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Abstract

A simple technique for far-field single-shot non-interferometric deter-
mination of the phase transmission matrix of a multicore fiber with over
100 cores is presented. This phase retrieval technique relies on the aperi-
odic arrangement of the cores.

While conventional endoscopes have demonstrated excellent imaging capa-
bilities in terms of resolution, they suffer in terms of invasiveness due to the
relatively bulky components placed on their distal tip. This fact restricts their
application to hollow organs, ruling out imaging sensitive organs or conduct-
ing long-term studies where the probe needs to remain in-situ. Amongst other
strategies to overcome this size restriction [9, 10, 19], fiber-based lensless endo-
scopes have emerged as promising candidates that combine high-quality optical
imaging with minimal invasiveness. One of the main problems with this type of
device is that image transmission through a fiber is affected by modal mixing
and dephasing [5], but this problem can be addressed (either optically or compu-
tationally) if the complex transmission matrix (TM) of the fiber modes is known.
This approach has been successfully demonstrated in fiber-based lensless endo-
scopes, with imaging modalities ranging from scanning microscopy, nonlinear
microscopy, wide-field imaging, and even the generation of light sheets through
a fiber [1, 2, 4, 5, 13, 14, 16].
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For the transition of these lensless endoscopes from the optical table to a
point-of-care destination, minimal complexity and a very high degree of robust-
ness are required. In particular, multi-core fibers (MCF, also referred to as
imaging fiber bundles), offer a great reduction in the complexity of the instru-
mentation [1, 20]. MCFs have been used in a configuration where each core of
the fiber acts as an imaging pixel, performing an intensity mapping between
the two ends of the fiber. Recent demonstrations [17] indicate that sampling or
controlling the wavefront offers more prospects in terms of artifact-free imaging
and 3D resolution. MCFs offer several degrees of freedom at the manufacturing
process, where control can be exercised in parameters such as mode density and
coupling strength, resulting in an direct tailoring of the TM properties. For op-
erational advantages, these are engineered such that only the diagonal elements
of the TM are significant, leading to an infinite memory effect [17], reduced
modal dispersion and reduced bending sensitivity [21]. Another structural de-
gree of freedom that can be exploited is the spatial distribution of the cores.
Recently [18], a MCF was produced whose cores are arranged as a golden spiral
[8], an aperiodic configuration with roughly uniform density. Amongst other ad-
vantages, this arrangement leads to an important reduction of side lobes when
focusing light at the distal end.

A key challenge in the deployment of lensless endoscopes is to achieve fo-
cusing at the fiber’s distal end through non-interferometric methods such as
iterative optimization [3] or phase retrieval to obtain the fiber’s TM [11]. How-
ever, the characterization of the TM typically requires a sequential interfero-
metric process [1]. In this letter, we propose a computationally inexpensive
phase retrieval technique based on a single measurement of the speckle pattern
emanating from a non-periodic MCF that is robust to minor amplitude changes.

Consider a MCF whose N cores are uncoupled and have locations at the end
facet given by the known transverse coordinates xn for n = 1, ..., N . We assume
that the polarization emerging from all cores is the same, so we treat the field
as scalar. The far-field intensity pattern generated by this fiber in terms of the
transverse direction cosines u is given by

I(u) = A(u)

∣∣∣∣∣
N∑

n=1

En exp[i(ku · xn + φn)]

∣∣∣∣∣
2

, (1)

where k is the light’s wavenumber, A(u) is the far-field radiation pattern of the
cores, and En and φn are the (real) amplitude and phase for core n, respectively.
A well localized intensity peak around a given direction u requires that all
contributions in Eq. (1) are in phase [17]. Since the core positions and the
mode structure of the light exiting a single core are known, the measurement
of the TM reduces to the determination of En and φn. The amplitudes En are
easy to measure non-interferometrically, and they tend to be more uniform, less
sensitive to manipulation of the MCF, and less critical to the achievement of
a sharp focus than φn. We then focus on retrieving the phases φn, measured
with respect to the phase of the central core, φ1 = 0. This problem has been
examined through alternating projection (AP) algorithms for an aperiodic MCF
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[11].
Phase retrieval problems in 2D with source and far-field intensity measure-

ments tend to lead to unique solutions [7], at least when important assumptions
such as sparsity or low noise can be made. A key point [11, 17] is the nature of
the autocorrelation of the field distribution at the source plane in a MCF. For a
perfectly periodic MCF, this autocorrelation is sparse and concentrated around
discrete points, since different peaks due to the correlations of several pairs of
points (with equal separation vector) overlap, as illustrated in Fig. 1(a,b). AP
algorithms can be susceptible to the sensor’s limited dynamic range and read-
out noise, to minor aberrations in the optical system, and to small changes in
the intensities of the emitting cores, especially when a large number of cores
(≥ 10 ) is measured simultaneously [11]. Note that amplitude modulations are
inevitable in experimental scenarios, so phase retrieval techniques with limited
sensitivity to changes in relative amplitudes are mandatory. These developments
would ultimately aid in the implementation of an interferometer-free character-
ization and real-time monitoring of phase distortions in MCF-based lensless
endoscopy. Phase retrieval in combination with compressive sensing has been
already used to measure the TM of highly scattering media, albeit with mul-
tiple measurements [6]. As is shown in what follows, many of these problems
are alleviated when the MCF is aperiodic, since the overlap of the correlation
points can be reduced significantly, making them a better candidate for phase
retrieval approaches in lensless endoscopy [11]. A similar strategy has been used
in astronomy [22].

The aperiodic MCF studied here is composed of 120 cores centered at the
points xn = (ρn cos θn, ρn sin θn) arranged as a golden spiral [see Fig. 1(c)]
according to

ρn = Λ
√
n, θn = nπ(3−

√
5), (2)

where Λ ≈ 11.8 µm is a parameter that regulates the typical inter-core spac-
ing. The individual mode field diameter (MFD) of each core is 3.2 µm. The
fabrication and imaging properties of this golden-spiral MCF are detailed in
[18]. A simplified view of the setup used to project random phases into each of
these cores and to record the far-field intensity pattern is depicted in Fig. 1(e).
Light from a CW laser (1053 ±1 nm, IPG Lasers) is made to pass through a
liquid crystal SLM (X10468, Hamamatsu) which displays a phase profile corre-
sponding to a lenslet array, generating an array of focal spots with controllable
phases. An optical system (not shown) matches the size and divergence of these
focal spots to the MCF cores to maximize the coupling efficiency. On the distal
end of the MCF, an objective lens O2, (Olympus 20x, 0.48 NA) is used to ac-
cess the far field of the MCF facet, and a relay system with 1.5x magnification
(L2-L3) images this far field on a 8-bit CMOS detector (DCC1545, Thorlabs).
Since the polarization state of light emanating from each fiber core is scrambled
[15], a polarizer is used to ensure interference and enhance the contrast of the
generated speckle.

In order to obtain reference values for validating the results of the pro-
posed method, we performed an independent interferometric calibration of the
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Figure 1: Core arrangements in (a) a hexagonal array with 121 cores, and (c) a
golden spiral pattern with 112 active cores. The corresponding auto-correlation
peak locations, scaled to 1/2, are shown in (b) and (d). (e) Diagram of the
optical setup.

MCF’s phase distortions, based on the far-field intensity measurement of each
individual core with respect to the central one. Each of these fringe patterns
was Fourier-transformed and the phase at the associated spatial frequency was
obtained as in [2], leading to reference phase measurements with an accuracy
of π/10. This level of error stems predominantly from the laser and environ-
mental fluctuations. A pre-selection of the cores useful for our measurements
was also made during this process, causing us not to use 8 of the 120 cores for
reasons of poor SNR arising from the polarization filtering. These calibration
measurements were also used to measure the actual position of the cores, shown
in Fig. 1(c).

The actual single-shot phase measurements were implemented by projecting
random but known phase offsets into each of the 112 cores by using the SLM.
Since the phase values were drawn randomly, speckle patterns in the far-field
were obtained when all active 112 cores were used. We conducted 15 inde-
pendent trials with different projected phases and their corresponding far-field
speckle patterns were recorded, each of which served as the starting point for the
phase retrieval method described in what follows. One of these speckle patterns
is shown in Fig. 2(a).

The key for the simple phase retrieval scheme used here is the known, ape-
riodic core arrangement, together with the fact that the mode field diameter
is relatively small compared with the core spacing (by a factor of 0.27). This
means that the spatial field autocorrelation at the plane of the fiber output is
composed of many localized spots, each providing information about the cor-
relation of the fields emerging from a given pair of cores. The aperiodic core
distribution and small mode diameter help reduce the overlap of these correla-
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Figure 2: (a) Measured far-field speckle pattern for one of the 15 random phase
realizations. (b) The corresponding complex autocorrelation function (partially
saturated to show the main features). (c) Elements of the matrix P. (d) Recov-
ered values of the 112 phases for eight iterations.

tion spots, as is discussed in what follows. The autocorrelation is found through
the Fourier transform of the far-field intensity measurement. Since the far-field
speckle pattern is asymmetric, the autocorrelation is a complex function, as
represented in Fig. 2(b) for the speckle pattern in Fig. 2(a), where phase is
encoded as color. The significant values of the autocorrelation are concentrated
around the specific discrete locations given by the differences between any two
core positions, Xn,m = xn − xm, shown in Fig. 1(d). Given the aperiodicity
of the core locations, the points Xn,m do not coincide, but the density of these
points does tend to increase as one approaches the origin, and this implies that
the corresponding correlation spots overlap more significantly in that region.

In order to retrieve the unknown phases φn, a matrix is created whose el-
ements are the phases Φn,m of the autocorrelation at the known points Xn,m

central to each spot. It is convenient for the measured intensity pattern to be
approximately centered so that the phase over the extension of each spot in the
autocorrelation is fairly uniform. Notice that Φn,m = −Φm,n, given the fact
that the autocorrelation is the Fourier transform of a real distribution. Ideally,
Φn,m should coincide with φn − φm, where φn are the unknown phases of the
cores. Therefore, these unknown phases can be estimated by minimizing the
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merit function

µ =

N∑
m,n=1

W 2
n,m |exp(iΦn,m)− exp[i(φn − φm)]|2 , (3)

where the factors 0 ≤ Wn,m ≤ 1 are used to penalize correlation points Xn,m

where the phase Φn,m is suspected not to correspond accurately to the phase
difference between the field at cores n and m due to overlap with the spots for
the correlation of other core pairs. Different criteria can be used for choosing
these weights, such as the actual calculated proximity of Xn,m to its closest
neighbors, the rate of variation of the phase over neighboring points, or the
departure of the amplitude at this point from what would be expected. In cases
with small numbers of cores the first of these criteria works very well. However,
here we use a much simpler option that consistently gave better results in all
our measurements using a larger number of cores. This option simply penalizes
points closer to the center of the correlation distribution, where the point density
is higher, and favors points near the edge, which tend to be more spaced:

Wn,m =
|Xn,m|
D

, (4)

where D is the diameter of the core bundle (that is, the maximum value for
|Xn,m|), used for normalization purposes.

The minimization of µ is achieved by setting to zero its derivatives with
respect to each φn, leading to the N constraints

=

{
N∑

m=1

Pn,m exp[i(φm − φn)]

}
= 0, (5)

for n = 1, ..., N , where Pn,m = W 2
n,m exp(iΦn,m) are the elements of a Hermitian

complex matrix P, and = denotes the imaginary part. These elements are shown
in Fig. 2(c) for the same realization as in Figs. 2(a,b). Notice that if Φn,m

really were equal to the difference of the corresponding phase cores and Wn,m

were unity, P would be simply the outer product of a vector with elements
exp(iφm) and its own Hermitian conjugate. Therefore, a good initial guess
for the unknown phases are the arguments of the leading eigenvector of P. A
refinement of this initial estimate can be obtained through a rapidly-convergent
iterative process. Note that the constraints in Eq. (5) can be written as

φn = arg

[
N∑

m=1

Pn,m exp(iφm)

]
= 0, (6)

where arg denotes the phase. This can be solved iteratively as

φ̂(i)n = arg

{
N∑

m=1

Pn,m exp[iφ̂(i−1)
m ]

}
. (7)
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That is, a vector whose elements are the phase factors for the (i− 1)th iteration
is multiplied by P, and the phases of the resulting vector give the phases for

the ith iteration. This relation converges rapidly regardless of the choice of φ̂
(0)
m ,

although convergence is greatly accelerated if the initial guess mentioned earlier
is used. As can be seen from Fig. 2(d) for the same realization, this initial
estimate is already close to the final result, and after only one iteration the
result essentially settles.

The phase retrieval method was tested for 15 independent far-field inten-
sity measurements resulting from applying 15 different sets of randomly-chosen
phases to the cores. These applied phases are known to within the calibration
level of error of π/10, but for each core, the relative difference between the
applied phases is known to within π/100, the level of error of the SLM that
writes the phase. It was found that the recovered phases present a systematic
error, calculated as the average of the errors for all realizations for each core,
and shown as a thick black line (for the used cores) in Fig. 3. This system-
atic error with respect to the reference measurements is of the order of π/10,
precisely the level of error of the reference measurements themselves. After
subtracting it, the remaining rms error of all the cores for each realization was
(with a few exceptions) of a similar scale, as shown by the color dots in Fig. 3.
Overall, the error margin tends to reduce slightly with distance from the core to
the center of the MCF, due to the fact that cores near the edge are associated
with more non-overlapping correlation points than cores near the center, so that
more meaningful constraints apply to them. The inset in Fig. 3 shows for each
of the 15 measurements the rms error over all cores as a function of iteration
number, which consistently falls below 0.08π. Note that a single iteration brings
the error down by about 5% on average, after which the error settles.

Once the systematic error is removed, the remaining error is not due to
the calibration but to the retrieval method, and is directly related to the ratio
of mode diameter to core separation. This is confirmed through numerical
simulations in which the core diameter was varied. The rms error averaged
over twenty randomly chosen sets of phases for 110 cores were calculated as
functions of mode diameter. The results are shown in Fig. 4, where we see
that the dependence of this error on the ratio of mode diameter to separation is
approximately quadratic until the modes begin to overlap, at which a point the
error begins to saturate towards the maximum possible of π/2. The measured
rms error is consistent with the numerical simulations for the corresponding
mode diameter/core separation ratio.

To summarize, we presented a single-shot technique to determine the phases
of the transmission matrix of a non-periodic MCF with 112 active cores. The
technique makes use of a priori information about the core positions and its
aperiodicity. We observe that the first non-iterative estimate is already close to
the actual phases, which is crucial for applications where speed is critical. The
iterative process used to refine the result is a N ×N matrix multiplication with
low computational cost, which typically converges to a stable solution within
a few iterations. The keys to the success of this technique are the aperiodic
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Figure 3: Phase errors from the phase retrieval process. The mismatch between
the solid and dashed black lines indicates the systematic phase error for each
core. The color dots show the error of the recovered phases once the systematic
error is subtracted, where the colors label the 15 realizations. The gray band
behind the dots indicates the standard deviation per core. Note that 8 cores are
not being used. The inset shows the rms error over all cores (once the systematic
error is removed) as a function of iteration number.

distribution of cores and their spacing (sufficiently larger than the mode size).
We underline that all these experiments were performed in transmission. In
reflection, the accumulated phase corresponds to a double pass of the MCF
system and this brings up the common π ambiguity. We note, however, that this
ambiguity is not specific to this method, and is also present in interferometric
systems [23]. Lifting the ambiguity would entail techniques such as spectrally
diverse speckle, adding complexity to the system.

While the phase retrieval algorithm and golden spiral arrangement studied
here were examined within the context of miniature fiber endoscopes, they can
be relevant to other systems employing sparse apertures with small fill factors,
such as synthetic aperture imaging and aperture masking interferometry [22],
coherent combination of fiber amplifiers in a tiled geometry, or the measurement
of coherence [12]. If more accurate results are needed, this method can be used
to provide good initial estimates for more sophisticated and computationally
intensive phase retrieval techniques.
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[2] Esben Ravn Andresen, Géraud Bouwmans, Serge Monneret, and Hervé
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[6] Angélique Drémeau, Antoine Liutkus, David Martina, Ori Katz,
Christophe Schülke, Florent Krzakala, Sylvain Gigan, and Laurent Daudet.
Reference-less measurement of the transmission matrix of a highly scatter-
ing material using a dmd and phase retrieval techniques. Optics express,
23(9):11898–11911, 2015.

[7] J. R. Fienup. Phase retrieval algorithms: a comparison. Appl. Opt.,
21(15):2758–2769, Aug 1982.

[8] Lucas H Gabrielli and Hugo E Hernandez-Figueroa. Aperiodic antenna
array for secondary lobe suppression. IEEE Photonics Technology Letters,
28(2):209–212.

[9] Arthur F Gmitro and David Aziz. Confocal microscopy through a fiber-
optic imaging bundle. Optics Letters, 18(8):565–567, 1993.

[10] Michalina J Gora, Jenny S Sauk, Robert W Carruth, Kevin A Gallagher,
Melissa J Suter, Norman S Nishioka, Lauren E Kava, Mireille Rosenberg,
Brett E Bouma, and Guillermo J Tearney. Tethered capsule endomi-
croscopy enables less invasive imaging of gastrointestinal tract microstruc-
ture. Nature Medicine, 19(2):238–240, 2013.

[11] Dani Kogan, Siddharth Sivankutty, Viktor Tsvirkun, Géraud Bouwmans,
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polarimetry imaging of multicore fiber. Opt. Lett., 41(9):2105–2108, May
2016.

[16] Siddharth Sivankutty, Esben Ravn Andresen, Rosa Cossart, Géraud Bouw-
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