + en(pa1

1
) × 4

0
+ o f f set (⊕). (8)

For the special two cases

∑
x and

∏
x ,we assign their ID as −2 and

−1. Thirdly, sy_s is added in Dl0 (sy_s), and the function G_EE() is

ran with the input of any combination of sy_s and another symbolic

aggregation state from (T1, ...,Tl0 ) to generate Dl0 (sy_s). At fourth,
we iterate on the column of symbolic derivable set to find identi-

cal ones, where only the symbolic state with the shortest length

will be put in the sharing candidate column. Otherwise, symbolic

aggregation state sy_s will be registered in the sharing candidate

column of every element in Dl0 (sy_s). Finally, for every tableTi , all
the rows are sorted based on the ID column.

It is noteworthy that, the sharing candidates column may store

one or several symbolic aggregation states. In the latter case, all the

sharing candidates are sorted based on two criteria: (1) whether a

sharing candidate contains a concrete computation; (2) the length

of the sharing candidates. And the first criteria always has the

higher priority than the second one. This machinery can help find

a sharing candidate that can be feasible to reuse in O(1) time.

Index searching. Given an aggregation state s, firstly the fol-

lowing three types of data are retrieved from s, the length of |s |,
symbolic aggregation state sy_s, and the sequence ā. Then accord-

ing to |s |, the corresponding table Ti , i = |s | is located by a first

binary search. Furthermore, based on the encoded formula (equa-

tion 8), the ID of sy_s is computed. Following this, a second binary

search is proceeded to find sy_s in Ti . Afterward, if the first shar-
ing candidate has a concrete computing result, it will be retrieved

for computing s, otherwise, the real computation will be launched.

Which concrete computation is launched will depend on the num-

ber of sharing candidates for sy_s . If sy_s contains only one sharing
candidate, then the only sharing candidate will be launched to com-

pute, e.g. the row with ID=0 and ID=6 in table 5. Otherwise, the

current sy_s with the received ā will be computed. Finally, the result

of s is returned.
Index updating. If a real computation of a concrete aggregation

state s is launched, an index update is proceeded because of the

sorting machinery in the sharing candidate column. Updating a

symbolic index is simply telling every element in Dl0 (sy_s) that
sy_s has a concrete computation, such that sy_s will be ranked

nearer to the front in the set of sharing candidates of every element

in Dl0 (sy_s).
Search complexity. For an aggregation state s, |s |= i, i 6 l0,

the searching time complexity of sy_s in the symbolic index can

be Ω(1) in best cases and O(i + loдl0 + m) in worst cases (m con-

crete aggregation stated results cached in memory). We explain

the analysis in the follows. The first search is locating the table Ti ,
which can take Ω(1) in best cases and O(loдl0) in the worst cases.

The second search is finding sy_s inTi , which can take Ω(1) in best

cases and O(loд |Ti |) in worst cases, where |Ti | is the total number

of rows in Ti , |Ti |= 2 × 4
i , then O(loд |Ti |) = O(i). If a sharing can-

didate contains only one concrete computation result, it can be

directly retrieved. While, if all them concrete results are cached in

the sharing candidate, it will take O(m) to locate the required one.

Therefore, the best cases can take Ω(1), while the worst cases can

take O(i + loдl0 +m).

Building and space complexity. The building time complex-

ity of the symbolic index is O(4
3lo

). The total number of rows in

all tables Ti , i ∈ (l0, ..., 1), are
4
l0+1 − 2

3

. Note that, if the practical

framework is not extended, the symbolic index will remain un-

changed, then it is only necessary to build it one time. Such that,

once the symbolic index is built, it can be serialized to disk and be

deserialized to memory at the running time.

7.6 Pull-up rules
Choosing a bigger length l0 of the symbolic index may still consume

some memory, and the tables with bigger lengths may not be often

used based on the composition of realistic functions. Therefore,

we propose a hybrid solution, that we fix a reasonable length l0
for generating the symbolic index, and for aggregation states with

length l 6 l0, the symbolic index is used to share computation. For

the left cases l > l0, instead of directly verifying sharing condition

with cached elements, we propose pull-up rules to reduce the length

l to l ′, then if l ′ 6 l0, aggregation states will be passed to symbolic

index, otherwise the sharing conditions are verified. The purpose



Decomposing and Sharing User-defined Aggregation:
from Theory to Practice BDA, 2018, Bucarest

of this method can be summarized that reducing aggregation state

length and using the symbolic index in an exhaustive way.

The intuition of reducing the length of aggregation states is

pushing some unary functions to terminating function in the formal

framework. Specifically, for an aggregation state s =

∑
⊕ pl ◦ ... ◦

p1,pi ∈ PU , i ∈ (1, ..., l), if s can be transformed to pl ◦
∑

⊕′ pl−1
◦

.. ◦ p1, then pl can be pulled up to terminating functions and the

length of s is reduced to l − 1. This process can be repeated for pl−1

and the follows if possible, until a minimum length is obtained.

We propose the complete pull-up conditions. From the exhaus-

tive combination of ⊕ and ⊕′
in the practical scope, that (

∑
,
∑

),

(

∑
,
∏

), (
∏
,
∏

), and (

∏
,
∑

), we propose the following four pull-up

rules for each of them to pull one primitive function up.∑
ax → ax ◦

∑
x , a ∈ R ̸=1,0. (R2)

∑
loдax → loga x ◦

∏
x ,a ∈ R>0, ̸=1

. (R3)∏
xa → xa ◦

∏
x ,a ∈ R̸

=0
. (R4)∏

ax → ax ◦
∑

x ,a ∈ R̸
=0,1. (R5)

From theorem 7.3,7.4,7.6 and 7.5, we can have that these four rules

are the complete conditions for pulling one primitive function up.

For instance, R2 describe the transformation

∑
ax = ax ◦

∑
x ,which

can also be considered as the case of sharing computation between∑
ax and

∑
x , and from theorem 7.3 we know only ax is possible.

Counting for free If the computation of the aggregation func-

tion count is admitted for free, we can have an additional transfor-

mation,

∏
ax =

∏
a ×

∏
x = acountx ◦

∏
x . Generally, acountx is

a bivariate function instead of a unary one (this is the reason why

it is not identified in theorem 7.6). However, with the stored count

value, the function acount can be computed and acountx is changed

to a linear function because acount is a constant at this moment.

Moreover, due to the fact count is necessary for frequently used

aggregate functions e.g averaдe, and priori data statistics for query
optimization, the aggregation count is computed for free. Then, we

propose the following transformation rule R6, which is also a kind

of pull-up rules due to its feature of pulling a ‘linear function’ up.∏
ax = (acountx ) ◦

∏
x ,a ∈ R ̸=1,0. (R6)

Supplementary pull-up rules. We propose supplementary pull-up

rules to transform a non-feasible pull-up candidate to a feasible

one. In fact, in the cases that s contains several primitive functions

and the last primitive function pl is not a feasible pull-up candidate,
the length of s may be still possible decreased because of the type

changing transformation of primitive functions. We exhaustively

analyze these supplementary pull-up rules in the following five

exhaustive cases.

Case 1: ⊕ = +, and exploring supplementary transforming candi-
dates for R2. When ⊕ = +, then if pl is linear or logarithm, then R2

and R3 can be applied. Therefore, the non-feasible cases are power

and exponential. And we are searching candidates for R2, then the

target type is linear.

When pl is a power function, we firstly identify that power

function and linear function has the reordering feature (see in table

4), that xa ◦bx = bax ◦xa . Therefore, we propose the transforming

rule R6, which we call the linear-up rule due to its linear-type

reordering feature,

power ◦ linear ↔ linear ◦ power . (R7)

By applying R7, a linear function can still be pulled up by R2.

Moreover, power functions can absorb power functions, that xa ◦

xb = xab . Then several continuous power functions and a linear

function is also feasible for R7. According to the second column in

table 4, R7 is the only type changing when pl is a power function.
Therefore, no matter how to transform the following functions,

if there does not exist linear functions behind power functions,

then the transformations are still not interesting for R2.We also

found two cases that can produce linear functions in table 4, which

can be the supplementary rules for R7. Transforming rules R8 and

R9 are proposed to cover these two sub-situations, which we call

the linear-birth rules due to its feature of two non-linear functions

producing a linear function.

loдarithm ◦ exponential → linear , (R8)

loдarithm ◦ power → linear ◦ loдarithm. (R9)

Such that, sequential applying R8,R7,R2 or R9,R7, R2, can still pull

up some functions. And R7,R8,R9 are the complete supplementary

rules for R2.

When pl is an exponential function, according to the fourth

column in table 4, no matter how to transform primitive functions,

the type of the first function cannot be changed. Therefore, none

functions can be pulled up.

Case 2: ⊕ = +, and exploring supplementary transforming candi-
dates for R3. Similarly, we are searching candidates for R3, then

pl can be a power or exponential function and the target type is

logarithm. However, according to the second and fourth column

in table 4, no matter pl is an exponential or power function, none

transformations can change the type of pl to be loдarithm. There-
fore, in this case, it is impossible to have transforming candidates

for R3.

Similarly, in the case 3: ⊕ = ×, exploring supplementary rules
for R4, and the case 4: ⊕ = ×, exploring supplementary rules for R5,
there does not exist supplementary transforming candidates.

Case 5: ⊕ = ×, and exploring supplementary transforming candi-
dates for R6. In this case, we are searching candidates for R6, and pl
is a logarithmic function and the target type is linear. Two complete

cases can be identified based on linear-birth rules R8 and R9 (see the

third column of table 4). Moreover, because power functions can

absorb power functions and can be reordered with linear functions,

therefore these two patterns can be also supplementary transfor-

mations of R9 in this case, loдax ◦ xb1 ◦ xb2
= loдax ◦ xb1b2

=

b1b2x ◦ loдax , and loдax ◦ b1x ◦ xb2
= loдax ◦ xb2 ◦ b1/b2

1
x =

b2x ◦ loдax ◦ b1/b2

1
x ,b1 > 0. Therefore, in this case, by sequential

applying R8,R6, or R9,R6, or R7,R8,R6, the length of aggregation

state can still be decreased.

The application of pull-up rules has linear time complexity O(l ),
because it visits each primitive function one time.

8 CONCLUSION AND ONGOINGWORK
We analyze how to efficiently decompose user-defined aggrega-

tion functions and exhaustively reuse their computation results.
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A generic framework for aggregation functions is firstly identi-

fied, which is mapped to the MRC model to generate the efficient

and generic algorithmMR(α ). Then, we analyze the effects of two

widely used ⊕ functions in practice onMR(α ), + and ×.

On the side of sharing aggregation computation, we concentrate

on reusing partial aggregation results, which is more generic than

total aggregation result. Then we illustrate the sharing problem is

undecidable for arbitrary partial aggregation. Hereafter, we iden-

tify several primitive classes of unary and binary functions that

are widely used in practical aggregation functions. Then, for this

practical framework, the complete sharing condition is proposed.

Consequently, we propose the symbolic index and pull-up rules to

reduce the sharing complexity.

Based on the practical framework of UDA and corresponding

theoretical propositions, we are implementing the library DS4Alpha

aiming at providing a systematic approach to process user-defined

aggregation in distributed computing. Specifically, DS4Alpha pro-

vides a ‘declarative’ interface for defining aggregation like writing

its mathematical formula. Then, the execution plan of every re-

ceived aggregation will be transformed and checked to verify the

sharing possibilities with the cached aggregation results in the sys-

tem. In the case of none results can be reused, the execution plan

will be materialized to functions, which are sent to slave nodes to

launch the computation. Until now, according to the outline (see

figure 1), the declarative interface and UDA parser have already

been implemented, and we will be devoted into the UDA optimizer.

Finally, we will compare DS4Alpha to user-defined aggregation API

in main-stream cluster computing framework, e.g. Apache Spark

UDAF and Aggregator, in terms of productiveness and performance.
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Table 6: Symmetric aggregation functions in canonical forms.

Aggregation Formula F (xi ) F (xi ) ⊕ F (x j ) T (S)

Max − id max id

Min − id min id

Sum

∑
xi id + id

Count

∑
1 id + id

Avg µ

∑
xi
n

(id, 1) (+, +)

s1

s2

Variance σ 2

∑
(xi − µ(X ))

2

n
((xi − µ(X ))

2, 1) (+, +)

s1

s2

Std_variance σ

√∑
(xi − µ(X ))

2

n
((xi − µ(X ))

2, 1) (+, +)

√
s1

s2

Covariance cov(X ,Y )

∑
(xi − µ(X ))(yi − µ(Y ))

n
((xi −µ(X ))(yi −µ(Y )), 1) (+, +)

s1

s2

Correlation corr (X ,Y )

cov(X ,Y )

(σ (X )σ (Y ))

((xi − µ(X ))
2, (yi −

µ(Y ))
2,

(xi − µ(X ))(yi − µ(Y )), 1)

(+, +, +, +)

s3/s4

√
s1/s4

√
s2/s4

corr (X ,Y )
2

cov(X ,Y )

(σ (X )σ (Y ))

((xi − µ(X ))
2, (yi −

µ(Y ))
2,

(xi − µ(X ))(yi − µ(Y )), 1)

(+, +, +, +) (

s3/s4

√
s1/s4

√
s2/s4

)
2

Sum of squares

∑
x2

i − (

∑
xi )

2

n
(x2

i , id, 1) (+, +, +)

s1 − s2

s3

Sum of squares(X ,Y )

∑
xi × yi − (

∑
xi ) × (

∑
yi )

n
(xi × yi ,xi ,yi , 1) (+, +, +)

s1 − s2 × s3

s4

Cumulative distance(r)

countxi6r

count
(xi 6 r? 1 : 0, 1) (+, +)

s1

s2

First_value − id First_value() id

Last_value − id Last_value() id

Median − id ∪ median

Percentile − id ∪ percentile

Rank − id ∪ rank

Product

∏
xi id × id

Geometric_mean (

∏
xi )

1/n
(id, 1) (×, +) (s1)

1/s2

Power_mean (

∑
(xi )

p

n
)
p

(x
p
i , 1) (+, +) (

s1

s2

)
p

Skewness

(

∑
(x − µ)

3
)/n

((

∑
(x − µ)

2
)/n)

3/2

((xi − µ(X ))
3, (xi −

µ(X ))
2, 1)

(+, +, +)

s1/s3

(s2/s3)
3/2

Kurtosis

(

∑
(x − µ)

4
)/n

((

∑
(x − µ)

2
)/n)

2
((xi − µ(X ))

4, (xi −

µ(X ))
2, 1)

(+, +, +)

s1/s3

(s2/s3)
2

LogSumExp ln(

∑
exp(xi )) exp(xi ) + ln

TF(term:t,doc:d)

countt
count

(t? 1 : 0, 1) (+, +)

s1

s2

IDF(term:t,corpus:D) Loд(

count

counttd
) (1, t ∈ dj? 1 : 0) (+, +) Loд(

s1

s2

)

TF-IDF(t,d,D) TF × IDF (d : (t? 1 : 0, 1),

D : (1, t ∈ dj? 1 : 0, 1))

(+, +, +, +)

s1

s2

× Loд(

s3

s4

)


