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Abstract—In the framework of model-free deep reinforcement
learning with continuous sensorimotor space, we propose a new
type of transfer learning, inspired by the child development,
where the sensorimotor space of an agent grows while it is
learning a policy. To decide how the dimensions grow in our
neural network based actor-critic, we add new developmental
layers to the neural networks which progressively uncover some
dimensions of the sensorimotor space following an Intrinsic
Motivation heuristic. To mitigate the catastrophic forgetting
problem, we take inspiration from the Elastic Weight Constraint
to regulate the learning of the neural controller. We validate
our approach using two state-of-the-art algorithms (DDPG and
NFAC) on two high-dimensional environment benchmarks (Half-
Cheetah and Humanoid). We show that searching first for a
suboptimal solution in a subset of the parameter space, and then
in the full space, is helpful to bootstrap learning algorithms, and
thus reach better performances in fewer episodes.

I. INTRODUCTION

Reinforcement learning (RL) is a framework for framing
sequential decision problems, in which an agent interacts with
its environment and adapts its policy based on a scalar reward
signal [1]. RL agents can autonomously learn difficult tasks,
like playing video games [2]. While RL techniques for discrete
problems are well studied, fully continuous environments
for both state and action spaces still need new algorithms
to address more complex real-world problems, as well as
problems where the reward is sparse or delayed [3].

State of the art algorithms for continuous settings or large
discrete spaces rely on artificial neural networks because they
show good generalization and scalability properties. However,
in a very high-dimensional space, searching from scratch is
difficult, and generally inefficient. A successful research direc-
tion consist in using task of increasing difficulty to facilitate
learning, as done, for example, in curriculum learning [4]. We
follow that trend by proposing an original developmental RL
approach where the sensorimotor space of the agent is enlarged
while the agent learns its task.

Thus, our approach consists of searching first in a smaller
space to find a local optimum, then increasing the search space
by adding new perception and action dimensions. This is a type
of transfer learning [5], compatible with curriculum learning,
where an agent learns a source task and transfers its knowledge
to a target task. Since the state and action spaces grow over
time, agents are able to gradually increase the difficulty of

their task as in developmental robotics [6]. Moreover, as stated
by Guerin [7], learning basic physical concepts is crucial in
a developmental approach which is more natural in a fully
continuous environment where no discrete symbol is infused.
For those reasons, we categorize our work into developmental
reinforcement learning.

We test this approach using two different state-of-the-art
model-free RL algorithms. We show that our approach could
lead to higher policy quality and increases the learning speed
on two high-dimensional environments with continuous senso-
rimotor space. Unlike Atari games [8] for discrete action RL,
benchmarking reinforcement learning with continuous actions
in high-dimensional sensorimotor space is difficult because
of the lack of free and open simulators for those domains1.
Inspired by the models proposed within OpenAI Gym [9],
we developed two open-source environments within Open
Dynamic Engine (ODE) [10] trying to reproduce them from
Mujoco [11]: Half-Cheetah and Humanoid.

II. BACKGROUND

We are interested in RL problems, modeled as Markov
Decision Processes (MDP) 〈S,A, T,R〉 where S is the state
space, A is the action space, T is the transition function, and R
is the reward function. We are especially interested in MDP
where the state space and action space are continuous. The
goal of RL is to seek for an optimal policy π∗ (a mapping
from S to A) maximizing the expected discounted cumulative
reward:

π∗ ∈ argmax
π

J(π) = argmax
π

E
[ ∞∑
t=0

γtrt
∣∣π], (1)

where rt denotes the reward at time step t and 0 ≤ γ < 1 is
the discount factor.

When the state space S and action space A are continuous,
the use of an actor (i.e. a parametric policy) becomes crucial
to approximate the policy and to overcome the complexity
of the argmax search to select an action. This often leads
to actor-only methods or model-free policy search [12] like
REINFORCE [13] or Covariance Matrix Adaptation Evolution

1The free license of Mujoco is not sufficient to perform an optimization of
the hyperparameters on a cluster which is almost always required for deep
actor-critic algorithms.



Strategy (CMA-ES) [14]. The major drawbacks of actor-only
methods are the high variability of the sampling of the objec-
tive J and their low data efficiency. On the other hand, actor-
critic algorithms [15] try to mitigate those drawbacks with
a critic. The critic learns a value function thus reducing the
variability of the sampling of J by estimating Q : S×A→ R,
the sequential values of actions in each state: (or V : S → R
the sequential value of each state) :

Qπ(s, a) = Eπ
[ ∞∑
k=0

γkrt+k+1

∣∣∣st = s, at = a
]
, (2)

where rt is the reward obtained at time t from R following π.
We now present two state-of-the-art actor-critic algorithms

that we will use. To focus on the contributions of our
developmental approach, these algorithms will be used to
learn deterministic policies as it is difficult to clearly evaluate
algorithms learning stochastic policies [16].

Deep Deterministic Policy Gradient (DDPG) is an off-
policy, online algorithm [17]. It learns the Q value function,
and it reuses previous samples through its off-policy update
with experience replay. Based on Neural Fitted Q with Con-
tinuous Actions [18], DDPG is more scalable due to online
updates, target networks [2] and batch normalization [19]. The
target networks serve to slow down the weight updates to
increase the stability of learning, by soft updating a copy of the
policy and the value function. The actor is updated according
to the backpropagation of the gradient of the critic.

Neural Fitted Actor Critic (NFAC) is an on-policy, offline
algorithm [20]. It splits reinforcement learning problems into
two distinct supervised learning problems. The critic update
relies on Fitted-Q updates [21] applied to a V function.
The actor update relies on Continuous Actor Critic Learning
Automaton (CACLA) algorithm [22] that reinforces actions
according to Temporal Difference errors. The samples are
forgotten after each episode because the actor features on-
policy update. In this work, we use the extended version of
NFAC with batch normalization and eligibility traces [23].

III. SENSORIMOTOR SPACE ENLARGEMENT WITHOUT
ENVIRONMENT MODIFICATION

The main objective behind our idea of developmental RL
is to progressively increase the dimensionality of the tackled
problem. Like curriculum learning [4], we suppose that learn-
ing with gradual difficulty is helpful to explore the search
space in complex continuous environments.

With MDPs, the growth in problem dimensionality trans-
lates to growing the sensorimotor space of the agent. In this
work, we address the more specific problem of the sensorimo-
tor space enlarging without modifications to the environment.
Modifications are considered as being “internal” to the agent.
At first, the agent learns to solve the problem with fewer
perceptions and controls : this is the source task. Then comes
a transfer moment where the agent increases its sensorimotor
space, thus changing tasks. In this work, the time unit for
a transfer moment is the episode. As such, a transfer never
occurs online during one episode, but between two episodes

(offline). After the transfer, the agent is now solving the
target task with full perceptions and controls. Recall that for
st, st+1 ∈ S2, at ∈ A, rt+1 ∈ R, the system is governed by
the following equations : at ∼ π(·|st),

st+1 ∼ T (·|st, at),
rt+1 ∼ R(st, at, st+1).

To simulate the sensorimotor space increase, we decompose
π(at|st) into two parts: π+

t (at
+|st) ∪ π−t (at−|h(st)) where

at
+ ∈ A+, at− ∈ A− such that A+∪A− = A, A+∩A− = ∅

and at = at
+∪at−. While π− is learned by the agent to solve

the source task, the functions π+ and h are provided by the
designer. The policy π+ controls the dimensions that are not
yet controlled by the agent. The function h : S → S− ⊆ S is
used to reduce the perception over the state space. Thus, the
policy π− learned by the agent is defined in a smaller space
S−×A− ⊆ S×A. Once π− is learned, it is used to learn the
full policy π without decomposition in the full sensorimotor
space. An example is given in Figure 1. Instead of having only
one transfer, such decomposition can be easily generalized to
more numerous moments.

π−

π+

source task target task

transfer

: controlled joint : uncontrolled joint

Fig. 1. The Half-Cheetah body is composed of several degrees of freedom to
learn how to run. In this example, S− is equivalent to S minus the perception
over the ankles, π+ controls the ankles (for instance by applying a constant
torque) and π− controls and perceives the rest of the body.

A crucial question concerns the order in which the sensori-
motor space is incremented. In this work, this question is left
unanswered and considered as a priori knowledge. We con-
centrate on the design of developmental reinforcement learning
for neural control architectures with actor-critic methods and
two other questions : when to transfer and how to transfer.

IV. DEVELOPMENTAL LAYER

We focus on an approach where we seek for generality and
try to minimize modifications of the environment and actor-
critic learning algorithms by working mostly on the neural
network architecture. We create a new neural layer filtering
inputs that we called developmental layer (DL). Similar to
a dropout layer [24], each input is connected to one output
where the associated weight control if the information passes
(see Figure 2).

Given an input vector x and parameters ϑ of the DL, the
deterministic activation function to compute the y output is :

yi =

{
xi if ϑi ≥ threshold,
0 otherwise.

Placing DL at strategic locations of the neural network
architecture, as shown in Figure 3, makes the transfer more
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Fig. 2. The developmental layer (DL) controls which input x will be forward
to the next layer through ϑ.

transparent for the designer. With actor-critic methods, a DL is
added at the beginning of the policy and the value function to
hide some dimensions of the state according to h. It simulates
the reduction of S to S−. Another DL is added at the end of
the policy to disable control over some dimension according
to π−. It simulates the reduction of A to A−.

Environment
ϑ

developmental
layers

ϑ

DLs

DLa Actor
A

S

Fig. 3. The lower developmental layer DLs is used to filter dimensions of the
state and the higher developmental layer DLa to filter some action dimensions.
As the activation of disabled neurons will be 0, the corresponding weights
(within the inner product) will not change during backpropagation, so the
search space is smaller. Thereby, it is not necessary to explicitly define a
neural network over A− and S− when using DL.

With such architecture, the learning algorithm needs only a
very slight modification when it calls π to take into account the
non-controlled dimensions of the action. Because the DL will
set disabled dimensions of the action to zero, it is necessary
to replace them according to π+ during the training on the
source task.

A. How to transfer

Solutions found in the source task should be exploited at
the best in the target task. However, it is not straightforward
with neural networks because of the catastrophic forgetting
problem [25]. In this paper, we are going to compare two
methods to perform such a transfer. In the first method, the
solution found in the sub-space is only used as a starting point
in the full space. In the general case (without DL), the number
of parameters between the source task and the target should
be different. Suppose that θsource ∈ Rk are the parameters
found once the first optimization is done and θtarget ∈ RK
are the parameters for the full problem. When using DL, the

number of parameters of neural networks (without taking into
account DL parameters ϑ) does not change (k = K) but a
part of θsource is not used. This part is composed of weights
linked to input and output neurons disabled by DL, and these
weights thus keep their initial random value. The method we
call “initialization” will start learning the target task with the
same weights θsource.

The second method, called Elastic Weight Constraint
(EWC), use the same initialization but will limit the update of
important weights, using the Fisher Information Matrix (FIM)
to decide on the importance of weights [26]. A regularization
constraint R(θ) is added to the cost function (denoted L(θ))
optimized by the network, leading to a new cost Lfinal(θ):

Lfinal(θ) = L(θ) + βηt−t0R(θ),
where β controls the importance of the constraint, η is a
decay parameter to reduce the importance of the constraint
over time, t is the current episode, t0 is the episode where a
transfer occurred last and R(θ) =

∑K
i=1 Fi(θi−θsourcei ) with

F being the FIM. Fisher weights of disabled dimensions will
be zero because of the backpropagation algorithm properties.
This constraint is added only to the actor because a good critic
should evaluate the current actor accurately, and for that he has
to adapt quickly.

B. When to transfer?
A key question is to decide when to enlarge the sensorimotor

space (through changing the weights ϑ of the developmental
layer). If the transfer occurs too lately, then, in most problems,
there will be no gain at using DL because all the time spent
would be enough to solve the task without DL. On the other
hand, if the transfer occurs too soon, the “boostrap effect” will
be negligible as the agent will not have the time to extract
interesting solutions from the source task.

Accurately answering this question a priori seems impos-
sible and highly task dependent. In this work, we use a
heuristic solution inspired by intrinsic motivation [27]. When
the increase in performance stagnates during the source task,
the agent triggers a transfer by modifying the weights of
developmental layers according to a given development plan.
Formally, the agent triggers a transfer when :

sm∑
i=0

Ĵ(πt−i)−
sm∑
i=0

Ĵ(πt−i−wi) ≤ 0,

where t is the current episode, Ĵ(π) is an evaluation of the
policy π, sm is a smoothing parameter and wi is a time
window parameter. Depending on the task and the actor-
critic algorithm, those parameters should be tuned carefully.
Moreover, actor-critic algorithms rely on exploration during
the training phase, so the agent can only access a sampling
evaluation Ĵ of the true performance J .

V. EXPERIMENTAL SETUP

The experiments are designed to show that adding our
developmental layer (DL) to the neural network architecture
of DDPG and NFAC could increase the learning speed or the
policy quality on two high-dimensional environments.



A. Environments

The experiments are performed on environments with con-
tinuous state and action spaces in a time-discretized simu-
lation. The first environment is Half-Cheetah (6 degrees of
freedom) [28] and the second is Humanoid (17 degrees of
freedom) [29].

In Half-Cheetah, the reward function is R(s, a) = vx(s)−
0.1 · ‖a‖22 − 1000 · g(s) where vx(s) is the speed of the
cheetah on x axis and g(s) is 1 if the head touches the ground
and 0 otherwise. Absorbing states correspond to S∗ = {s ∈
S | g(s) = 1}. The cheetah must move as fast as possible
interacting with an immobile ground in a 2D plane while being
subjected to realistic physical constraints.

In Humanoid, the reward function is R(s, a) = 3+5vx(s)−
0.05 · ‖a‖22 where vx(s) is the speed of the humanoid on the
x-axis. It also has to move forward but without falling. States
become absorbing if the height of the torso is lower than 0.8
or higher than 1.7.

States are composed of the joint positions/angles and joint
position/angle velocities. Dimensions of S × A are 18 × 6
(Half-Cheetah), and 45×17 (Humanoid). The full description
(body, mass, friction, inertia, ...) and source code of those
environments can be found at https://github.com/matthieu637/
ddrl.

knees

ankles

elbows

shoulders

knees

Fig. 4. Illustration of Half Cheetah (left) and Humanoid (right) environments.
The labeled limbs will potentially be controlled by π+ during a source task.

B. Grid Search

In order to select a good development plan (i.e. in what
order the dimensions of the sensorimotor space are taken into
account by switching their DL ϑ from 0 to 1), we performed
an offline grid search over several possibilities. This is more
a proof of concept than a general methodology that should be
used. We follow a general guideline for the two environments:
the agent cannot control a limb that it does not yet perceive.
For instance, the action dimension of controlling a knee is
never accessible before the respective state dimension.

For Half Cheetah, the selected limbs for the grid search are
the ankles and the knees. An additional constraint links the
two ankles and the two knees so they cannot be developed at
a different time. For the humanoid, the selected limbs of the
grid search are the elbows, shoulders and the knees.

C. Learning algorithms

For both actor-critic algorithms, the optimization method
used to update the weights was Adam algorithm [30]. For
NFAC, the exploration strategy is a truncated Gaussian law
inside [−1; 1] with an independent variance σ = 10−1. For
DDPG, the exploration strategy is an Ornstein-Uhlenbeck
process with σ = 10−3, θ = 0.15 and dt = 10−2. During
the testing phase (displayed in the following curves) this
noise is disabled. The discount factor is fixed to γ = 0.99
for both algorithms. The source code of every algorithm and
hyperparameter used can be found at http://drl.gforge.inria.fr/.

D. Neural networks representation

Policy and value function networks are composed of 2
hidden layers (inner product) of 50, 25 units. Developmental
layers are added in front (for the state) and back (for the action)
of policy networks and in front of critic networks (see Fig-
ure 3). For the critic network of DDPG, actions and states are
given as input at the same level. Each weight is initialized from
a normal distribution N (0, 0.01). It is important to initialize
the weights at a small value so when the transfer occurs the
solution is not too much altered. The last layer of the critic
and actor networks is linear. The developmental layers share
parameters between critic and actor. Batch normalization is
only applied to the first layer of the actor for both algorithms.

E. Results

For each experimental setup without DL, we optimize every
hyperparameter through another grid search for each algorithm
on each environment. Then we used the same hyperparameters
when DL are added. Each experiment is been run 60 times for
statistical results. In figures 5 and 6, only the best developmen-
tal plans are shown (selected according to the best median of
J over testing phase). The policy π+ that controls the disabled
action dimension is constant and independent of the state. It
simply applies a constant torque that doesn’t disrupt too much
the task.

In figures 5 and 6, we observe that, before any transfer, the
performance of algorithms with DL is always better than the
performance without DL. This validates our assumption that
learning first in a smaller space simplifies ulterior learning.
After the transfer, both algorithms are able to take advantage
of the previous learned policies.

In figures 5 and 6, we see that EWC does not always
lead to significant improvements. EWC requires optimizing
several additional hyperparameters (β, η and a decay for FIM
estimation). Besides, a proper way to choose the θsource in-
volved in the computation of important weights would require
to periodically stop the exploratory behavior of the algorithm
and run several (costly) simulations to identify the best current
parameters of the actor.

VI. DISCUSSION AND RELATED WORK

Planning a good sensorimotor growth is highly dependent
on the problem to solve. This is where a designer can provide
a priori knowledge by giving either constraints or the full
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Fig. 5. Median and quartiles of the best registered performance during the testing phase with NFAC(λ) and DDPG on Half-Cheetah and Humanoid environments.
When the DL are added, EWC is used to help the transfer. The averages of the transfer moments are displayed vertically (dashed orange).
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When the DL are added, only the “initialization” method is used to transfer. The averages of the transfer moments are displayed vertically (dashed orange).

development order. In further works, it should be interesting
to design heuristics to find and try different developmental
plan online.

The environments we tried here are probably not the best
suited to show how DL can improve the learning, but they are
part of the usual benchmarks in deep RL and easily accessible
(especially since our release of an open source version). We
think that alternative environments where disabled dimensions
are not crucial in the first stage might benefit more from
our approach (for instance in a ball collecting task [31]).
Sensorimotor space enlargement could also be more interesting
in environments where the reward function is more sparse but
still defined in the source task.

The developmental layer we propose is very generic because
its parameters can be controlled in several ways. They can
be updated online if one wants to simulate a morphological
development over one episode. It allows the agent to control
what is to be perceived on the environment and eventually
facilitates a return to the source task for a while. A stochastic
activation of DL could simulate a continuous transfer instead
of the current instantaneous switching of tasks. DL may also

be inserted between hidden layers to permit a higher level
growth of the parameter space. Sensorimotor enlargement
shares similarities with pre-training [32] in deep learning in
the sense that it initializes the weights of the model to a
“valid” and interesting solution. However, where unsupervised
pre-training is done blindly, our sensorimotor enlargement
approach seems guided because it relies on the reward function
to find this initial solution.

Several previous works deal with improving the neural
network representation within reinforcement learning. Pro-
gressive neural networks [33] add new sets of layers connected
to the previous network for each new target task, showing a
performance gain in the transfer and a way to prevent forget-
ting. Even though the work on progressive neural networks did
not involve a change in input or output spaces and lead to re-
ally heavy computations, our sensorimotor space enlargement
could use the same method in replacement of DL. PathNet
[34] evolves the structure of the neural networks online with a
genetic algorithm to take advantage of the previous knowledge
learned in other tasks by avoiding catastrophic forgetting.



VII. CONCLUSIONS AND FURTHER WORK

To facilitate reinforcement learning in high-dimensional
continuous domains, we introduced the developmental
paradigm of sensorimotor space enlargement and proposed a
simple and non-invasive solution based on a new neural layer:
the developmental layer. We proved the validity of the concept
by showing that simply adding developmental layers to the
neural networks could help the agent to learn better policies
faster on two high-dimensional continuous environments with
different algorithms.

We relied on four hypotheses: the global task must be
decomposable so that the source task still make sense when
input or output dimensions are removed. The designer must
provide a default policy for the dimensions that are not
controlled during the source task. The reward function must
contain information on the source task, otherwise the solution
transferred will act randomly in the full problem. And finally,
the initial values of parameters that were not present in the
source task should not disrupt too much the solution found.

An interesting perspective would be for the agent to auto-
matically adapt its development plan (i.e what is the next sen-
sorimotor dimension to consider). It would also be interesting
to complement our approach with other curriculum learning
techniques (reward shaping, task simplification, etc.).
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