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A TOPOLOGICAL OBSTRUCTION TO THE CONTROLLABILITY OF

NONLINEAR WAVE EQUATIONS WITH BILINEAR CONTROL TERM

THOMAS CHAMBRION AND LAURENT THOMANN

Abstract. In this paper we prove that the Ball-Marsden-Slemrod controllability obstruction also
holds for nonlinear equations, with L

1 bilinear controls. We first show an abstract result and then
we apply it to nonlinear wave equations. The first application to the Sine-Gordon equation directly
follows from the abstract result, and the second application concerns the cubic wave/Klein-Gordon
equation and needs some additional work.
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1. Introduction and main result

1.1. Introduction. Evolution equations with a bilinear control term are often used to model the
dynamics of a system driven by an external field (for instance, a quantum system driven by an
electric field). In view of their importance, very few satisfactory description of the attainable set
of such systems are available (among the rare exceptions, see Beauchard [3] for the case of the
linear Schrödinger equation on a 1D compact domain or [4] for the linear wave equation on a 1D
compact domain). For an overview of controllability results of bilinear control systems, we refer to
Khapalov [9].

Roughly speaking, the attainable set for such systems does not coincide with the natural func-
tional space where the system is defined. An explanation came with a celebrated article of Ball,
Marsden and Slemrod [2] who proved that the attainable set of linear dynamics with a bounded
bilinear control using Lr, r > 1 real valued controls, is contained in a countable union of compact
sets. This result has been adapted to the case of the Schrödinger equation by Turinici [11]. For
partial differential equations posed in an infinite dimensional Banach space, this represents a strong
topological obstruction to the controllability (since the attainable set has hence empty interior by
the Baire theorem). The proof heavily relies on the reflectiveness of Lr, r > 1 and could not be
directly extended to L1 controls.

Boussäıd, Caponigro and Chambrion [6] recently extended this obstruction to the case of L1

(and even Radon measures) controls by considering Dyson expansion of the solution. We show here
that this technique can be adapted to the case of some nonlinear wave equations. This shows in
particular that the nonlinear term does not help to control the equation in its natural energy space.

We consider the following abstract control system

(1.1)

{
ψ′(t) = Aψ(t) + u(t)Bψ(t) +K(ψ(t)),

ψ(0) = ψ0 ∈ X ,
with real valued controls u : R → R and with the following assumptions

Assumption 1.1. The element (X , A,B,K) satisfies

(i) X is Banach space endowed with norm ‖ · ‖X .
(ii) A : D(A) → X is a linear operator with domain D(A) ⊂ X that generates a C0 semi-group

of bounded linear operators. We denote by ω ≥ 0 and M > 0 two numbers such that
‖etA‖L(X ,X ) ≤Meωt for every t ≥ 0.

(iii) B : X → X is a linear bounded operator.
(iv) K : X → X is k-Lipschitz-continuous (not necessarily linear), with k > 0.

In the sequel, the equation (1.1) is interpreted in its mild form, namely, we say that a function
ψ : [0, T ] → X is a solution of (1.1) if, for every t in [0, T ],

(1.2) ψ(t) = etAψ0 +

∫ t

0
u(s)e(t−s)ABψ(s)ds+

∫ t

0
e(t−s)AK(ψ(s))ds.

Equation (1.2) is often called the Duhamel formula.

1.2. Notations. Throughout the paper, for the sake of readability, we omit the range in the
notation of spaces of real-valued functions. For instance, if X is a space, Hk(X) denotes the set
of Hk regular real functions on X.

In a metric space X endowed with distance dX , we define the ball centered in x ∈ X with radius
r > 0 by BX(x, r) = {y ∈ X|dX (x, y) < r}. If X is a vector space endowed with norm ‖ · ‖X , the
distance associated with the norm is denoted dX : dX(x, y) = ‖x− y‖X , for every x, y in X.
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1.3. Main result. Under Assumption 1.1, one can show that equation (1.1) admits a global flow
Φu (see Propositions 2.2 and 2.3). Our main result concerning the control of (1.1) gives a description
of the attainable set and reads as follows

Theorem 1.2. Let (X , A,B,K) satisfy Assumption 1.1. Then, for every ψ0 in X , the attainable
set from ψ0 of (1.1) with controls u in L1([0,+∞)):

⋃

t≥0

⋃

u∈L1([0,t])

{
Φu(t)ψ0

}

is contained in a countable union of compact subsets of X .

This result gives a clear obstruction to the controllability of (1.1) in a general setting, since it
shows that the attainable set is meager in the sense of Baire. However, as noted by Beauchard
and Laurent in [5, Section 1.4.1], this result does not forbid exact controllability in a smaller space,
endowed with a stronger norm (for which the operator B is not continuous anymore). In this sense,
this obstruction to controllability may be seen as an unfortunate choice of the ambiant space.

The proof of Theorem 1.2 relies on the description of the solutions of (1.1) using series, called
Dyson expansion (see Section 2). This strategy has been successfully carried out in [6], and we
show here that it can also be applied to nonlinear problems. For more details on Dyson expansions,
we refer to [10, Theorem X.69 and equation (X.129)].

In the assumptions of the Theorem 1.2, the fact that K is Lipschitz is needed in order to ensure
the existence of a global flow of (1.1), but in the core of the proof of our result we only need that K
is continuous (see Proposition 2.6).

We give two explicit applications of Theorem 1.2 to nonlinear wave equations. We first give the
example of the Sine-Gordon equation, which exactly matches Assumption 1.1 and where the result
of Theorem 1.2 directly applies. Then, by the means of the 3-dimensional cubic Klein-Gordon
equation, we show that the hypothesis ”K is Lipschitz” can be relaxed. Actually, for the nonlinear
wave equation (see Section 3.2), the gain of derivative in the Duhamel formula allows to bound the
nonlinearity using Sobolev estimates, and the global existence of a flow can be obtained thanks to
energy estimates.

We are also able to obtain negative controllability results for the nonlinear Schrödinger equation,
and this will be treated in our forthcoming paper [7].

Remark 1.3. By rather simple modifications, the result of Theorem 1.2 can be extended to the
case of the equation

ψ′(t) = Aψ(t) +

n∑

j=1

uj(t)Bjψ(t) + α(t)K(ψ(t)),

with the same assumptions on the controls uj ∈ L1([0,+∞)) and where α ∈ L1([0,+∞)) is given.
Such models are relevant in some physical contexts (e.g. the Schrödinger equation with electric
and magnetic fields combined with coupling with the environment in the spirit of [8]), but we did
not write down the details in order to simplify the presentation.

2. Ball-Marsden-Slemrod obstructions for nonlinear equations

2.1. Dyson expansion of the solutions. Let T > 0 and u be given in L1([0, T ]). Define by
induction on p ≥ 0,

(2.1)





Y u
0,tψ0 = 0

Y u
p+1,tψ0 = etAψ0 +

∫ t

0
e(t−s)A

[
u(s)BY u

p,sψ0 +K(Y u
p,sψ0)

]
ds
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and Zu
p,tψ0 = Y u

p+1,tψ0 − Y u
p,tψ0.

We aim to show that the series (
∑

pZ
u
p,tψ0) converges. Therefore we need some quantitative

bounds, which are stated in the next result.

Proposition 2.1. For every j in N, every t > 0 and every u in L1([0,+∞)),

(2.2) ‖Zu
j,tψ‖X ≤

eωtM j+1
(
kt+ ‖B‖L(X ,X )

∫ t
0 |u(s)|ds

)j

j!
‖ψ‖X .

Proof. We proceed by induction on j ≥ 0. The inequality (2.2) for j = 0 follows from Assump-
tion 1.1(ii). Assume now that we have proved (2.2) for a given j. Then, since

‖Zu
j+1,tψ‖X ≤

∫ t

0
Meω(t−s)

(
k + |u(s)|‖B‖L(X ,X )

)
‖Zu

j,sψ‖Xds

≤ M j+2

j!
eωt

∫ t

0

(
k + |u(s)|‖B‖L(X ,X )

)(
ks+ ‖B‖L(X ,X )

∫ s

0
|u(τ)|dτ

)j
ds

≤ M j+2

(j + 1)!
eωt

(
kt+ ‖B‖L(X ,X )

∫ t

0
|u(s)|ds

)j+1
‖ψ‖X ,

which concludes the proof. �

From Proposition 2.1, for every t in [0, T ] and every ψ in X , the sum
∑

j Z
u
j,tψ converges in X .

We denote this sum by Y u
∞,tψ:

Y u
∞,tψ =

+∞∑

j=0

Zu
j,tψ.

Proposition 2.2. For every ψ in X , every T > 0 and every u in L1([0,+∞),R), the function
(t, ψ) 7→ Y u

∞,tψ is continuous from R× X to X .

Proof. This follows from the continuity of the functions (t, ψ) 7→ Zu
j,tψ for every j ≥ 0 and from

the convergence of
∑

j Z
u
j,tψ (locally uniform in t and ψ) from Proposition 2.1. �

Proposition 2.3. For every T ∈ [0,+∞), every u in L1([0, T ],R) and every ψ0 in X , t 7→ Y u
∞,tψ0

is the unique mild solution on [0, T ] of (1.1) taking value ψ0 at 0.

Proof. The mapping

F : C0([0, T ],X ) −→ C0([0, T ],X )(
t 7→ ψ(t)

)
7−→

(
t 7→ etAψ0 +

∫ t
0 e

(t−s)A [u(s)Bψ +K(ψ)] ds
)

is continuous for the norm L∞([0, T ],X ). By (2.1), t 7→ Y u
∞,tψ0 is a fixed point of F , hence a mild

solution on [0, T ] of (1.1) taking value ψ0 at 0.
Assume that t 7→ ψ1(t) and t 7→ ψ2(t) are two mild solutions on [0, T ] of (1.1) taking value ψ0

at 0. Define T ∗ = sup
t∈[0,T ]

{
t | ψ1(s) = ψ2(s), for almost every s ≤ t

}
. We will prove by contradiction

that T ∗ = T , that is, ψ1 = ψ2 almost everywhere. Assume that T ∗ < T . We chose t1 ∈ (T ∗, T ]
such that

Me(t1−T ∗)ω
(
k(t1 − T ∗) + ‖u‖L1([T ∗,t1],R)‖B‖L(X ,X )

)
:= C0 < 1.
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Then, for all T ∗ ≤ t2 ≤ t1

‖ψ2(t2)− ψ1(t2)‖X

=

∥∥∥∥
∫ t2

T ∗

u(s)e(t2−s)AB(ψ2(s)− ψ1(s))ds+

∫ t2

T ∗

e(t2−s)A
(
K(ψ2(s))−K(ψ1(s))

)
ds

∥∥∥∥
X

≤
∫ t2

T ∗

|u(s)|Me(t2−s)ω‖B‖L(X ,X )‖ψ2(s)− ψ1(s)‖Xds+
∫ t2

T ∗

Me(t2−s)ωk‖ψ2(s)− ψ1(s)‖Xds

≤ ‖ψ2 − ψ1‖L∞([T ∗,t1),X )

∫ t1

T ∗

(
k + |u(s)|‖B‖L(X ,X )

)
Me(t1−s)ωds

≤ C0‖ψ2 − ψ1‖L∞([T ∗,t1),X ),

therefore we deduce that

‖ψ2 − ψ1‖L∞([T ∗,t1),X ) ≤ C0‖ψ2 − ψ1‖L∞([T ∗,t1),X ),

which gives the desired contradiction. To achieve the proof, it remains to see that any mild solution
is continuous (since two continuous functions coincide as soon as they are equal almost everywhere).
Indeed, any mild solution solution of (1.1) is equal almost everywhere to Y u

∞, which is continuous
(Proposition 2.2), hence any mild solution of (1.1) is essentially bounded and then is continuous
by its definition (1.2). �

Definition 2.4. Let T > 0, u in L1([0,+∞),R) and ψ0 in X . In the following, we denote with
t 7→ Φu(t)ψ0 the (nonlinear) mapping associating the mild solution of system (1.1) with initial
condition ψ0 associated with control u in L1([0, T )).

We sum up the above results in the following

Proposition 2.5 (Dyson expansion of the solutions of (1.2)). Let t > 0, u in L1([0,+∞),R) and
ψ0 in X . Then

(2.3) Φu(t)ψ0 =
∞∑

j=0

Zu
j,t(ψ0).

2.2. A compactness result. Recall that Y u
j,tψ0 is defined in (2.1) and Zu

j,tψ0 = Y u
j+1,tψ0 − Y u

j,tψ0.

Proposition 2.6. For every j in N, T ≥ 0 and L ≥ 0, and ψ0 in X , the sets

ZT,L
j =

{
Zu
j,tψ0 | 0 ≤ t ≤ T, ‖u‖L1(0,T ) ≤ L

}
and YT,L

j =
{
Y u
j,tψ0 | 0 ≤ t ≤ T, ‖u‖L1(0,T ) ≤ L

}

are relatively compact in X .

Proof. We adapt the proof of [6] (valid for K = 0) to the general case of a continuous function K.
Since a finite sum of relatively compact sets is still relatively compact, it is enough to prove the

result for YT,L
j . We do the proof by induction on j ≥ 0.

For j = 0, the result is clear.

Assume that YT,L
j is relatively compact in X for some j ≥ 0. We aim to prove that YT,L

j+1 is

relatively compact in X as well. For this, we chose ε > 0 and we try to exhibit an ε-net of YT,L
j+1.

The mappings

G1 : [0, T ]× X −→ X
(s, ψ) 7−→ e(T−s)ABψ

and
G2 : [0, T ]× X −→ X

(s, ψ) 7−→ e(T−s)AK(ψ)

being continuous, the sets G1([0, T ] × YT,L
j ) and G2([0, T ] × YT,L

j ) are relatively compact as well.

Hence, there exists a finite family (xi)1≤i≤N such that, for ℓ = 1, 2,

Gℓ([0, T ]× YT,L
j ) ⊂

N⋃

i=1

BX

(
xi,

ε

4(L+ T )

)
.
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Let (ϕi)1≤i≤N be a partition of unity associated with the above covering of Gℓ([0, T ] × YT,L
j ),

ℓ = 1, 2. That is, functions satisfying 0 ≤ ϕi ≤ 1 and such that for every x in Gℓ([0, T ] × YT,L
j ),

N∑

i=1

ϕi(x) = 1 and
∥∥∥x−

N∑

i=1

ϕi(x)xi

∥∥∥
X
<

ε

2(L+ T )
.

Then, for every u in L1([0, T ],R) such that ‖u‖L1(0,T ) ≤ L,

∥∥∥
∫ t

0
u(s)e(t−s)A(BY u

j,sψ0)ds−
N∑

i=1

∫ t

0
u(s)ϕi

(
e(t−s)A(BY u

j,sψ0

)
xids

∥∥∥
X
≤ Lε

2(L+ T )
,

and

∥∥∥
∫ t

0
e(t−s)AK(Y u

j,sψ0)ds−
N∑

i=1

∫ t

0
ϕi(e

(t−s)AK(Y u
j,sψ0))xids

∥∥∥
X
≤ Tε

2(L+ T )
.

Now we use that the compact sets
∑N

i=1[0, L]xi and
∑N

i=1[0, T ]xi admit a ε/4-net (yi)1≤i≤N2 , and

thanks to the previous lines, we get YT,L
j+1 ⊂

N2⋃

i=1

BX (yi, ε), which concludes the proof. �

Remark 2.7. In the proof of Proposition 2.6, we only used the continuity of K. Actually, in this
paper, we assume that K is Lispschitz continuous in order to ensure the global existence of a flow
of (1.2) and the Dyson expansion (2.3). In Section 3.2, we will show that our approach applies to
more general nonlinearities, which are only locally (not globally) Lipschitz continuous.

2.3. Proof of the nonlinear Ball-Marsden-Slemrod obstructions. We are now able to com-
plete the proof of Theorem 1.2.

For T > 0 and L > 0 define

VT,L =
{
Φu(t)ψ0 | u ∈ L1([0, T ]), ‖u‖L1([0,T ]) ≤ L, 0 ≤ t ≤ T

}
,

and notice that ⋃

t≥0

⋃

u∈L1

{Φu(t)ψ0} =
⋃

T∈N

⋃

L∈N

VT,L,

thus it is enough to prove that, for every T > 0 and every L > 0, the set VT,L is relatively compact.
Let δ > 0 be given. We aim to find a δ-net of VT,L.

From Propositions 2.1 and 2.5,
∥∥

∞∑

j=N

Zu
j,T (ψ0)

∥∥
X

tends to zero as N tends to infinity uniformly

with respect to u in BL1([0,T ],R)(0, L), there exists N1 large enough such that, for every u in
BL1([0,T ],R)(0, L),

∥∥∥
∞∑

j=N1

Zu
j,T (ψ0)

∥∥∥
X
<
δ

2
.

The set YT,L
N1

is relatively compact (Proposition 2.6) hence admits a δ/2-net.
Thus

VT,L ⊂
{
x ∈ X | dX

(
x,YT,L

N1

)
≤ δ

2

}

admits a δ-net, which finishes the proof.
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3. Applications

3.1. The Sine-Gordon equation. We consider the Sine-Gordon equation which reads

(3.1)





∂2t ψ − ∂2xψ = u(t)B(x)ψ − sinψ, (t, x) ∈ R×R,

ψ(0, .) = ψ0 ∈ H1(R),

∂tψ(0, .) = ψ1 ∈ L2(R),

where B is a given function, and with a control u ∈ L1
loc(R). In the case B ≡ 0, this equation

appears in relativistic field theory or in the study of mechanical transmission lines. We rewrite this
equation as a first order (in time) system, so that it fits in the frame of our study. Equation (3.1)
is equivalent to




∂t

(
ψ
ϕ

)
=

(
0 1
∂2x 0

)(
ψ
ϕ

)
+ u(t)B(x)

(
0 0
1 0

)(
ψ
ϕ

)
+

(
0

− sinψ

)
, (t, x) ∈ R×R,

(ψ(0, .), ϕ(0, .)) = (ψ0, ψ1) ∈ H1(R)× L2(R).

Then Theorem 1.2 directly applies with X = H1(R) × L2(R), A =

(
0 1
∂2x 0

)
, D(A) = H2(R) ×

H1(R), B ∈ L∞(R) and K(ψ,ϕ) = (0;− sin(ψ)).

3.2. The wave equation in dimension 3. Actually, the result of Theorem 1.2 also applies to
nonlinear equations, with local Lipschitz nonlinear terms. We develop here the example of the wave
and Klein-Gordon equations. Denote by M a boundaryless compact manifold of dimension 3, or
M = R3. We consider the defocusing cubic wave equation

(3.2)





∂2t ψ −∆ψ +mψ = u(t)B(x)∂tψ − ψ3, (t, x) ∈ R×M,

ψ(0, .) = ψ0 ∈ H1(M),

∂tψ(0, .) = ψ1 ∈ L2(M),

with m ≥ 0 and B ∈ L∞(M). Positive exact controllability results for such non-linear dynamics
in the case M = (0, 1) were obtained by Beauchard and Laurent [5, Theorem 5].

The control function is u ∈ L1
loc(R). The mild solution reads

ψ(t) = S0(t)ψ0 + S1(t)ψ1 +

∫ t

0
S1(t− s)

(
u(s)B(x)∂sψ(s)− ψ3(s)

)
ds

where

(3.3) S0(t) = cos(t
√
−∆+m) and S1(t) =

sin(t
√
−∆+m)√

−∆+m
.

3.2.1. The obstruction result to controllability to the wave equation. We state the main result of
this section, which an analogue result to Theorem 1.2 concerning equation (3.2).

Theorem 3.1. For all (ψ0, ψ1) ∈ H1(M)× L2(M) and u ∈ L1(R), there exists a unique solution
to (3.2)

ψ ∈ C0
(
R;H1(M)

)
∩ C1

(
R;L2(M)

)
.

This enables us to define a global flow

Φ = (Φ1,Φ2) : H1(M) × L2(M)× L1(R) −→ C0
(
R;H1(M)

)
× C0(R;L2(M)

)

(ψ0, ψ1, u) 7−→ (ψ,ψt)
.

Moreover for every (ψ0, ψ1) ∈ H1(M)× L2(M), the attainable set
⋃

t∈R

⋃

u∈L1

{
Φu(t)(ψ0, ψ1)

}
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is contained in a countable union of compact subsets of H1(M)× L2(M).

We decided to illustrate our method on the equation (3.2), but our approach can be applied to
other wave-type equations, for example with

∂2t ψ −∆ψ +mψ = u(t)B(x)ψ − ψ3,

with a given potential B ∈ L3(M). We do not write the details.

3.2.2. Local and global existence results. Since the equation (3.2) is reversible, in the sequel, we
restrict to non-negative times. Let T > 0 and u ∈ L1([0, T ]) be given. Let also t0 ≥ 0. We define
by induction on p ≥ 0,




Ỹ u
0,t,t0 = 0

Ỹ u
p+1,t,t0(ψ0, ψ1) = S0(t)ψ(t0) + S1(t)∂tψ(t0) +

∫ t

0
S1(t− s)

[
u(s+ t0)B(x)∂sỸ

u
p,s,t0 − (Ỹ u

p,s,t0)
3
]
ds

with Ỹ u
p,s,t0 = Ỹ u

p,s,t0(ψ0, ψ1), and where S0 and S1 are defined in (3.3).

We now state a global existence result, which is an application of the Picard fixed point theorem.

Proposition 3.2. (i) For all (ψ0, ψ1) ∈ H1(M)×L2(M) there exists a unique solution to (3.2)

ψ ∈ C0
(
R;H1(M)

)
∩ C1

(
R;L2(M)

)
.

(ii) Moreover, for all T > 0, for all L > 0 and u such that
∫ T
0 |u(s)|ds ≤ L,

sup
0≤t≤T

‖(ψ, ∂tψ)(t)‖H1(M)×L2(M) ≤ C (‖ψ0‖H1 , ‖ψ1‖L2 , L, T ) ,

where C is a continuous function.
(iii) Furthermore, for all T > 0, and L > 0, there exists k ≥ 1, 0 < c0 < 1 and a continuous

function τ = τ(‖ψ0‖H1 , ‖ψ1‖L2 , L, T ) > 0 such that for all 0 ≤ t0 ≤ T , p ≥ 0 and u such that∫ T
0 |u(s)|ds ≤ L,

(3.4) sup
t∈[0,τ ]

‖
(
ψ(t+ t0)− Ỹ u

kp,t,t0 , ∂tψ(t+ t0)− ∂tỸ
u
kp,t,t0

)
‖H1(M)×L2(M) ≤ Ccp0.

In the previous result, it is crucial that we obtain a time τ = τ(‖ψ0‖H1 , ‖ψ1‖L2 , L, T ) which only
depends on the norms of ψ0, ψ1 and u (and not ψ0, ψ1 or u themselves). This fact will be used in
the compactness argument (see Section 3.2.3).

Proof. A first local existence result: Let t0 ≥ 0. To begin with, we prove a local in time existence
result for the problem

(3.5)





∂2t ψ̃ −∆ψ̃ +mψ̃ = u(t)B(x)∂tψ̃ − ψ̃3, (t, x) ∈ R×M,

ψ̃(t0, .) = ψ̃0 ∈ H1(M),

∂tψ̃(t0, .) = ψ̃1 ∈ L2(M).

We consider the map

F (ψ)(t) = S0(t)ψ̃0 + S1(t)ψ̃1 +

∫ t

0
S1(t− s)

[
u(s + t0)B(x)∂sψ(s)− (ψ(s))3

]
ds,

and we will show that, for t > 0 small enough, it is a contraction in some Banach space. Then by

the Picard theorem there will exist a unique fixed point ψ and ψ̃(t) = ψ(t− t0) will be the unique
solution to (3.5).
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We define the norm ‖ψ‖T = ‖ψ‖L∞

T
H1 + ‖∂tψ‖L∞

T
L2 and the space

XT,R =
{
‖ψ‖T ≤ R

}
,

with R > 0 and T > 0 to be fixed.
By the Sobolev embedding H1(M) ⊂ L6(M) (see Proposition (A.1) with p = 2 and n = 3),

there exists c = c(m,T ) > 0 such that

‖F (ψ)‖T ≤ 2(‖ψ̃0‖H1 + ‖ψ̃1‖L2) + c

∫ T

0

(
‖u(s + t0)B∂sψ‖L2 + ‖ψ(s)‖3L6

)
ds

≤ 2(‖ψ̃0‖H1 + ‖ψ̃1‖L2) + c
( ∫ T

0
|u(s + t0)|ds

)∥∥B
∥∥
L∞

∥∥∂tψ
∥∥
L∞

T
L2 + cT‖ψ‖3L∞

T
H1 .(3.6)

Let us set R = 4(‖ψ̃0‖H1 + ‖ψ̃1‖L2). Then we fix T1 = c1R
−2 with c1 > 0 small enough such

that cT1R
2 ≤ 1/4 and we fix T2 > 0 such that c

∫ T2

0 |u(s + t0)|ds ≤
∥∥B

∥∥−1

L∞
/4. Therefore, for

T = min (T1, T2), F maps XT,R into itself. With similar estimates we can show that F is a
contraction in XT,R, namely

‖F (ψ1)− F (ψ2)‖T ≤
[
cTR2 + c

( ∫ T

0
|u(s+ t0)|ds

)∥∥B
∥∥
L∞

]
‖ψ1 − ψ2‖T .

As a consequence, there exists a unique local in time solution to (3.5), with time of existence τ

depending on the norms of ψ̃0, ψ̃1 and u.

Energy bound: We define

E(ψ)(t) =
1

2

∫

M

(
(∂tψ)

2 + |∇ψ|2 +mψ2
)
+

1

4

∫

M
ψ4.

By derivation in time, we get

d

dt
E(ψ)(t) =

∫

M
∂tψ

(
∂2t ψ −∆ψ +mψ + ψ3

)
dx

= u(t)

∫

M
B(∂tψ)

2dx.

Next, since B ∈ L∞(M), we get

d

dt
E(ψ)(t) ≤ |u(t)|‖B‖L∞‖∂tψ‖2L2

≤ C|u(t)|E(ψ)(t)

which implies

(3.7) E(ψ)(t) ≤ E(ψ)(0)eC
∫ t

0 |u(s)|ds.

In the particular case m = 0, the energy E does not control the term
∫
M ψ2, and we bound this

latter term as follows. We set M(ψ)(t) =
( ∫

M ψ2
)1/2

. Thus

d

dt
M(ψ)(t) ≤ ‖∂tψ‖L2 ≤ 2E1/2(ψ)(t),

and by integration in time together with (3.7) we obtain

(3.8) E(ψ)(t) +

∫

M
ψ2 ≤ C0(t,

∫ t

0
|u(s)|ds, ‖ψ0‖H1 , ‖ψ1‖L2).
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Proof of (i) and (ii): Assume that one can solve (3.5) on [0, T ⋆), starting from t0 = 0. By (3.8),
there is a time T ⋆

1 > 0 such that cT ⋆
1 (R

⋆)2 ≤ 1/4 with R⋆ = 4c(‖ψ‖L∞

T⋆H1 + ‖∂tψ‖L∞

T⋆L2). Then we

fix T ⋆
2 > 0 with

c
( ∫ T ⋆+

T⋆
2
2

T ⋆−
T⋆
2
2

|u(s)|ds
)∥∥B

∥∥
L∞

≤ 1/4.

As a consequence, with the arguments of the local theory step, we are able to solve the equa-
tion (3.5), with an initial condition at t0 = T ⋆ − min(T ⋆

1 , T
⋆
2 )/2, on the time interval [T ⋆ −

min(T ⋆
1 , T

⋆
2 )/2, T

⋆ +min(T ⋆
1 , T

⋆
2 )/2]. This shows that the maximal solution is global in time.

Proof of (iii): To prove this last statement, we will find a time of existence which does not

depend on t0 ∈ [0, T ] and which only depends on u through the quantity
∫ T
0 |u(s)|ds. Assume that∫ T

0 |u(s)|ds ≤ L.

For k ≥ 0, we denote by F k = F ◦ F ◦ · · · ◦ F the kth iterate of F . From (3.9) and (3.10) (see
Lemma 3.3 below) we infer the bounds (with L = L(T ))

‖F k(ψ)‖T1 ≤ Ck(L, ‖ψ‖0) +
(
CL

)k

k!
‖ψ‖T1 + T1Pk(T1, L, ‖ψ‖T1)

and

‖F k(ψ) − F k(ϕ)‖T1 ≤
[(CL

)k

k!
+ T1Qk(T1, L, ‖ψ‖T1 , ‖ϕ‖T1)

]
‖ψ − ϕ‖T1 .

Set k ≥ 0 such that (CL)k

k! ≤ 1/2. Let R1 = max
(
2Ck, C0

)
, where Ck = Ck(L, ‖ψ‖0) is given

in (3.9) and C0 = C0(T,L, ‖ψ‖0) is given in (3.8). Set

XT1,R1 =
{
‖ϕ‖T1 ≤ R1

}
.

Then from the two previous estimates we infer that F k : XT1,R1 −→ XT1,R1 is a contraction,
provided that T1 = T1(L,R1) is small enough. As a consequence, there exists a unique solution
in XT1,R1 to the equation ϕ = F k(ϕ). However F : XT1,R1 6−→ XT1,R1 , and we can not conclude
directly that ϕ = F (ϕ), in other words that ϕ satisfies (3.2). By the global well-posedness result,
there exists a unique ψ = F (ψ) for t ∈ [0, T1]. Let us prove that ϕ ≡ ψ on [0, T1]. Observe that
we have ψ = F k(ψ). To conclude the proof, by uniqueness of the fixed point of F k in XT1,R1 , it is
enough to check that ψ ∈ XT1,R1 . By (3.8), ‖ψ‖T1 ≤ C0(T,L, ‖ψ‖0) ≤ R1, hence the result.

Finally the bound (3.4) directly follows from the Picard iteration procedure, since

Ỹ u
k(p+1),t,t0

(ψ0, ψ1) = F k
(
Ỹ u
kp,t,t0(ψ0, ψ1)

)
.

�

Recall that ‖ψ‖T = ‖ψ‖L∞

T
H1 + ‖∂tψ‖L∞

T
L2 .

Lemma 3.3. Let 0 < T1 ≤ T . For 0 ≤ t ≤ T , set L(t) =
∫ t
0 |u(s)|ds and L = L(T ). Then there

exists a constant C > 0 such that for all k ≥ 0 and 0 ≤ t+ t0 ≤ T , there exist polynomials Ck, Pk

and Qk such that

(3.9) ‖F k(ψ)‖t ≤ Ck(L, ‖ψ‖0) +
(
CL(t+ t0)

)k

k!
‖ψ‖T1 + T1Pk(T1, L, ‖ψ‖T1)

and

(3.10) ‖F k(ψ)− F k(ϕ)‖t ≤
[(CL(t+ t0)

)k

k!
+ T1Qk(T1, L, ‖ψ‖T1 , ‖ϕ‖T1)

]
‖ψ − ϕ‖T1 .
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Proof. Let us prove (3.9) by induction. For k = 0 the result holds true. Let k ≥ 0 such that we
have (3.9). As in (3.6) we get

(3.11) ‖F k+1(ψ)‖t ≤ 2(‖ψ̃0‖H1 + ‖ψ̃1‖L2)+ c
∥∥B

∥∥
L∞

( ∫ t

0
|u(s+ t0)|

∥∥F k(ψ)
∥∥
s
ds
)
+ cT1‖F k(ψ)‖3T1

,

where c > 0 is an universal constant. To begin with, by (3.8),

‖ψ̃0‖H1 + ‖ψ̃1‖L2 ≤ D(L, ‖ψ‖0).
Next, by (3.9)

∫ t

0
|u(s+ t0)|

∥∥F k(ψ)
∥∥
s
ds ≤

≤ Ck(L, ‖ψ‖0)L+ ‖ψ‖T1

∫ t

0
|u(s + t0)|

(
CL(s+ t0)

)k

k!
ds+ T1LPk(T1, L, ‖ψ‖T1)

≤ Ck(L, ‖ψ‖0)L+ Ck

(
L(t+ t0)

)k+1

(k + 1)!
‖ψ‖T1 + T1LPk(T1, L, ‖ψ‖T1).

The term ‖F k(ψ)‖3T1
is directly controlled by (3.9). Now if we make the choice C = c

∥∥B
∥∥
L∞

,
thanks to (3.11) we get (3.9) at rank k + 1.

The proof of (3.10) is similar and left here. �

As in the abstract result, a major ingredient in the proof is a Dyson expansion of the form (2.3).
However, since the nonlinearity is stronger than in our abstract result, the expansion only holds
true for finite times. Set

Z̃u
p,t,t0(ψ0, ψ1) := Ỹ u

k(p+1),t,t0
(ψ0, ψ1)− Ỹ u

kp,t,t0(ψ0, ψ1),

where k ≥ 0 is given by the proof of Proposition 3.2.

Proposition 3.4. Let T > 0 and u ∈ L1([0, T ],R) such that
∫ T
0 |u(s)|ds ≤ L. Consider τ =

τ(‖ψ0‖H1 , ‖ψ1‖L2 , L, T ) > 0 given by Proposition 3.2 (iii). Then for all t ∈ [0, τ ]

Φu(t+ t0)
(
ψ0, ψ1

)
=

( ∞∑

j=0

Zu
j,t,t0(ψ0, ψ1),

∞∑

j=0

∂tZ
u
j,t,t0(ψ0, ψ1)

)
.

Proof. This result is a direct consequence of (3.4). �

3.2.3. Proof of the compactness result. We now proceed to the end of the proof of Theorem 3.1. For

every (ψ̃0, ψ̃1) in H
1(M) × L2(M), we define the attainable set from (ψ̃0, ψ̃1) in time less than T

with control of L1 norm less than L:

VT,L(ψ̃0, ψ̃1) =
{
Φu(t)(ψ̃0, ψ̃1) | u ∈ L1([0, T ],R), ‖u‖L1([0,T ],R) ≤ L, 0 ≤ t ≤ T

}
.

Proposition 3.5. For every (ψ̃0, ψ̃1) in H1(M) × L2(M), for every L > 0, for every T ≤ τ

(defined in Proposition 3.2 (iii)), VT,L(ψ̃0, ψ̃1) is contained in a compact set of H1(M)× L2(M).

Proof. The proof of Proposition 3.5 goes exactly as the proof of Theorem 1.2, using the Dyson
expansion (Proposition 3.4) and the fact that the mappings

G1 : [0, T ] × L2(M) −→ H1(M)

(s, ϕ) 7−→ sin((T − s)
√
−∆+m)√

−∆+m
Bϕ
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and
G2 : [0, T ] ×H1(M) −→ H1(M)

(s, ψ) 7−→ sin((T − s)
√
−∆+m)√

−∆+m
ψ3

are continuous. �

Proposition 3.6. For every (ψ0, ψ1) in H
1(M)× L2(M), for every L, T > 0, there exists τ∗ > 0

such that for every (ψ̃0, ψ̃1) in the topological closure of VT,L(ψ0, ψ1), the time τ given in Proposi-
tion 3.2 (iii) satisfies τ > τ∗.

Proof. The time τ appearing in Proposition 3.2 (iii) is the time τ for which the Dyson expansion
(Proposition 3.4) is valid. As proved in Proposition 3.2, this time depends on the norm of ψ0 and ψ1

(not on ψ0 and ψ1 themselves). Conclusion follows from the energy bound (3.8). �

Proposition 3.7. For every T,L > 0, for every (ψ0, ψ1) in H
1(M)×L2(M), the set VT,L(ψ0, ψ1)

is relatively compact in H1(M)× L2(M).

Proof. In the following, for every real function u : R → R and every interval I = [a, b] of R, we
define the function RIu by RIu(x) = u(a+ x) for x in [0, b − a] and RIu(x) = 0 else.

Let τ∗ be as defined in Proposition 3.6. We proceed by induction on p in N to prove Proposi-
tion 3.7 for T ≤ pτ∗.

For p = 1, this is just Proposition 3.5.
Assume the result is proven for some p ≥ 1. Let T be in (pτ∗, (p + 1)τ∗] and (An)n∈N =(

Φun(tn)(ψ0, ψ1)
)
n∈N

be a sequence in VT,L(ψ0, ψ1). We aim to find a convergent subsequence of

(An)n∈N, which will prove the relative compactness of VT,L(ψ0, ψ1).
By the induction hypothesis, the set Vpτ∗,L(ψ0, ψ1) is relatively compact, hence up to extrac-

tion, one may assume that the sequence
(
Φun(pτ∗)(ψ0, ψ1)

)
n∈N

converges to some limit A∞
pτ∗ . By

Proposition 3.6, τ(A∞
pτ∗ , L) > τ∗. Hence, by Proposition 3.5, the set Vτ∗,L(A∞

pτ∗) is relatively com-

pact. Hence, up to extraction, one may assume that the sequence
(
ΦR[pτ∗,tn]un(tn − τ∗)(A∞

τ∗)
)
n∈N

converges to some limit A∞
T∞

. By continuity of Φu(t)(·, ·), the sequence
(
Φun(tn)(ψ0, ψ1)

)
n∈N

also
converges to A∞

T∞

, and that concludes the proof of Proposition 3.7. �

Proof of Theorem 3.1: It remains to prove the last statement of Theorem 3.1. This follows from

Proposition 3.7 by noticing that
⋃

t∈R

⋃

u∈L1

{
Φu(t)(ψ0, ψ1)

}
⊂

⋃

ℓ∈N

⋃

n∈N

Vn,ℓ(ψ0, ψ1). �

Appendix A. Sobolev spaces

The aim of this Appendix is to recall the classical Sobolev embedding theorem, which is in-
strumental in the proof of Proposition 3.2. For more details, the reader may refer to the classical
reference [1, Theorem 5.4, statements (3) and (4)].

A.1. Definition. Let M be an open subset of Rn or a Riemannian compact manifold of dimen-
sion n. For every k in N and every p in [1,+∞], the Sobolev space W k,p(M) is defined as the set
of functions from M to R whose partial derivatives up to order k belongs to Lp(M), that is:

W k,p(M) =
{
ψ ∈ Lp(M) | Dαψ ∈ Lp(M), ∀ |α| ≤ k

}
.

When endowed with the norm ‖ψ‖W k,p(M) =
∑

|α|≤p ‖Dαψ‖Lp , W k,p(M) turns into a Banach
space.

In the case where p = 2, W k,2(M) turns into a Hilbert space and is usually denoted by H2(M).
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A.2. Sobolev embedding theorem. For every integers k, ℓ and every real numbers p, q such that
k > ℓ, (k − ℓ)p < n, and 1 ≤ p < q ≤ np/(n− (k − ℓ)p) ≤ +∞, then

W k,p(M) ⊂W ℓ,q(M)

and the embedding is continuous. In particular, there exists CSob(p, q, k, n) > 0 such that

‖ψ‖W ℓ,q(M) ≤ CSob(p, q, k, n)‖ψ‖W k,p(M).

In particular, if k = 1 and ℓ = 0, one gets

Proposition A.1 (Sobolev embedding). If 1/p∗ = 1/p − 1/n then W 1,p(M) ⊂ Lp∗(M).
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