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On the nature of the Swiss cheese in dimension 3.

Amine Asselah ∗ Bruno Schapira†

Abstract

We study scenarii linked with the Swiss cheese picture in dimension three obtained when
two random walks are forced to meet often, or when one random walk is forced to squeeze its
range. In the case of two random walks, we show that they most likely meet in a region of
optimal density. In the case of one random walk, we show that a small range is reached by
a strategy uniform in time. Both results rely on an original inequality estimating the cost of
visiting sparse sites, and in the case of one random walk on the precise Large Deviation Principle
of van den Berg, Bolthausen and den Hollander [BBH01], including their sharp estimates of the
rate functions in the neighborhood of the origin.

Keywords and phrases. Random Walk, Large Deviations, Range.
MSC 2010 subject classifications. Primary 60F10, 60G50.

1 Introduction.

In this note, we are concerned with describing the geometry of the range of a random walk on
Z3, when forced to having a small volume, deviating from its mean by a small fraction of it, or to
intersecting often the range of another independent random walk.

These issues were raised in two landmark papers of van den Berg, Bolthausen, and den Hollander
(referred to as BBH in the sequel) written two decades ago [BBH01] [BBH04]. Both papers dealt
with the continuous counterpart of the range of a random walk, the Wiener sausage. They showed
a Large Deviation Principle, in two related contexts: (i) in [BBH01] for the downward deviation of
the volume of the sausage, (ii) in [BBH04] for the upward deviation of the volume of the intersection
of two independent sausages. They also expressed the rate function with a variational formula.

Their sharp asymptotics are followed with a heuristic description of the optimal scenario dubbed
the Swiss cheese picture where, in case (i), the Wiener sausage covers only part of the space leaving
random holes whose sizes are of order 1 and whose density varies on space scale t1/d, and in case (ii)
both Wiener sausages form apparently independent Swiss cheeses. However, they acknowledge that
to show that conditioned on the deviation, the sausages actually follow the Swiss cheese strategy
requires substantial extra work.

Remarkably the Swiss cheese heuristic also highlight a crucial difference between dimension 3 and
dimensions 5 and higher. Indeed, in dimension three the typical scenario is time homogeneous, in
the sense that the Wiener sausage considered up to time t, would spend all its time localized in
a region of typical scale (t/ε)1/3, filling a fraction of order ε of every volume element, when the
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deviation of the volume occurs by a fraction ε of the mean. On the other hand in dimension 5 and
higher the typical scenario would be time-inhomogeneous: the Wiener sausage would localize in a
smaller region of space with scale of order (εt)1/d, only during a fraction ε of its time, and therefore
would produce a localization region where the density is of order one, no matter how small ε is.

Recently Sznitman [S17] suggested that the Swiss cheese could be described in terms of so-called
tilted Random Interlacements. In the same time, in [AS17] we obtained a first result in the discrete
setting, which expressed the folding of the range of a random walk in terms of its capacity. More
precisely we showed that a positive fraction of the path, considered up to some time n, was spent
in a subset having a volume of order n and a capacity of order n1−2/d, that is to say of the same
order as the capacity of a ball with volume n.

In this note, we present a simple and powerful estimate on the probability a random walk visits
sites which are far from each others, see Proposition 1.3 below. We then deduce two applications
in dimension three that we state vaguely as follows.

• One random walk, when forced to have a small range, folds in a time-homogeneous way.

• Two random walks, when forced to meet often, do so in a region of optimal density.

To state our results more precisely, we introduce some notation. We denote by {Sn}n≥0 the simple
random walk on Zd (in most of the paper d = 3), and by R(I) := {Sn}n∈I , its range in a time
window I ⊂ N, which we simply write as Rn, when I is the interval In := {0, . . . , n}. We let
Q(x, r) := (x+ [−r, r[d)∩Zd, be the cube of side length 2r, and then define regions of high density
as follows. First we define the (random) set of centers, depending on a density ρ, a scale r, and a
time window I as:

C(ρ, r, I) := {x ∈ 2rZd : |R(I) ∩Q(x, r)| ≥ ρ · |Q(x, r)|},

and then the corresponding region

V(ρ, r, I) :=
⋃

x∈C(ρ,r,I)

Q(x, r),

which we simply write Vn(ρ, r), when I = In. Thus, R(I) ∩ V(ρ, r, I) is the set of visited sites
around which the range has density, on a scale r, above ρ in the time window I.

Our first result concerns the problem of forcing a single random walk having a small range. For
ε ∈ (0, 1), we denote by Qε

n the law of the random walk conditionally on the event {|Rn|−E[|Rn|] ≤
−εn}.

Theorem 1.1. Assume d = 3. There exist positive constants β, K0 and ε0, such that for any
ε ∈ (0, ε0), and any 1 ≤ r ≤ ε5/6n1/3,

lim
n→∞

Qε
n

[
|R(I) ∩R(Ic) ∩ Vn(βε, r)| ≥ ε

8
|I|, for all intervals I ⊆ In, with |I| = bK0εnc

]
= 1.

This result expresses the fact that under Qε
n, in any time interval of length of order εn, the random

walk intersects the other part of its range a fraction ε of its time, which is in agreement with the
intuitive idea that, if during some time interval, the walk moves in a region with density of visited
sites of order ε, it should intersect it a fraction ε of its time. Note that it brings complementary
information to the results obtained in [AS17], where it was shown that for some positive constants
α, β, C, and ε0 ∈ (0, 1), for any ε ∈ (0, ε0), and any Cε−5/9n2/9 log n ≤ r ≤ 1

C

√
εn1/3,

lim
n→∞

Qε
n

[
∃V ⊆ Vn(βε, r) : |V ∩ Rn| ≥ αn, and cap(V) ≤ C(

n

ε
)1/3

]
= 1, (1.1)
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with cap(Λ) being the capacity of a finite set Λ ⊂ Zd (see for instance [LL10] for a definition).
This is in a sense stronger than the result of Theorem 1.1, which only gives (by summation over
disjoint intervals) that with high Qε

n-probability, |Rn ∩ Vn(βε, r)| ≥ 1
8εn. On the other hand (1.1)

says nothing on the distribution of the times when the random walk visits the sets Vn(βε, r), while
Theorem 1.1 shows that they are in a sense uniformly distributed. Both results are proved using
different techniques: while (1.1) was obtained by using only elementary arguments, Theorem 1.1
relies on the sharp and intricate results of [BBH01] (which have been obtained in the discrete setting
by Phetpradap in his thesis [Phet11]).

Our second result concerns the problem of intersection of two independent ranges. For n ≥ 1, and
ρ ∈ (0, 1), we denote by Q̃ρ

n the law of two independent ranges Rn and R̃n, conditionally on the
event {|Rn ∩ R̃n| > ρn}.

Theorem 1.2. Assume d = 3. There exist positive constants c and κ, such that for any n ≥ 1,
ρ ∈ (0, 1), δ ∈ (0, 1), and r ≤ cδ2/3(ρn)1/3,

lim
n→∞

Q̃ρ
n

[
|Rn ∩ R̃n ∩ Vn(δρ, r)| > (1− κδ) ρn

]
= 1. (1.2)

Recall that the heuristic picture is that as ρ goes to zero, under the law Q̃ρ
n, both random walks

should localize in a region of typical diameter (n/ρ)1/3, during their whole time-period. Thus, the
occupation density in the localization region is expected to be of order ρ, and (1.2) provides a
precise statement of this picture. Let us stress that unlike Theorem 1.1, the proof of this second
result does not rely on BBH’s fine Large Deviation Principle, but only on relatively soft arguments.

Our main technical tool for proving both Theorems 1.1 and 1.2 is the following proposition, which
allows us to estimate visits in a region of low density at a given space scale r.

Proposition 1.3. Assume that Λ is a subset of Zd with the following property. For some ρ ∈ (0, 1),
and r ≥ 1,

|Λ ∩Q(x, r)| ≤ ρ · |Q(x, r)|, for all x ∈ 2rZd. (1.3)

There is a constant κ > 1 independent of r, ρ, and Λ, such that for any n ≥ ρ
2
d
−1r2, and t ≥ κρn,

P [|Rn ∩ Λ| ≥ t] ≤ exp
(
− ρ1−

2
d

t

2r2
). (1.4)

Note that in (1.4) the smaller is the scale the smaller is the probability. Note also that this result
holds in any dimension d ≥ 3.

Now some remarks on the limitation of our results are in order. Let us concentrate on Theorem 1.1
which is our main result. First the size of the time-window is constrained by the degree of precision
in BBH’s asymptotics. The fact that one can only consider windows of size order εn, and not say
order εKn, for some K > 1, is related to the asymptotic of the rate function in the neighborhood of
the origin, see (2.3) below. From [BBH01] one knows the first order term in dimension 3. However,
pushing further the precision of this asymptotic would allow to consider higher exponents K. On
the other hand it would be even more interesting to allow time windows of smaller size, say of
polynomial order nκ, with κ ∈ (2/3, 1). Going below the exponent 2/3 does not seem reasonable,
as the natural belief is that strands of the path of length n2/3 should typically move freely, and
might visit from time to time regions with very low occupation density. Thus, we believe that a
result in the same vein as Theorem 1.1 should hold for exponents κ ∈ (2/3, 1). One would need
however a much better understanding of the speed of convergence in the Large Deviation Principle,
see (2.2) below.
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Similarly, one could ask whether our proof could show a kind of time inhomogeneity in dimension
5 and higher. However, a problem for this is the following. Given two small time windows (say of
order εn), one would like to argue that the walk cannot visit regions with high occupation density
in both, unless these two time windows were adjacent. However, even if they are not, the cost for
the walk to come back at the origin at the beginning of each of them is only polynomially small,
which is almost invisible when compared to the (stretched) exponentially small cost of the large
deviations. Therefore obtaining such result seems out of reach at the moment.

Let us sketch the proof of Theorem 1.1. The first step, which reveals also the link between [BBH01]
and [BBH04] is to show that {|Rn| − E[|Rn|] < −εn} implies large mutual intersections {|R(I) ∩
R(Ic)| > βε|I|} for some constant β as soon as the interval I ⊂ [0, n] is large enough. This requires
to show a LDP on the same precision as [BBH01] for R(Ic), where Ic typically consists of two
subintervals: this step presents some subtleties, which we deal with by wrapping parts of the two
trajectories, and use that the intersection essentially increases under such operation. Then one falls
back on an estimate similar to Theorem 1.2.

The rest of the paper is organized as follows. In Section 2 we gather useful results on the range:
BBH’s results, as well as the upward large deviation principle of Hamana and Kesten [HK01], and
estimates on probability that the walk covers a fixed region with low density for a long time. We
then prove Proposition 1.3 and Theorem 1.2. In Section 3 we prove an extension of BBH’s estimate
when one considers two independent walks starting from different positions. The proof of Theorem
1.1 is concluded in Section 4.

2 Visiting Sparse Regions

In this section, we prove our main tool, Proposition 1.3, and then Theorem 1.2, after we recall well
known results.

2.1 Preliminaries

Dvoretzky and Erdós [DE51] established that there exists a constant κd > 0, such that almost
surely and in L1,

lim
n→∞

|Rn|
n

= κd.

In addition, one has

|E[|Rn|]− κdn| =


O(
√
n) when d = 3

O(log n) when d = 4
O(1) when d ≥ 5.

(2.1)

Precise asymptotic of the variance and a Central Limit Theorem are obtained by Jain and Orey
[JO69] in dimensions d ≥ 5, and by Jain and Pruitt [JP71] in dimensions d ≥ 3.

The analogue of the LDP of [BBH01] has been established in the discrete setting by Phetpradap
in his thesis [Phet11], and reads as follows: there exists a function Id, such that for any ε ∈ (0, κd),

lim
n→∞

1

n1−
2
d

logP [|Rn| − E[|Rn|] ≤ −εn] = −Id(ε). (2.2)

Moreover, there exist positive constants C, µd and νd, such that for ε ∈ (0, νd),

µ3ε
2/3

µ4
√
ε

}
≤ Id(ε) ≤

{
µ3ε

2/3(1 + Cε) when d = 3

µ4
√
ε(1 + Cε1/3) when d = 4,

(2.3)
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and if d ≥ 5, Id(ε) = µdε
1− 2

d . These results were first obtained in [BBH01] for the Wiener sausage:
the lower bounds are given by their Theorem 4 (ii) and Theorem 5 (iii), respectively for dimension
3, 4, and for dimension 5 and higher (note that their constants µd differs from ours by a universal
constant, see also [Phet11] for details). The upper bound in dimension 5 and higher is also provided
by their Theorem 5 (iii). The upper bound in dimension three and four is obtained in the course
of the proof of Theorem 4 (ii), see their equations (5.73), (5.81) and (5.82). Note that, as they use
Donsker-Varadhan’s large deviation theory, their rate functions Id are given by variational formulas.

Now a basic fact we need is an estimate of the variance of |Rn ∩ Λ| uniform on Λ.

Lemma 2.1. There exists a constant C > 0, such that for any positive integer n, and Λ ⊂ Zd,

Var(|Rn ∩ Λ|) ≤ Cn · log2 n. (2.4)

It is important to stress that C is independent of Λ and n. This lemma is obtained using the same
argument as in [LG86, Lemma 6.2].

Upward large deviations are obtained by Hamana and Kesten [HK01]. Their result implies that
there exists a positive function Jd, such that for ε ∈ (0, 1− κd),

lim
n→∞

1

n
logP (|Rn| − E[|Rn|] ≥ εn) = −Jd(ε). (2.5)

Finally, an elementary fact we shall need is the following (see for instance Lemma 2.2 in [AS17]).

Lemma 2.2. There exists a constant C > 0, such that for any ρ ∈ (0, 1), r ≥ 1, and Λ ⊂ Zd,
satisfying (1.3) one has for all n ≥ 1,

E[|Rn ∩ Λ|] ≤ C(ρ2/dr2 + ρn).

2.2 Proof of Proposition 1.3

Let T := br2/ρ1−
2
d c, and Rj := |R[jT, jT + T ] ∩ Λ|. Note first that

|Rn ∩ Λ| ≤
bn/T c+1∑
j=0

Rj . (2.6)

Now, consider the martingale (M`)`≥0, defined by

M` :=
∑̀
j=0

(
Rj − E [Rj | FjT ]

)
.

By choosing κ ≥ 8C, with C as in Lemma 2.2, we deduce from this Lemma, that for any t ≥ κρn,
and ρn ≥ ρ2/dr2 that

bn/T c+1∑
j=0

E [Rj | FjT ] ≤ t/2.

Hence, using (2.6) we get

P [|Rn ∩ Λ| ≥ t] ≤ P
[
Mbk/T c+1 ≥ t/2

]
.

Moreover, the increments of the martingale (M`)`≥0 are bounded by T , and by (2.4) their condi-
tional variance is O(T log2 T ) (uniformly in Λ). Thus, McDiarmid’s concentration inequality (see
Theorem 6.1 in [CL06]), gives

P
[
Mbn/T c+1 ≥ t/2

]
≤ exp(− t

2T
),

by taking larger κ if necessary. This proves the desired result.
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2.3 Proof of Theorem 1.2

Fix ρ ∈ (0, 1) and δ ∈ (0, 1). We proved in [AS17] a lower bound for visiting a set of density ρ
in dimension three: Proposition 4.1 of [AS17] indeed establishes that for some positive constants c
and c′,

P
[
|Rn ∩ Λ| > ρ|Λ|

]
≥ exp(−c′ρ2/3n1/3), for any Λ ⊂ B(0, c(n/ρ)1/3).

By forcing one of the two walks to stay inside the desired ball, we deduced that for some positive
constant c0 we have the following rough bound on the intersection of two random walks:

P
[
|Rn ∩ R̃n| > ρn

]
≥ exp(−c0 ρ2/3n1/3). (2.7)

Now, the (random) set Rn ∩Vcn(δρ, r) satisfies the hypothesis (1.3) of Proposition 1.3 with density
δρ, thus giving with the constant κ of this proposition

P
[
|Rn ∩ R̃n ∩ Vcn(δρ, r)| > κδρn

]
≤ exp

(
− (δρ)1/3

κ δρn

2r2
)
.

The proof follows after we observe that this probability becomes negligible, compared to the one
in (2.7), if we choose r, satisfying

r ≤
( κ

2c0

)1/2
δ2/3(ρn)1/3.

3 Large deviation estimate for two random walks

In this section we prove an extension of (2.2), when one considers two independent random walks
starting from (possibly) different positions. We show that the upper bound in (2.2) still holds,
up to a negligible factor, uniformly over all possible starting positions. While this result could
presumably be also obtained by following carefully the proof of [BBH01], we have preferred to
follow here an alternative way and deduce it directly from (2.2), using no heavy machinery. We
state the result for dimension three only, since this is the case of interest for us here, but note that
a similar result could be proved in any dimension d ≥ 3, using exactly the same proof.

For x ∈ Z3, we denote by P0,x the law of two independent random walks S and S̃ starting respec-

tively from the origin and x. We write R and R̃ for their ranges. Furthermore, for an integrable
random variable X, we set X := X − E[X], and for x ∈ Z3, we denote by ‖x‖ its Euclidean norm.

Proposition 3.1. Assume that d = 3. There exists ε0 > 0, such that for any ε ∈ (0, ε0), for n
large enough, and k ≤ n,

sup
‖x‖≤n2/3

P0,x

[
|Rk ∪ R̃n−k| ≤ −εn

]
≤ exp

(
−I3(

ε

1 + ε2
)n1/3

)
.

Proof. Set m := bε2nc. First using (2.2), we know that

lim
n→∞

1

n1/3
logP

(
|Rn+m| ≤ −ε(1− ε3)n

)
= −I3(

ε(1− ε3)
1 + ε2

)(1 + ε2)1/3.

Now consider x, with ‖x‖ ≤ ε5/2n2/3, and k ≤ n. Note that by (2.1), we get for ε > 0,

|R[0, n+m]| ≤ |R[0, k] ∪R[k +m,n+m]|+ |R[k, k +m] +O(
√
n).
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Therefore, at least for n large enough,

P
(
|Rn+m| ≤ −ε(1− ε3)n

)
≥ P

(
|Rk ∪R[k +m,n+m]| ≤ −εn, |R[k, k +m]| ≤ ε5n, Sk+m − Sk = x

)
≥ P0,x

(
|Rk ∪ R̃n−k| ≤ −εn

)
· P
(
|Rm| ≤ ε5n, Sm = x

)
,

using the Markov property and reversibility of the random walk for the last inequality.

Now using Hamana and Kesten bound (2.5), the local central limit theorem (see Theorem 2.3.11
in [LL10]), and that ‖x‖ ≤ ε5/2n2/3, we get that for some constant c > 0 (independent of x), and
for all n large enough,

P
(
|Rm| ≤ ε5n, Sm = x

)
≥ P(Sm = x)− P(|Rm| ≥ ε5n)

≥ exp(−cε3n1/3)− exp(−Jd(ε3)(1− ε)ε2n)

≥ 1

2
exp(−cε3n1/3).

Moreover, it follows from (2.3), that for ε small enough

I3(
ε(1− ε3)

1 + ε2
)(1 + ε2)1/3 − cε3 ≥ I3(

ε

1 + ε2
)(1 +

1

4
ε2).

Therefore, for ε small enough, and then for all n large enough,

sup
‖x‖≤ε5/2n2/3

P0,x

(
|Rk ∪ R̃n−k| ≤ −εn

)
≤ exp

(
−I3(

ε

1 + ε2
)(1 +

1

5
ε2)n1/3

)
. (3.1)

It remains to consider x satisfying ε5/2n2/3 ≤ ‖x‖ ≤ n2/3. Our strategy is to show that there exists
a constant ρ ∈ (0, 1), such that for any such x, the probability of the event

A := {|Rk ∪ R̃n−k| ≤ −εn}, (3.2)

under P0,x is bounded by the probability of the same event under P0,x′ , with x′ satisfying ‖x′‖ ≤
ρ‖x‖, up to some negligible error term. Applying this estimate at most order log(1/ε) times, and
using (3.1), the result obtains.

Fix x such that ε5/2n2/3 ≤ ‖x‖ ≤ n2/3, and assume, without loss of generality, that its largest
coordinate in absolute value is the first one, say x1, and that it is positive. In this case ‖x‖ ≥
x1 ≥ ‖x‖/

√
3. Recall next that we consider two random walks S and S̃, one starting from the

origin and running up to time k, and the other one starting from x and running up to time n− k.
For x1/3 ≤ y ≤ 2x1/3, consider the hyperplane Hy of vertices having first coordinate equal to

y. Denote by Ny the number of excursions out of Hy, made by one of the two walks S or S̃,
which hit the hyperplane Hy+[ε−10]. Note that one can order them by time of arrival, considering

first those made by S and then those made by S̃. Let N ′y be the number of excursions among

the first Ny ∧ (2ε3n1/3) previous ones, which spend a time at least ε−17 in the region between Hy
and Hy+[ε−10]. Note that for a single excursion, the probability to hit Hy+[ε−10] in less than ε−17

steps, is of order exp(−cε−3), for some constant c > 0. By independence between the first 2ε3n1/3

excursions, we deduce that

P0,x(N ′y ≤ ε3n1/3, Ny ≥ 2ε3n1/3) ≤ exp(−cn1/3), (3.3)

7



for some possibly smaller constant c > 0. On the other hand, let Ty be the cumulated total time

spent by S and S̃ in the region between Hy and Hy+[ε−10]. Observe that the number of levels y
between x1/3 and 2x1/3 which are integer multiples of [ε−10] is of order ε10x1/3, and that the latter
is (at least for ε small enough) larger than ε13n2/3. Thus, for at least one such y, one must have
both N ′y ≤ ε3n1/3 and Ty ≤ ε−13n1/3 (otherwise the total time spent in the region between the
hyperplanes Hx1/3 and H2x1/3 would exceed n). Using (3.3), we deduce that

P0,x

(
Ny ≥ 2ε3n1/3 or Ty ≥ ε−13n1/3, for all y ∈ {x1/3, . . . , 2x1/3}

)
≤ x1 exp(−cn1/3),

for some constant c > 0. Then as a consequence of the pigeonhole principle, there exists (a
deterministic) y0 ∈ {x1/3, . . . , 2x1/3}, such that

P0,x(Ny0 ≤ 2ε3n1/3, Ty0 ≤ ε−13n1/3,A) ≥ 1

x1
P0,x(A)− exp(−cn1/3),

with the event A as defined in (3.2).

Denote now by x′ the symmetric of x with respect to Hy0 . First observe that since x1 ≥ ‖x‖/
√

3,
and x1/3 ≤ y0 ≤ 2x1/3, there exists ρ ∈ (0, 1) (independent of x), such that ‖x′‖ ≤ ρ‖x‖. Next
recall that any excursion out ofHy0 and its symmetric with respect toHy0 have the same probability

to happen, and similarly for the first part of the trajectory of S̃, up to the hitting time, say τ , of
Hy0 , under the law P0,x′ . Moreover, by reflecting (with respect to Hy0) all the excursions out of Hy0
which hit Hy0+[ε−10], plus S̃[0, τ ], one can increase the size of the range by at most Ty0 . Therefore,

P0,x′(Ny0 = 0, |Rk ∪ R̃n−k| ≤ −εn+ ε−13n1/3) ≥ 2−2ε
3n1/3

P0,x(Ny0 ≤ 2ε3n1/3, Ty0 ≤ ε−13n1/3,A).

Combining the last two displays we conclude that for n large enough,

P0,x(A) ≤ 24ε
3n1/3

P0,x′

(
|Rk ∪ R̃n−k| ≤ −εn+ ε−13n1/3

)
+ exp(−cn1/3),

for some (possibly smaller) constant c > 0. Repeating the same argument (5/2) log ε/(log ρ) times,
and using (3.1) and (2.3), we obtain the desired result.

4 Proof of Theorem 1.1

Let k ≤ ` ≤ n be given, satisfying ` − k = bK0ε nc, with K0 a constant to be fixed later. Write
I = {k, . . . , `}. Using that

|Rn| = |R(I)|+ |R(Ic)| − |R(I) ∩R(Ic)|,
we have, with ν := 1− K0ε

3 ,

P(|Rn| ≤ −εn) ≤ P(|R(I)|+ |R(Ic)| ≤ −νεn) + P(|R(I) ∩R(Ic)| ≥ K0

3
ε2n). (4.1)

We start by showing that the first probability on the right-hand side is negligible (when compared
to the probability on the left-hand side). For this let N = bε−2c, and for i = 0, . . . , N , let αi := iε2.
Then, note that for n large enough,

P(|R(I)|+ |R(Ic)| ≤ −νεn) ≤
N∑
i=0

P
(
|R(I)| ≤ −ναiεn, |R(Ic)| ≤ −ν(1− αi+1)εn

)
+ P

(
|R(Ic)| ≤ −νεn

)
≤

N∑
i=0

∑
‖x‖≤n2/3

P
(
|R(I)| ≤ −ναiεn, |R(Ic)| ≤ −ν(1− αi+1)εn, S` − Sk = x

)
+ P

(
|R(Ic)| ≤ −νεn

)
+O(exp(−cn1/3)), (4.2)
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using Chernoff’s bound for the last inequality (see for instance Theorem 3.1 in [CL06]). Now
applying the Markov property and using Proposition 3.1 and (2.2), we get that for any i ≤ N ,
there exists ni ≥ 1, such that for all n ≥ ni,∑

‖x‖≤n2/3

P
(
|R(I)| ≤ −ναiεn, |R(Ic)| ≤ −ν(1− αi+1)εn, S` − Sk = x

)
≤

∑
‖x‖≤n2/3

P
(
|R(I)| ≤ −ναiεn, S` − Sk = x

)
· exp

(
−I3(

εi
1 + ε2i

)(1−K0ε)
1/3n1/3

)

≤ exp

(
−I3(ε̃i)(1− ε2)(K0εn)1/3 − I3(

εi
1 + ε2i

)(1−K0ε)
1/3n1/3

)
, (4.3)

with

εi := ν
(1− αi+1)ε

1−K0ε
, and ε̃i :=

ναi
K0

.

Note that by choosing larger ni if necessary, one can also assume that (4.2) holds for n ≥ ni. Note
furthermore that by (2.3), the first term in the exponential in (4.3) is already larger than 2I3(ε)n

1/3,
when αi ≥ K0

√
ε, at least provided K0 is large enough and ε small enough. Thus in the following

one can assume that αi ≤ K0
√
ε. We will also assume that ε is small enough, so that K0

√
ε < 1/2.

Then, using in particular that αi+1 = αi + ε2, we get (recall that ν = 1− K0ε
3 )

I3(ε̃i)(1− ε2)(K0ε)
1/3 + I3(

εi
1 + ε2i

)(1−K0ε)
1/3

≥ µ3(1−
K0ε

3
)2/3

(
α
2/3
i

K
1/3
0 ε1/3

+
(1− αi)2/3

(1−K0ε)1/3

)
ε2/3 −O(ε2).

Now we claim that the bound in the parenthesis above reaches its infimum when i = 0, or equiva-
lently when αi = 0. To see this, it suffices to consider the variations of the function f defined for

u ∈ (0, 1) by f(u) = c
1/3
1 u2/3 +c

1/3
2 (1−u)2/3, with c1 = (K0ε)

−1, and c2 = (1−K0ε)
−1. A straight-

forward computation shows that f ′(u) > 0 on (0, u0), with u0 = 1 −K0ε. Since we assumed that
u0 > 1/2 > K0

√
ε, this proves our claim. By taking K0 = 100C, with C the constant appearing in

the upper bound of I3 in (2.3), one deduces that for ε small enough,

I3(ε̃i)(1− ε2)(K0ε)
1/3 + I3(

εi
1 + ε2i

)(1−K0ε)
1/3 ≥ µ3(1 +

K0ε

10
)ε2/3 −O(ε2) ≥ I3(ε)(1 +

K0ε

20
).

As a consequence, letting N(ε) := maxi ni, we get that for ε small enough, for all n ≥ N(ε),

N∑
i=0

P
(
|R(I)| ≤ −ναiεn, |R(Ic)| ≤ −ν(1− αi+1)εn

)
≤ exp(−I3(ε)(1 +

K0ε

20
)n1/3).

One can obtain similarly the same bound for the term P(|R(Ic)| ≤ −νεn), also for all n ≥ N(ε),
possibly by taking a larger constant N(ε) if necessary. Finally using again (2.2), we get that for all
ε small enough,

P(|R(I)|+ |R(Ic)| ≤ −νεn) = o

(
1

n
P(|Rn| ≤ −εn)

)
. (4.4)

It remains to estimate the second term in the right-hand side of (4.1). This is similar to the proof
of Theorem 1.2. Assume given 1 ≤ r ≤ ε5/6n1/3, and β > 0, whose value will be made more precise
in a moment. To simplify notation, write R1 = R[0, k] and R2 := R[`, n]. Next set

Λ1 = ∪x∈C1Q(x, r), and Λ2 = ∪x∈C2Q(x, r),

9



with

C1 := {x ∈ 2rZd : |Q(x, r) ∩R1| ≥ βεrd}, and C2 := {x ∈ 2rZd : |Q(x, r) ∩R2| ≥ βεrd}.

Since R(Ic) = R1 ∪R2, one has

|R(I) ∩R(Ic)| ≤ |R(I) ∩R1|+ |R(I) ∩R2|,

and therefore,

P(|R(I) ∩R(Ic)| ≥ K0

3
ε2n) ≤ P(|R(I) ∩R1| ≥

K0

6
ε2n) + P(|R(I) ∩R2| ≥

K0

6
ε2n).

Both terms on the right-hand side are treated similarly. We first fix β < 1/(24κ), with κ the constant
appearing in statement of Lemma 1.3. Then applying Lemma 1.3 with ρ = βε, n = bK0εnc, and
t = K0

24 ε
2n, we get (using also the Markov property at time k),

P(|R(I) ∩R1 ∩ Λc1| ≥
K0

24
ε2n) ≤ exp(−(βε)1/3

K0ε
2n

48r2
)

≤ exp(−β
1/3K0

48
ε2/3n1/3),

using that r ≤ ε5/6n1/3, for the last inequality. By taking larger K0 if necessary, one can ensure
that this bound is o((1/n) · P(|Rn| ≤ −εn)). This way we obtain

P(|R(I) ∩R1 ∩ Λc1| ∨ |R(I) ∩R2 ∩ Λc2| ≥
K0

24
ε2n) = o

(
1

n
P(|Rn| ≤ −εn)

)
. (4.5)

Coming back to (4.1), dividing both sides of the inequality by the term on the left-hand side, and
using (4.4) and (4.5), we get that for all ε small enough,

Qε
n

(
|R(I) ∩ Λ1 ∩R1| ≥

K0

8
ε2n, or |R(I) ∩ Λ2 ∩R2| ≥

K0

8
ε2n

)
≥ 1− o

(
1

n

)
.

Since both

Λ1 ∩R1 ⊆ Vn(βε, r) ∩R(Ic), and Λ2 ∩R2 ⊆ Vn(βε, r) ∩R(Ic),

we get

Qε
n

(
|R(I) ∩R(Ic) ∩ Vn(βε, r)| ≥ K0

8
ε2n

)
≥ 1− o

(
1

n

)
.

The proof of Theorem 1.1 follows by a union bound, since there are at most n intervals I of fixed
length in In. �
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