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Measurements of concrete dam displacements are influenced by various factors such as hydrostatic load,
thermal effect and irreversible phenomena (creep, swelling, etc.). To interpret measurements and
improve the assessment of irreversible effects, splitting the different influences is necessary. For this pur-
pose, models based on statistics and physics are commonly employed in engineering studies. Although
they are efficient in most cases to analyse the displacement of concrete dams, these models are built
on a certain number of hypotheses, necessary to write ‘‘simple’’ mathematical relationships, but leading
to uncertainties. To evaluate the suitability of these physico-statistical models (importance of the
hypotheses) and to improve it, a 2D finite element (FE) model has been developed as a heuristic case.
This study shows the importance of water temperature and temperature gradient in the assessment of
the thermal displacements. So, a new physico-statistical model is proposed to account for these phe-
nomena. The evaluation of its performance on both the FE heuristic case and real cases shows that the
improved assessment of thermal effects on reversible phenomena leads to a reduced uncertainty on resi-
duals. Thus, the proposed approach yields to a better assessment of irreversible trends.

1. Introduction

Safety is an important issue for dam management. As the struc-
tural vulnerability increases with the dam ageing, it is essential to
monitor dams for ensuring their safety over the long term. Dam
surveillance mainly consists of analysing gathered data in order
to verify that the dam is functioning as intended, to detect any pos-
sible anomalies, and to warn of any change which could endanger
its safety. Displacements, pressure and flow rates are classical
measures for dam safety.

This contribution focuses on dam displacement analysis.
Although a lot of instruments (e.g. collimators, laser, radar, etc.)
can be employed, dam displacements are generally measured by
direct or invert pendulums. They are influenced by several factors
such as hydrostatic load, thermal conditions and irreversible
phenomena (creep, alkali-aggregate reaction, adaptation,

consolidation, damage, cracking, etc.). The simplest analysis con-
sists in plotting measured displacements as a function of time, or
as a function of the reservoir level, but this type of graph is difficult
to analyse because of dispersion due to external reversible influ-
ences (thermal and filling conditions). Usually, in one year, the
irreversible part of the displacement is less than 1% of the reversi-
ble displacement (e.g. for a 130 m height arch dam, the thermal
displacements amplitude is about 20 mm, whereas its irreversible
trend is about 0.1 mm per year). As a consequence, statistical mod-
els are commonly used to separate the influences of the different
explicative factors, and then to observe anomalies or irreversible
trends.

Statistical modelling is a classical approach in data analysis and
is employed in various domains [1]. A statistical model is a math-
ematical formulation of the existing relationships between envi-
ronmental factors (water level, temperatures) and dam behaviour
(displacements, pressure, flow). By calibrating these models on
the past behaviour of the dam, a diagnostic can be established on
the recent behaviour which is expected to remain the same.

The most common statistical method in dam engineering is
called HST (Hydrostatic, Season, Time) and has been developed
by EDF (Électricité De France) in the 1960s [2–4]. With this model,
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the reversible influences can be assessed (hydrostatic and seasonal
components) and subtracted to the measurements so as to high-
light the irreversible behaviour of the dam. For several decades,
the obtained results have confirmed the relevance and soundness
of this method for interpretation of dam monitoring measure-
ments [5–7]. This method is currently used in several countries
[8–12].

However, in the HST model, thermal displacements are
assumed to follow a perfectly seasonal evolution (one-year period
harmonic function). As a consequence, the performance of HST is
not always sufficient, particularly when time periods are sig-
nificantly colder or warmer than seasonal average. For a majority
of concrete dams, thermal displacements induce a large proportion
of the recorded displacement. Thus, it is really important to identi-
fy this component accurately while interpreting newly recorded
data [13,14].

Several approaches have been proposed to improve the mod-
elling of the thermal influence by accounting for real temperature
evolution. Statistical models that considered explicitly data from
thermometer embedded in the concrete mass have been proposed
[15,13]. Using directly concrete temperature measurements as
explicative factors allows avoiding uncertainties due to heat trans-
fer processes, especially at the boundaries. However, the
thermometers give local informations which are not totally
representative of the global temperature field. Thus, more sophis-
ticated models have been developed to express the temperature
field in term of linear effective temperature across the dam
cantilever sections [13,16]. The approximation of the non-linear
one-dimensional thermal field along the thickness of the dam by
a linear equivalent one is considered as sufficient to estimate the
global displacements [17,14,13,16]. Then, the temperature field
along a cross section can be represented by its mean and its
gradient. In these methods, an inverse heat transfer problem is
employed to obtain the temperatures at the boundaries from tem-
peratures recorded by the embedded thermometer and a direct
heat transfer problem to rebuilt the linear effective temperature
from the boundary temperatures. These statistical models, based
on a deterministic structural calculation (the thermal variables),
are called ‘‘hybrid’’ models in opposition to ‘‘purely statistical’’
(e.g. HST model) or ‘‘purely deterministic’’ models (e.g. finite
element (FE) model).

Besides, after the exceptional 2003 European heatwave, a model
based on the exploitation of the air temperature instead of internal
thermometer (which are not available for the majority of dams)
has been developed [18]. The model, called HSTT (Thermal HST)
is an hybrid model, it keeps the seasonal function of HST but adds
a corrective term which accounts for delayed deviation of the daily
air temperature to its seasonal average. This method enables to
reduce significantly the residual dispersion of the HST model and
reduces the anomalies induced by exceptional thermal conditions.

Nevertheless, since water temperature, solar radiation and cou-
pling phenomena such as thermal boundary conditions depending
on the reservoir level are not directly taken into account (the influ-
ence of these phenomena on the displacement can be partially cap-
tured by the seasonal function), the thermal state of the structure
cannot be correctly assessed. Moreover, in the HSTT approach, the
thermal state of the structure is reduced to the estimation of the
mean temperature. However, according to [14,13,16], the mean
temperature but also the temperature gradient across the dam
are important for calculating the global displacements. For all the-
se reasons, the residual dispersion of the model may remain high in
some cases (some few tenths of millimetres) and the irreversible
behaviour difficult to appreciate.

The objective of this study is to improve the assessment of the
thermal displacements in the statistical analysis and thus to reduce
the residual dispersion. A previous study has identified water

temperature as an important source of dispersion for the HSTT
model [19]. Based on this analysis, a new physico-statistical model
has been developed by taking into account water temperature (and
the temperature gradient generated by the difference between air
and water temperature). This new hybrid model will be presented
after a brief presentation of the HSTT model. Besides, a 2D finite
element model of a gravity dam has been developed and will be
considered as a heuristic case. Based on thermo-mechanical
simulations, this model allows us to separate numerically the dif-
ferent thermal influences and will be employed to validate the
capability of the new model to capture the thermal effect induced
by water temperature and to compare its performance to HSTT.
Finally, the new model will be validated on real monitoring data
for several dams.

2. The HSTT model

HSTT is a hybrid physico-statistical model [18]. Its objective is
to decompose the measurements in a sum of reversible and irre-
versible influences to appreciate the behaviour of the dam. Each
influence is modelled by a mathematical expression. The global
model is a multi-linear regression formed by the sum of all the
expressions and is adjusted on the measurements by the least
square method. The HSTT model decomposes the displacements
into three components:

� A time-dependent irreversible component which represents the
long term behaviour of the dam (creep, adaptation, swelling,
consolidation, settling, etc.). Although exponential functions
can be used (to represent the evolution of concrete creep at ear-
ly age), for the sake of simplicity, irreversible phenomena are
modelled in this contribution by a linear function of the time
t (it is assumed on the analysis period chosen in this study that
the creep phenomenon is cushioned):

f 1ðtÞ ¼ a1 � t ð1Þ

� A hydrostatic reversible component which represents the
displacements due to hydrostatic loading. It is modelled as
a fourth degree polynomial function of the variable
z ¼ RN�h

RN�Rempty
(RN is the normal reservoir level, Rempty is the

empty reservoir level and h is the actual reservoir level):

f 2ðzÞ ¼ a2 � zþ a3 � z
2 þ a4 � z

3 þ a5 � z
4 ð2Þ

� A thermal reversible component which represents dam dis-
placements due to temperature variations. This component
is decomposed into two functions:
– A seasonal function which represents the thermal dis-

placements induced by the seasonal part of thermal
loads. The dam response to seasonal phenomena is
assumed to follow periodic evolution of period one year.
Thus, this seasonal influence is modelled by the two first
terms of the Fourier series decomposition of a one year
periodic signal. Accounting for the second term of the
Fourier series generally improves the statistical analysis
as there is seasonal but non-harmonic thermal phe-
nomena (e.g. water temperature, solar radiation). So,
the seasonal function is the sum of harmonic functions
of the season angle S (the angle S linearly increases by
2p rad in one year):

f 3ðSÞ ¼ a6 � cos Sð Þ þ a7 � sin Sð Þ þ a8 � cos 2 � Sð Þ þ a9 � sin 2 � Sð Þ

ð3Þ

It is worth noting that this seasonal function is the same
than the one used in the HST model. Nevertheless, anoth-
er form of this function can be found in the literature (e.g.



[3]: f
�
3ðSÞ ¼ a6 � cos Sð Þ þ a7 � sin Sð Þ þ a8 � sin

2
Sð Þ þ a9 � sin Sð Þ�

cos Sð Þ). The development of this last formulation using
trigonometric formula shows that the two functions
f 3ðSÞ and f

�
3ðSÞ are almost equivalent, only the mean val-

ues over one year of the functions are different (null for
f 3ðSÞ and not null for f �3ðSÞ). For this reason, the function
f 3ðSÞ is generally preferred.

– A corrective function which accounts for the delayed
response of the structure to daily air temperature:

f 4ðDhRÞ ¼ a10 � DhR ð4Þ

Compared to the HST model, the addition of a corrective
term DhR enables a better explanation of the displace-
ments measured during abnormal climatic events at
the cost of the estimation of air temperature to feed
the model. The daily air temperature signal h is decom-
posed as the sum of two signals:

– The average seasonal air temperature hS.
– The deviation Dh of the air temperature to its seasonal

average.

The thermal displacement induced by the average seasonal air
temperature hS is assumed to be seasonal and is thus captured by
the seasonal function f 3ðSÞ, whereas the thermal displacement
induced by the air temperature deviation Dh is captured by the
corrective function f 4ðDhRÞ.
The variable DhR is a lagged variable of the air temperature dev-
iation Dh. It is calculated by means of a one-dimensional conduc-
tive heat-transfer problem. DhR is the mean temperature of a one
dimensional mediumwith the air temperature deviation applied at
its two boundaries. This term is evaluated by convolving the signal
of the air temperature deviation Dh with the impulse response (in
term of mean temperatures) of the 1D medium. The convolution
product can be estimated by using Eqs. (5) and (6) (see Appendix B
for more details):

DhRðtÞ ¼
8

p2 � T0
�
X

nP1
nodd

XnðtÞ ð5Þ

In Eq. (5) each term of the sum is calculated through a recur-
rence formula:

Xn tþDtð Þ ¼ Dh tþDtð Þ �
T0

n2 � 1� e
�n2 �Dt

T0

� �

þ XnðtÞ � e
�n2 �Dt

T0 ð6Þ

In Eqs. (5) and (6), the term T0 is the characteristic time repre-
senting the thermal inertia of the structure. This parameter T0

is a statistical parameter of the model.
From a practical point of view, a finite number of terms of the
infinite sum (Eq. (5)) has to be considered to compute the lagged
variable DhR. The first terms of the sum are those which account
for the lower frequencies of the thermal loads. Increasing the
number of terms will lead to a more accurate solution by
accounting for higher frequencies of the input signal at the cost
of a larger computational time. Generally, in engineering, only
the first term is considered [18]. This is acceptable for thick
structures like dams where the high frequencies of thermal loads
do not have a major effect on the global thermal state of the
structure. Nevertheless, the solution can be slightly improved
by adding additional terms. A parametric study has been per-
formed to find the optimal number of terms (compromise
between accuracy of the solution and cost in term of computa-
tional resources). This parametric study has been performed
on the three heuristic displacements time series (see
Section 4). The results (Fig. 1) show that, for the three simula-
tions developed in Section 4, the residual dispersion can be

reduced by adding more terms in the impulse response, until
an asymptotic behaviour. For this study, the optimal value has
been arbitrarily chosen around 15. Adding more than 15 terms
does not improve significantly the performance of the model.
Thus, the results presented in the following of this paper have
been computed using 15 terms.

At the end, the HSTT model can be written as follows:

d ¼ a0 þ f 1 tð Þ þ f 2 zð Þ þ f 3 Sð Þ þ f 4 DhRð Þ þ e ð7Þ

where d is the measured displacement signal, a0 is a constant which
represents the displacement at the beginning of the analysis, and e
is the residuals of the model which contain uncertainties of both the
experimental measurements and the model (the part of residuals
due to the experimental measurements is very small compared to
the one of the model). In Eq. (7), the eleven coefficients from a0 to
a10 of the four functions f 1 to f 4 (Eqs. (1)–(4)) are adjusted statisti-
cally on measurements by the least square method.

3. Original development of a new hybrid physico-statistical

model: HST-Grad

Although a part of the effect induced by water temperature can
be captured by its seasonal function, HSTT does not explicitly
account for water temperature. Water temperature has been iden-
tified as an important source of dispersion for the HSTT model [19].
Indeed, water temperature is not perfectly seasonal and its contri-
bution to thermally induced displacement is dependent on the
retention level. Moreover, water temperature highly contributes
to the establishment of a thermal gradient through the structure.
The HSTT approach is limited to the estimation of the mean tem-
perature through the lagged variable DhR whereas, the mean tem-
perature but also the temperature gradient are important for
calculating the global displacements. In this section, a new original
model is proposed by taking explicitly into account water tem-
perature in the HSTT approach. The new hybrid model, called
HST-Grad (like temperature GRADient), considers both the mean
temperature and the temperature gradient.

Based on the hypotheses of Appendix A, the thermal displace-
ment dth of the dam can be assessed according to Eq. (8).

dth ¼

Z

H

TMðhÞ �MðhÞdhþ

Z

H

TGðhÞ � GðhÞdh ð8Þ

where H is the dam’s height, TM and TG are respectively the mean
temperature and the temperature gradient across the thickness of
the dam, and M and G are influence functions between the tem-
perature at a given elevation h and the thermal displacement.
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Fig. 1. Evolution of the HSTT residual dispersion with the number of terms.



These influence functions depend on the mechanical and geometri-
cal properties of the structure (including mechanical boundary
conditions).

By considering TM and TG independent of the height, Eq. (8) can
be simplified as follows:

dth ¼ TM �

Z

H

MðhÞdh

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

A

þ TG �

Z

H

GðhÞdh

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

B

ð9Þ

This hypothesis is a strong hypothesis because the thermal
loads are non-homogeneous on the upstream face of the dam.
Indeed, both the thermal stratification of the retention lake water
and the temperature discontinuity at the retention level (tem-
perature difference between the parts of the upstream surface
below and above the retention level) are responsible of non-homo-
geneous temperatures (mean and gradient) along the height.
Moreover, the dam thickness evolves along its height yielding dif-
ferent thermal inertia. Although it is possible to account for the
variation of TM and TG along the height, by introducing several
variables TM and TG for different elevations, for statistical stability
reasons (multi-collinearity) the number of explicative variables
has to be limited, and some sort of ‘‘average values’’ of TM and TG

are employed in this contribution. This strong assumption, already
made in the previous HSTT method (for the lagged variable DhR) is
kept in the new HST-Grad model, which focuses on the tem-
perature gradient introduction.

As for HSTT, the mean temperature TM (respectively the tem-
perature gradient TG) is split into a seasonal component TM;S

(respectively TG;S) and a deviation DTM (respectively DTG) to the
seasonal component:

dth ¼ A � ðTM;S þ DTMÞ þ B � ðTG;S þ DTGÞ ð10Þ

The displacements induced by the seasonal components of the
mean temperature and of the temperature gradient are captured
by the seasonal function of the model. Thus, by considering the
constants A and B as statistical parameters adjusted by the model,
the thermal part of the HST-Grad model can be written:

f 5 S;DTM ;DTGð Þ ¼ f 3 Sð Þ þ a10 � DTM þ a11 � DTG ð11Þ

Compared to HSTT, only the thermal part of the model is chan-
ged. The final expression of the HST-Grad model is given by:

d ¼ a0 þ f 1 tð Þ þ f 2 zð Þ þ f 5 S;DTM ;DTGð Þ þ e ð12Þ

In Eq. (12), the coefficients a0 to a11 are statistically adjusted on
measurement by the least square method. It is worth noting that
only one statistical parameter is added in the model (in compar-
ison to HSTT), which means that the improvement is more physical
than mathematical.

In the new HST-Grad model, the lagged variables DTM and DTG

are computed from upstream and downstream temperatures (Tup

and Tdo). The downstream temperature is the air temperature.
Compared to HSTT, the upstream temperature is changed to
account for water temperature and the reservoir retention level
hw (Eq. (13)).

Tup ¼
hw

H

� �

� Twater þ 1�
hw

H

� �

� Tair ð13Þ

In this way, the upstream temperature is a weighted average of
the air temperature and water temperature with respect to the
retention level.

Upstream and downstream temperatures are split into
upstream and downstream average seasonal temperatures (Tup;S

and Tdo;S) and deviations to these seasonal averages (DTup and
DTdo). The displacement induced by the seasonal components of
the upstream and downstream temperatures is seasonal and so,

it is captured by the seasonal function. Thus, only the deviations
are used to estimate the lagged variables DTM and DTG. These vari-
ables are computed according to the one-dimensional conductive
heat-transfer problem described in Appendix B. The one-dimen-
sional section used in the computation is not a geometrical section
of the dam; it is a fictitious section whose thermal inertia is repre-
sented by the parameter T0, adjusted statistically. So, the fictitious
Section (1D medium) is as representative as possible of the whole
dam. As a consequence, the parameter T0 identified is a kind of
average of the thermal inertia of all the dam sections accounting
for the influence of each section temperatures on the displacement.
The same statistical parameter T0 is used to calculate both the
mean temperature and the temperature gradient.

It is worth highlighting that the variable DTM corresponds to the
variable DhR of the HSTT model in the sense that they both repre-
sent the mean temperature of a 1D medium representative of the
whole dam. However, the two variables are slightly different.
Indeed, DhR is computed with air temperature applied on both
sides of the 1D medium, whereas DTM is computed with air tem-
perature applied at the downstream side and the average between
air and water temperatures accounting for the retention level
applied at the upstream side.

In the proposed model, thermal loads are restricted to air and
water temperatures. Nevertheless, solar radiation also plays a role
in the thermal behaviour of the dam [19]. Although, the effect of
solar radiation can be partially captured by the seasonal function,
the method could easily be extended to consider explicitly solar
radiation by increasing air temperature according to the orienta-
tion and sun exposure of the surfaces [17].

4. Finite element modelling: development of a heuristic case

To validate the performance of the HST-Grad model to deal with
water temperature, a two dimensional thermo-mechanical model
of a gravity dam is built using the finite element method. The
dam modelled in this section is the Izourt dam (see Table 2 for
the main characteristics). Considering that monoliths are not
joined up, a plane-stress model can be adopted [20]. Only the cen-
tral monolith of the dam is modelled in this study. Fig. 2 shows the
mesh used for the simulations. It is worth noting that very thin ele-
ments are used near the boundaries (’5 cm) so as to capture the
effect of high frequency thermal loads. Transient simulations are
performed with a time step of one day in order to be coherent with
the temperature signals used in HSTT analysis. Moreover, this time
step is a good compromise between computational effort and accu-
racy of the results. The material properties used for the simulations
are given in Table 1. It is assumed that there is no temperature

Zoom

Pendulum

Fig. 2. Finite element mesh.



dependence of these parameters. For the temperature range of the
dam, the conductivity and specific heat dependence on tem-
perature have a negligible effect on the temperature prediction
[21].

The mechanical boundary conditions define the embedding of
the foundation. The normal component of the displacement vector
is null along the foundation boundaries. Concerning the thermal
boundary conditions, a zero heat flux condition is applied at the
boundaries of the foundation. The air temperature or the water
temperature are applied on the other boundaries of the model
according to the retention level (to simplify the study, only air
and water temperatures are accounted for in this numerical
model).

The air temperature signal used in this model is the signal for a
dam located in France at 1600 m of altitude. In absence of air
temperature measurement available at the dam location, air
temperature is modelled by interpolation of temperatures

measured at several surrounding meteorological stations [22].
The model takes into account altitudinal gradients (dependent on
season and rain) and gives the daily mean temperature at the
dam location. Concerning the water temperature, a theoretical
model is used (Eq. (14)). This model has been proposed by
Bofang and Zhanmei [23] and improved by Ardito et al. [24].

Tw yw; tð Þ ¼ Tbot tð Þ �
1� e�U�yw

1� e�U�H
þ T top tð Þ �

e�U�yw � e�U�H

1� e�U�H
ð14Þ

In Eq. (14), TbotðtÞ and T topðtÞ are the signal of temperature at the
bottom and at the top of the reservoir respectively, yw is the depth
under water surface, H is the height of the reservoir and U is a
shape parameter. Because of the lack of water temperature mea-
surements, the temperatures Tbot and Ttop are considered as har-
monic functions of the time (Eqs. (15) and (16)):

Table 1

MATERIAL PROPERTIES.

Poisson’s ratio
(–)

Density
(kg/m3)

Young modulus
(GPa)

Coefficient of thermal expansion
(�C�1)

Thermal conductivity
(W/m/�C)

Specific heat
(J/kg/�C)

Concrete 0.2 2300 30 8 � 10�6 2.5 900

Rock 0.25 2700 15 8 � 10�6 3 800
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Fig. 3. Water temperature profiles for the different months of the year for a fixed retention level (a) and a variable retention level (b). Water temperature temporal variations
at the top, mid-height and bottom of the reservoir for a fixed retention level (c).



T top tð Þ ¼ 7þ 7 � cos 2 � p �
t � /top

� �

365

� �

ð15Þ

Tbot tð Þ ¼ 4þ 2 � cos 2 � p �
t � /botð Þ

365

� �

ð16Þ

To account for the time delay due to heat transfer between air
and water and in the water, the term /top (respectively /bot) is
adjusted to insert a time delay of 15 days (respectively 60 days)
between T top (respectively Tbot) and the seasonal air temperature.
The values of /top and /bot have been chosen arbitrarily. As the FE
model is considered as a heuristic case, real values are not neces-
sary for this study. The water temperature curves are given by
Fig. 3. The water temperature follows a seasonal variation. Its
amplitude decreases and its phase increases with depth.

It is known that the maximal water density is reached for a tem-
perature of 4 �C [25] which means that water temperature profiles
cannot cross the vertical lines at 4 �C. By construction, our model
does not respect this condition, but only for a short period of the
year.

Generally, due to mixing process, the reservoir warming period
is longer than the cooling one, thus the water temperature varia-
tions are neither harmonic in time, nor exponential in space. The
thermal evolution of a retention lake is highly dependent on sever-
al parameters: bathymetry of the reservoir, surface energy
exchanges (air temperature, solar radiation, etc.), inflow and out-
flow (rivers, pumping, turbining, etc.), snow melting, ice cover at
the top of the reservoir for dams in altitude or in northern regions
(insulation from the cold air temperature). Thus, temperature mea-
surements (at least at the surface and at the bottom of the reser-
voir) are necessary to have a precise time evolution of the lake
thermal stratification. The lack of measurements leads us to
employ harmonic temperatures in this study. Nevertheless, the
FE model is used here as a heuristic case so that the precise time
evolution of the real dam water temperature is not necessary.

To study the HSTT and HST-Grad performances, three simula-
tions are performed with different combinations of the thermal
loads (Fig. 4):

� Simulation 1: Only the air temperature is applied. The retention
lake is empty.

� Simulation 2: Air and water temperatures are applied. The reten-
tion level is fixed at RN (normal value).

� Simulation 3: Air and water temperatures are applied. The reten-
tion level follows its real evolution (coming from in situ
measurements).

Each simulation is performed over a period of 20 years but only
the displacements of the last 10 years are analysed. Indeed, the
first 10 years enable to reach a pseudo-harmonic steady state
(the initial temperature field is uniform with a value equal to the
air temperature average). Each simulation produces a series of

displacements extracted from a virtual pendulum (Fig. 2) in the
finite element model.

5. Validation of the HST-Grad model

5.1. Performance of the HST-Grad model to capture water temperature

influence

For the three simulations (see Fig. 4), HSTT and HST-Grad but
also classical HST analyses are performed on the ten-year displace-
ment time series (the statistical calibration is performed over the
period 2002–2012). Since only the thermal part of HSTT is modi-
fied in our original proposition, only temperature effect on dam
displacements is analysed by means of finite element simulations
and thus only the thermal part of the HST, HSTT and HST-Grad
models is employed. Model efficiencies to capture the phenomena
involved in the simulations are then evaluated using the residual
dispersion as a criterion. The residual dispersion is defined in this
study as the ratio (in %) between the standard deviation of the resi-
duals and the amplitude of the displacement analysed. Since the
statistical models are applied on finite element heuristic cases,
residuals are only induced by model errors (there is neither mea-
surement errors nor approximation of the input variables).
Consequently, the lower the standard deviation is, the more effi-
cient the model is. Fig. 5 shows the residual dispersion of the
HST-Grad model compared to the ones of the HST and HSTT mod-
els for the three finite element simulations described in Section 4.

Moreover, Fig. 6 shows the relative importance of the mean
temperature with respect to the temperature gradient on the ther-
mally induced displacements determined by the HST-Grad model
for the three simulations. The thermal displacements are consid-
ered here without the seasonal influences: a10 � DTM þ a11 � DTG in
Eq. (11). The relative influence of one effect is measured by the

Fig. 4. Schematic representation of the thermal loads for the three simulations.

Fig. 5. HST, HSTT and HST-Grad residual dispersion for the three simulations.



variance of its signal. By definition, the variance of the thermal dis-
placements is the sum of the variance of the thermal displacement
due to the mean temperature, the variance of the thermal displace-
ment due to temperature gradient and twice the covariance of the
two effects (Eq. (17)).

Varða10 � DTM þ a11 � DTGÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

variance of thermal displacement ðwithout the seasonal influencesÞ

¼ Varða10 � DTMÞ
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

variance of displacement due to mean temperature

þ Varða11 � DTGÞ
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

variance of displacement due to temperature gradient

þ 2 � Covða10 � DTM; a11 � DTGÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

covariance of the two effects

ð17Þ

Firstly, it is interesting to note that for the three simulations the
HSTT and HST-Grad models enable an important reduction of the
residual dispersion compared to the HST model. With only a sea-
sonal function, the HST model is not able appreciate precisely the
thermal influence on displacement.

For the first simulation, Fig. 5 shows that the HSTT model pre-
sents a low dispersion (’0.5% of the total displacement amplitude).
Indeed, the HSTT model is designed to capture the effect of air tem-
perature from the upstream and downstream surfaces and it is
exactly the conditions of this particular simulation. Nevertheless,
the dispersion is not equal to zero since the dam has a true geome-
try, i.e. the thickness varies along the height. In HSTT, a unique sec-
tion with an equivalent thickness in the thermal viewpoint
(parameter T0 statistically determined) is considered representa-
tive of all the dam horizontal sections. In other words, the HSTT
model assumes that the boundary conditions and the dam thick-
ness do not vary with height. HSTT is therefore not able to consider
the evolution of thermal inertia along the height of the dam. On the
contrary to the HSTT hypothesis, the dam thickness evolves with
height in the heuristic case, leading to a certain amount of residual
dispersion. Moreover, HSTT considers a one dimensional heat
transfer, whereas the heat transfer is, in reality, in 3 directions (2
in the finite element simulation), mainly close to the upper and
lower boundaries of the dam. The HST-Grad model does not reduce

further the dispersion. Indeed, the dam reservoir is empty in this
simulation (no thermal gradient are generated inside the structure)
and consequently the total thermal displacement is explained by
the mean temperature (see Fig. 6).

It is worth highlighting that the introduction of water tem-
perature (simulation 2) increases a lot the dispersion of the HSTT
model (Fig. 5). Indeed, the residual dispersion is multiplied by a
factor 2.7 compared to the first simulation. Furthermore, it is inter-
esting to note that the total displacement amplitude has also
increased from 1.5 mm in the first simulation to 6 mm in the sec-
ond one, meanings that the introduction of water temperature has
a strong influence on the total displacement. It is noticeable that
the dispersion of HSTT is strongly reduced (residual dispersion
divided by 2.2) by taking into account water temperature (HST-
Grad model). As the retention level is constant in this simulation,
the improvement is still limited because the thermal effect induced
by the variation of the retention level is greater than the effect of
water temperature itself (water temperature is perfectly seasonal
for the three simulations). Moreover, in this case, the mean tem-
perature and temperature gradient are quite correlated (high
covariance in Fig. 6), and thus, the HSTT model can explain a part
of the effect induced by the temperature gradient.

For the last simulation, Fig. 5 shows a significant increase of the
HSTT residual dispersion (multiplied by a factor 3 compared to the
simulation 2). Indeed, the upstream boundary condition is depen-
dent on the retention level variations and the HSTT model is not
designed to account for these variations since the air temperature
is applied for both the upstream and downstream surfaces.
Concerning the HST-Grad model, it can be observed that the resi-
dual dispersion has just slightly evolved compared to simulation
2. Hence, the HST-Grad model is able to account for the thermal
effect induced by the variation of the retention level. This effect
is now directly accounted for in the HST-Grad model through Eq.
(13). It is also interesting to remark that, for this simulation, the
dispersion reduction obtained by HST-Grad compared to HSTT is
in the same order of magnitude than the dispersion reduction
obtained by HSTT compared to HST. Moreover, it is noticeable in
Fig. 6 that the effect of the temperature gradient is much more
important than the effect the mean temperature (which is almost
equal to zero).

Fig. 6. Representation of the part of thermal displacements due to the mean temperature, to the gradient temperature or to both simultaneously (covariance) according to the
HST-Grad model.



To conclude on the performance of the proposed model, it must
be reminded that HSTT is designed to capture the displacement of
a dam in which the thermal fluxes are in one dimension and sub-
ject to air temperature only (the influences of the other phe-
nomena are reduced to the seasonal function). The present
analysis shows that the water temperature and the variation of
the retention level are important sources of dispersion for HSTT.
Moreover, in presence of water with varying retention level, the
temperature gradient has more influence than the mean tem-
perature. That is why the new HST-Grad model improves a lot
the results of HSTT by enabling to account for the displacements
induced by water temperature.

5.2. Performance of the HST-Grad model to separate the mean

temperature and the temperature gradient influences

In this section, the capability of the HST-Grad model to properly
separate the mean temperature and the temperature gradient
influences is analysed for the simulation 3. By keeping the coeffi-
cients a10; a11 and T0 calibrated by the HST-Grad model and using
the mean temperature and temperature gradient computed with
the total upstream and downstream temperatures (not only the
deviation components), the effect of the gradient and mean tem-
peratures on the total displacement is rebuilt. To be able to evalu-
ate if the two effects obtained are well separated, they have to be
compared to references. References components are computed by
means of the thermo-elastic reciprocal theorem [26,16].

According to the thermo-elastic reciprocal theorem, the mean
temperature and the temperature gradient influences on thermal
displacement can be deterministically separated by means of Eq.
(8). The functions MðhÞ and GðhÞ are easily estimated through
Eqs. (18) and (19) (see Appendix A for more details).

MðhÞ ¼ a � LðhÞ �

Z

K

tr ��r
� �

M
h; kð Þdk ð18Þ

GðhÞ ¼ a �
LðhÞ

3

12
�

Z

K

tr ��r
� �

G
h; kð Þdk ð19Þ

In Eqs. (18) and (19), a is the coefficient of thermal expansion of
the dam material, LðhÞ is the thickness of the dam at height h; k is
the curvilinear coordinate along the length and tr ��r h; kð Þ

� �
is the

trace of the stress tensor ��r h; kð Þ obtained for a unit force applied
at the location and in the direction where the displacement is
sought. These influence functions MðhÞ and GðhÞ are computed in
the finite element model and shown in Fig. 7. These functions
can be read as follows:

� For example, an increase of 1 �C of the mean temperature of a
one-meter high slice at elevation 30 m will produce a thermal
displacement of �0.006 mm.

� In the same way, an increase of 1 �C/m of the temperature gra-
dient of a one-meter high slice at elevation 30 m will produce a
thermal displacement of �0.1 mm.

Knowing the influence functions MðhÞ and GðhÞ, the thermal
displacement is rebuilt from the finite element temperature field
by applying Eq. (8). At first glance, the method seems inappropriate
for a gravity dam since the simplified expression of the thermal
displacement given by Eq. (8) is based on the assumption is that
the trace of the stress tensor evolves linearly in all horizontal cross
sections when a unit force is applied where the displacement is
seeking. If this assumption can be understood for thin arch dam
(shell theory), it seems inadequate for thick structures like gravity
dams. Nevertheless, a very good agreement between the FE model
and the simplified model can be observed in Fig. 8. Indeed, one can
check in Fig. 9 that the deviation of the trace of the stress tensor
from the linear approximation remains quite small, even for a
gravity dam.

The thermo-elastic reciprocal theorem method, once validated
for our gravity dam, is used to determine the mean temperature
and temperature gradient influences (Eq. (8)). These two compo-
nents are considered in the following as the reference components.
Fig. 10 shows that the displacements due to the mean temperature
and to the temperature gradient estimated with the HST-Grad
model match quite well with the reference influences (determined
with the thermo-elastic reciprocal theorem). The standard devia-
tion of the residuals (difference between the signal issued from
the thermo-reciprocal theorem and the one issued from the HST-
Grad model) is about 0.1 mm for the two components (mean and
gradient) meaning that the influences are well separated by the
HST-Grad model.
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Fig. 7. Influence functions MðhÞ and GðhÞ for the mean temperature and the temperature gradient respectively.



Moreover, it is interesting to highlight that for this type of dam
(gravity dam), the temperature gradient has much more influence
on thermally induced displacement than the mean temperature
(Fig. 10 shows that the amplitude of the temperature gradient
influence is about 4 mm compared to less than 1 mm for the mean
temperature influence).

5.3. Performance of the HST-Grad model on real cases

In this last part, the HST-Grad model is tested and compared to
HSTT on real monitoring data. The analysis is performed for 8
French dams (see Table 2) over the period 2005–2013. The HSTT
and HST-Grad models are calibrated over the period 2005–2012
and then used to forecast over the period 2012–2013.

In the finite element heuristic case, the water temperature is
prescribed, however, for real cases, it is not known. For Izourt

and Eguzon dams, water temperature has been measured over a
period of one year, and then both signals have been approximated
by one-year periodic functions and applied in the HST-Grad model
(Fig. 11). It is noticeable in Fig. 11 that thermal behaviour of the
two lakes are quite different. The real evolution of water tem-
perature is not sinusoidal and depends on a lot of particular para-
meters which vary from one site to another. Nevertheless, for the
other dams, some assumptions for the water temperature are nec-
essary: water temperature is assumed to follow a perfect sinusoid
of the time with a period one year, an amplitude of 4 �C and a mean
of 7 �C, with a phase shift of one month compared to the seasonal
air temperature. These values have been chosen arbitrarily and are
consequently not fully representative of the real water
temperature.

For each dam, the air temperature has been determined using
an interpolation model [22]. This air temperature model

Fig. 8. Comparison of the displacement time series directly issued from the finite element simulation to the one computed with the thermo-elastic reciprocal theorem.

Fig. 9. Evolution of the trace of the stress tensor in the thickness of the dam for some horizontal cross sections.



Fig. 10. Comparison of the displacement time series determined with the HST-Grad model to the one computed with the thermo-elastic reciprocal theorem – separation of
the influence of the mean temperature and of the temperature gradient.

Table 2

Dams description.

Dam name Type Height (m) Crest length (m) Thickness at the top (m) Thickness at the bottom (m) Radius (m) RN (m NGF)

Eguzon Curved gravity dam 61 300 5 54 250 203
Izourt Rectilinear gravity dam 44 162 4 28 – 1645
Roselend Arch dam with buttresses 128 804 3 22 127 1557
Tignes Arch dam 160 296 10 44 150 1790
Vouglans Double curvature arch dam 127 425 6 25 107 429
Bissorte Rectilinear gravity dam 60 545 6 42 – 2082
Gittaz Curved gravity dam 66 164 4 48 180 1562
Sarrans Gravity dam, slightly curved 97 225 4 75 – 647

janv. mars mai juil. sept. nov. janv.

6
8

Date

T
e
m

p
e
ra

tu
re

 (
°C

)

(a) Eguzon

janv. mars mai juil. sept. nov. janv.

1
0

1
2

4
6

8
1

0
1

2

Date

T
e
m

p
e
ra

tu
re

 (
°C

)

(b) Izourt

Fig. 11. Temporal evolutions of the mean water temperature measured in Izourt and Eguzon retention lakes over one year.



interpolates the measurements of several air temperature stations
near the location of the dams and account for the weather type
(rain, etc.) and the altimeter gradient.

Fig. 12 compares the performance of HST, HSTT and HST-Grad
in terms of residual dispersion for both the calibration and the
forecast. For all the tested dams, the HSTT model enables to reduce
significantly the residual dispersion of the HST model on the
calibration period. On the forecast period, the dispersion is not
reduced for only two dams (Roselend, Sarrans). Moreover, one
can notice that for all the dams, the HST-Grad model enables to
reduce the residual dispersion of HSTT both in calibration and fore-
cast. However, this improvement is not as important as expected
with respect to the heuristic case. This can be explained by the
low accuracy approximation of the environmental data (water
and air temperatures) used to feed the model. Moreover the
heuristic case considers uniquely air and water temperature. On
real cases, other phenomena (solar radiation, etc.) are still not
accounted for in the HST-Grad model and are also sources of the
dispersion.

Nevertheless, one can remark that the improvement is more
sensitive in forecasting which implies that the model has more
physical sense and will lead to a better analysis of the irreversible
part of the dam displacement.

5.4. Practical implementation of the HST-Grad model

For a practical computer implementation of the HST-Grad mod-
el, one needs at first the mean temperatures of the dam upstream
and downstream faces Tup and Tdo. Daily (or even hourly) measure-
ments of air and water temperatures (or directly concrete tem-
peratures near the dam faces) are necessary to feed efficiently
the model. After a separation of the seasonal and unseasonal parts
of the input signals Tup and Tdo, the mean and gradient deviations
DTM and DTG temperatures can then be computed from the unsea-
sonal upstream and downstream temperatures DTup and DTdo

according to the recurrence formula given in Appendix B (Eqs.
(B.16)–(B.21)). For numerical reasons, a finite number of terms

has to be considered to compute the infinite sums (Eqs. (B.16)
and (B.20)). If the input signals Tup and Tdo are perfectly represen-
tatives of the dam behaviours, the more terms there are, the more
accurate the solution is. Indeed, the more terms there are, the more
the high frequencies of the input signals are accounted for. On the
opposite, if the high frequencies of the input signals are not fully
representatives of the dam behaviours, considering too much
terms can deteriorate the solution. Moreover, for thin structures,
more sensitive to high frequencies of thermal loads, a larger num-
ber of terms has to be considered. Thus, this number of terms has
to be chosen according to several criteria: precision of the input
signals, structure sensitivity to high frequencies of the thermal
loads (dam width), and computational time allocated. If a good
compromise has been found around 15 terms in this specific study,
this number can vary in other situations. Besides, the time step Dt

used for the computation of the recurrence formula has to be cho-
sen according to the measurement frequency of the input signals
Tup and Tdo. Once the temperatures DTup and DTdo are computed,
the multi-linear regression can be performed (Eq. (12)). Then, the
previous steps can be repeated with different values of the para-
meter T0 until reaching the optimal value (dichotomous optimiza-
tion process).

6. Conclusions

Based on the HSTT approach, an original hybrid physico-statis-
tical model (called HST-Grad) has been developed to improve the
assessment of displacements due to the temperature field in a
dam. For this purpose, not only the air temperature is introduced
in the model but also the water temperature so as to estimate
the upstream temperature. Both the mean and the gradient of
the temperature inside the structure could consequently be taken
into account properly. These temperatures (mean and gradient)
are estimated by analytically solving a one dimensional conductive
heat transfer problem based on measured air and water tem-
perature. Consequently, the water temperature profile is
approximated by its mean value over the height and the evolution
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of the retention level is accounted for with a upstream tem-
perature equal to the weighted average of air and water tem-
perature. Moreover, the thermal inertia of the one dimensional
medium is adjusted to be representative of the whole dam.

The validation on a heuristic finite element model shows that
the HST-Grad model enables us to reduce significantly the residual
dispersion induced by water temperature and coupling between
thermal boundary conditions and variation of the retention level.
Indeed, the standard deviation of the residuals is divided by a fac-
tor 5 compared to the HSTT model. Moreover, the separation
between the effect of the mean temperature and the temperature
gradient has been validated and shows that the temperature gradi-
ent has more influence than the mean temperature on gravity dam
displacements. On real cases, although the environmental data
used to feed the model are approximations, a clear improvement
is observed for both the calibration and the forecast. These results
clearly indicate that the newly proposed model is more realistic,
with only the cost of a measurement of the water temperature
profile.

Although the proposed method shows a clear improvement,
there is still the strong assumption that the temperatures (mean
and gradient) are homogeneous along the height. A method
accounting for non-homogeneous thermal loads and thermal iner-
tia variation while limiting the multi-collinearity problem is cur-
rently under development.
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Appendix A. Calculation of thermal displacements

According to the thermo-elastic reciprocal theorem [26], the
thermal displacements dth in any location and any direction of a
concrete dam can be estimated through [16]:

dth ¼

Z

V

a � T h; l; kð Þ � tr ��r h; l; kð Þ
� �

dv ðA:1Þ

where V is the dam’s volume of concrete, h; l and k are the space
coordinates (along the vertical direction, along the horizontal radial
direction and along the arcs (curvilinear coordinate) respectively
(see Fig. 13) for notations), dv ¼ dh � dl � dk;a is the coefficient of
thermal expansion, T h; l; kð Þ is the temperature field inside the
dam and tr ��r h; l; kð Þ

� �
is the trace of the stress tensor ��r h; l; kð Þ

obtained for a unit force applied at the location and in the direction

where the displacements is sought. For example, to obtain the crest
radial displacement of an arch dam, the unit force has to be applied
at the crest (where the pendulum is anchored) in the radial
direction.

According to Weber et al. [16], tr ��r
� �

evolves linearly along the
dam thickness (radial direction for an arch dam) if the dam is thin
enough (shell theory). In this way, tr ��r

� �
can be written as an

approximation under the following form:

tr ��r
� �

h; l; kð Þ ’ tr ��r
� �

M
h; kð Þ þ l�

L

2

� �

� tr ��r
� �

G
h; kð Þ ðA:2Þ

where L is the thickness, and tr ��r
� �

M
and tr ��r

� �

G
are respectively the

mean and the gradient of tr ��r
� �

along the thickness and are defined
by:

tr ��r
� �

M
h; kð Þ ¼

1
L
�

Z L

0
tr ��r
� �

h; l; kð Þdl ðA:3Þ

and,

tr ��r
� �

G
h; kð Þ ¼

12
L3

�

Z L

0
tr ��r
� �

h; l; kð Þ � l�
L

2

� �

dl ðA:4Þ

Consequently, the integral along the thickness can be simplified
as follow:
Z

L

a � T � tr ��r
� �

dl ¼ a � tr ��r
� �

M
�

Z L

0
Tdlþ a � tr ��r

� �

G
�

Z L

0
T � l�

L

2

� �

dl

¼ a � tr ��r
� �

M
� L � TM þ a � tr ��r

� �

G
�
L3

12
� TG ðA:5Þ

where TM and TG are the mean temperature and the temperature
gradient along the thickness respectively (Eq. (A.6)).

T h; l; kð Þ ’ TM h; kð Þ þ l�
L

2

� �

� TG h; kð Þ ðA:6Þ

with,

TM h; kð Þ ¼
1
L
�

Z L

0
T h; l; kð Þdl ðA:7Þ

and,

TG h; kð Þ ¼
12
L3

�

Z L

0
T h; l; kð Þ � l�

L

2

� �

dl ðA:8Þ

By assuming that the mean temperature and the temperature
gradient are constant for a given elevation (TM h; kð Þ ¼ TMðhÞ and
TG h; kð Þ ¼ TGðhÞ), Eq. (A.1) can be simplified as follow:

dth ¼

Z

H

TMðhÞ �MðhÞdhþ

Z

H

TGðhÞ � GðhÞdh ðA:9Þ

where H is the dam’s height, and M and G are influence functions
between the temperature at a given elevation h and the thermal dis-
placement. These influence functions depend on the mechanical
and geometrical properties of the structure (including mechanical
boundary conditions):

MðhÞ ¼ a � LðhÞ �

Z

K

tr ��r
� �

M
h; kð Þdk ðA:10Þ

GðhÞ ¼ a �
LðhÞ

3

12
�

Z

K

tr ��r
� �

G
h; kð Þdk ðA:11Þ

Appendix B. Calculation of the mean temperature and

temperature gradient across the dam

The mean temperature and the temperature gradient at a given
elevation can be calculated through a one dimensional conductiveFig. 13. Schematic representation of a dam with its geometrical variables.



heat transfer problem (Eq. (B.1)), assuming that the upstream tem-
perature Tup and downstream temperature Tdo are known for this
elevation.

8x 2 ½0; L�;8t 2 ½0;þ1½;D �
@2T

@x2
x; tð Þ �

@T

@t
x; tð Þ ¼ 0 ðB:1Þ

Tð0; tÞ ¼ TupðtÞ and TðL; tÞ ¼ TdoðtÞ ðB:2Þ

In Eqs. (B.1) and (B.2), D is the thermal diffusivity and Tðx; tÞ

is the temperature field inside the medium. The mean tem-
perature TMðtÞ and the temperature gradient TGðtÞ of the medi-
um can be calculated by means of convolution products of the
signals TupðtÞ and TdoðtÞ with the impulse responses for the mean
temperature PMðtÞ and the temperature gradient PGðtÞ (see
description below).

Eq. (B.4) gives the solution S1ðx; tÞ of the 1D conductive heat
transfer problem (Eqs. (B.1) and (B.2)) for step loads (Eqs. (B.1)
and (B.2))

Tup t 6 0ð Þ ¼ 0; Tup t > 0ð Þ ¼ Tup and Tdo t 6 0ð Þ ¼ 0;

Tdo t > 0ð Þ ¼ Tdo ðB:3Þ

8x 2 ½0; L�;8t 6 0 : S1ðx; tÞ ¼ 0

8x 2 ½0; L�;8t > 0 :

S1ðx; tÞ ¼
2 � Tdo

p
�
X

nP1

e
�n2 � t

T0

n
� ð�1Þn � sin

n � p � x

L

� �

�
2 � Tup

p
�
X

nP1

e
�n2 � t

T0

n
� sin

n � p � x

L

� �

þ Tup � 1�
x

L

� �

þ Tdo �
x

L

ðB:4Þ

In Eq. (B.4), T0 is the characteristic time of the 1D medium (Eq.
(B.5)) which accounts for the thermal inertia of the structure:

T0 ¼
L2

D � p2 ðB:5Þ

By differentiating the solution S1ðx; tÞ with respect to time (the
time derivative of a step is a pulse), one gets the solution S2ðx; tÞ

(Eq. (B.6)) of the 1D conductive heat transfer problem (Eqs. (B.1)
and (B.2)) for a thermal pulse of weight Tup applied on the
upstream side and another one of weight Tdo applied on the down-
stream side at t ¼ 0 (TupðtÞ ¼ Tup � dDiracðtÞ and TdoðtÞ ¼ Tdo � ddiracðtÞ

where dDiracðtÞ is a Dirac pulse (Eq. (B.7)).
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ðB:6Þ

dDiracðt¼0Þ¼þ1; dDiracðt–0Þ¼0 and
Z þ1

�1

dDiracðtÞdt¼1 ðB:7Þ

The mean temperature SMðtÞ and the temperature gradient SGðtÞ
derived from Sðx; tÞ according to Eqs. (B.8) and (B.9):

SMðtÞ¼
1
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A ðB:8Þ
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The impulse response for the mean temperature PMðtÞ (Eq.
(B.10)) is the mean temperature inside the medium for a unit aver-
age of the pulse applied at the two boundaries: ðTup þ TdoÞ=2 ¼ 1 K.
The impulse response for the gradient PGðtÞ (Eq. (B.11)) is the tem-
perature gradient inside the medium for a unit difference of the
pulses applied at the boundaries: ðTdo � TupÞ ¼ 1 K.
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The mean temperature TMðtÞ and the temperature gradient
TGðtÞ inside the 1D medium for any real signals TdoðtÞ and TupðtÞ

are then obtained by the following convolution products:

TMðtÞ ¼

Z 1
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Tupðt � uÞ þ Tdoðt � uÞ

2
� PMðuÞdu ðB:12Þ

TGðtÞ ¼
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0
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� �

� PGðuÞdu ðB:13Þ

By developing Eq. (B.12), it comes:
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For any function of time UðtÞ;
R1

0 UðtÞ � dDiracðtÞdt ¼ Uð0Þ. As a
consequence, Eq. (B.14) becomes:
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Moreover,
P

nP1
nodd

1
n2
¼ p2

8 and thus:
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with:

XnðtÞ ¼

Z 1
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Tupðt � uÞ þ Tdoðt � uÞ

2
e
�n2 � u

T0du ðB:17Þ

To compute the function XnðtÞ for a given value of n, the easiest
way is to write it as a recursive formula. The following develop-
ments concern the establishment of the recursive formula. By writ-
ing Xn t þ Dtð Þ, with Dt a time increment, one gets:

Xn t þ Dtð Þ ¼

Z
Dt

0

Tup t þ Dt � uð Þ þ Tdo t þ Dt � uð Þ

2
e
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Z 1
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It is assumed now that the temperature TupðtÞ and TdoðtÞ are
constant during the time interval Dt. In other words,
8v 2 ½t; t þ Dt½: TupðvÞ ¼ TupðtÞ and TdoðvÞ ¼ TdoðtÞ. As a conse-
quence, Eq. (B.18) becomes:

Xn t þ Dtð Þ ¼
Tup t þ Dtð Þ þ Tdo t þ Dtð Þ
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In Eq. (B.19), the second term is obtained by substitution:
w ¼ u� Dt. Finally, the convolution product for the mean tem-
perature (Eq. (B.12)) can be calculated by Eq. (B.16) in which each
term of the sum is determined through the recurrence formula (Eq.
(B.19)).

Following the same process for the gradient, it comes:

TGðtÞ ¼
24

L � p2 � T0
�
X

nP1
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YnðtÞ ðB:20Þ

with,

Yn t þ Dtð Þ ¼ Tdo t þ Dtð Þ � Tup t þ Dtð Þ
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