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Conformally covariant bi-differential operators for differential forms

Introduction

The Rankin-Cohen brackets are the most famous examples of conformally covariant bi-differential operators. For a presentation of these operators from our point of view based on harmonic analysis of the group SLp2, Rq, we refer the reader to the introduction of [START_REF] Ben Saïd | Conformally covariant bi-differential operators on a simple real Jordan algebra[END_REF]. In [START_REF] Ovsienko | Generalized transvectants Rankin-Cohen brackets[END_REF] Ovsienko and Redou introduced their analogs for conformal analysis on R n .

A new construction of these covariant bi-differential operators was proposed by Beckmann and the second present author in [START_REF] Beckmann | Singular invariant trilinear forms and covraint (bi)-differential operators under the conformal group[END_REF], where (although implicitly) the source operator method was introduced. In our situation, the source operator is a differential operator on R n ˆRn , covariant for the diagonal action of the conformal group SO 0 p1, n `1q. The covariant bi-differential operators are obtained by composing the source operator with the restriction map from R n ˆRn to the diagonal. This technique has shown to be very efficient to produce new examples of covariant differential operators in many different contexts. In [START_REF] Ben Saïd | Conformally covariant bi-differential operators on a simple real Jordan algebra[END_REF], we constructed covariant bi-differential operators in the context of simple real Jordan algebras. The article [START_REF] Clerc | Another approach to Juhl's conformally covariant differential operators from S n to S n´1[END_REF] contains an alternative construction of the covariant differential operators introduced by Juhl [START_REF] Juhl | Families of conformally covariant differential operators, Q-curvature and holography[END_REF] in the context of the restriction of R n to R n´1 . In the same geometric context, Fischmann, Ørsted and Somberg [START_REF] Fischmann | Bernstein-Sato identities and conformal symmetry breaking operators[END_REF] recently obtained a new construction of the covariant differential operators for differential forms, previously obtained by Kobayashi, Kubo and Pevzner in [START_REF] Kobayashi | Conformal symmetry breaking operators for differential forms on spheres[END_REF] and by Fischmann, Juhl and Somberg in [START_REF] Fischmann | Conformal symmetry breaking differential operators on differential forms[END_REF]. Finally, it is worthwhile mentioning that a more general notion of symmetry breaking operators (not necessarily differential) has been studied by Kobayashi and his collaborators (see, e.g., [START_REF] Kobayashi | Symmetry breaking for representations of rank one orthogonal groups[END_REF], [START_REF] Kobayashi | Symmetry breaking for representations of rank one orthogonal groups[END_REF], [START_REF] Kobayashi | Differential symmetry breaking operators I. General theory and F-method[END_REF]).

In the present paper, we construct bi-differential operators acting on spaces of differential forms which are covariant for the conformal group of R n ; more precisely for the group G " SO 0 p1, n `1q. To build these bi-differential operators, we use again the source operator method. The source operators are constructed as a composition of the multiplication operator by the function }x ´y} 2 (using its transformation rule under the action of the conformal group) and classical Knapp-Stein intertwining operators. These intertwining operators on differential forms were studied recently in [START_REF] Fischmann | A family of Riesz distributions for differential forms on Euclidean space[END_REF][START_REF] Fischmann | Bernstein-Sato identities and conformal symmetry breaking operators[END_REF] and some of their results are used (and sometimes reproved) in the present article.

The construction relies ultimately on two main identities stated in Theorem 3.2 and Theorem 3.3 (see also Theorem 3.4), the second one being the Euclidean Fourier transform of the first one. As they involve purely Euclidean harmonic analysis they are presented in Section 3, independently of the conformal context. In Section 4 we give some background on the conformal group of R n needed to describe the noncompact model for the principal series representations of SO 0 p1, n `1q in Section 5. The conformal properties of the source operator are given in Section 6, where harmonic analysis of the group SO 0 p1, n `1q plays a crucial role.

The corresponding covariant bi-differential operators are constructed in Section 7. The lack of a manageable decomposition of the tensor product σ k b σ , 0 ď k, ď n, where σ k denotes the representation of SOpnq on the spacecomplex-valued Λ k of complexvalued alternating k-forms on R n , prevents us from giving explicit formulas for the corresponding bi-differential operators, but this can be done at least for the Cartan factor Λ k` with 0 ď k ` ď n, appearing in Λ k b Λ , (see (7.1)).

Background on differential forms

Let x¨, ¨y be the standard Euclidean scalar product in R n and } ¨} the corresponding norm. Let pe 1 , e 2 , . . . , e n q be the standard orthonormal basis of R n and let pe 1 , e 2 , . . . , e nq be its dual basis.

For 0 ď k ď n, we denote by Λ k " Λ k pR n ˚q b C the vector space of complex-valued alternating multilinear k-forms on R n . A basis of the space Λ k is given by te I :" e i1 ^¨¨¨^e ik : 1 ď i 1 ă ¨¨¨ă i k ď nu.

If ω P Λ k and η P Λ , then ω ^η P Λ k` . Furthermore, ω ^η " p´1q k η ^ω.

(2.1)

The exterior algebra Λ :"

À 8 k"0 Λ k "
À n k"0 Λ k is an associative algebra, graded with respect to the degree k.

The interior product of a k-form ω with a vector x P R n is the pk ´1q-form defined by ι x ωpx 1 , . . . , x k´1 q " ωpx, x 1 , . . . , x k´1 q.

Moreover,

ι e j pe i1 ^¨¨¨^e ik q " # 0 if j " any i r p´1q r´1 e i1 ^¨¨¨^x e ir ^¨¨¨^e ik if j " i r , (2.2) 
where the "cap" over e ir means that it is deleted from the exterior product. One may check that ι x ι y `ιy ι x " 0.

(2.3) Given x P R n , the exterior product of a k-form ω with the linear form x ˚is the pk `1q-form defined by

ε x ω " x ˚^ω.
From the associativity of the wedge product and (2.1), it follows

ε x ε y `εy ε x " 0. (2.4)
There is the following useful anticommutation relation

ε x ι y `ιy ε x " xx, yy Id Λ , x, y P R n . (2.5)
This is a fairly straightforward consequence of (2.2). Further, by (2.5), (2.4) and (2.3) we have ε x ι y ε x " xx, yyε x , ι y ε x ι y " xx, yyι y .

We denote by ι j the interior product with the basis vector e j and by ε j the exterior products with e j . The following lemma is needed for later use.

Lemma 2.1. On Λ k we have n ÿ j"1 ε j ι j " k Id Λ , n ÿ j"1 ι j ε j " pn ´kq Id Λ .
Proof. Let I " ti 1 , . . . , i k u Ă t1, 2, . . . , nu. In view of (2.2) and the fact that e j ^ej " 0 for every j, clearly we have

´ÿ jPI ε j ι j ¯eI " ke I , ´ÿ jPI ι j ε j ¯eI " 0.
Similarly, ´ÿ jRI ε j ι j ¯eI " 0, ´ÿ jRI ι j ε j ¯eI " pn ´kqe I .

The lemma is now a matter of putting pieces together.

From now on, we will identify the dual of R n with R n . For 0 ď k ď n, let

E k pR n q " C 8 `Rn , Λ k ˘» C 8 pR n q b Λ k pR n q
be the space of smooth complex-valued differential forms of degree k on R n . An element of E k pR n q can be uniquely represented as

ωpxq " ÿ 1ďi 1 㨨¨ăi k ďn ω i 1 ,¨¨¨,i k pxqe i 1 ,¨¨¨,i k , (2.6) 
where the coefficients ω I are complex-valued smooth functions on R n . In particular, E 0 pR n q " C 8 pR n q. The direct sum

EpR n q :" n à k"0 E k pR n q
is the linear space of all smooth differential forms.

From the properties of the interior product ι x and the exterior product ε x on Λ k which we discussed above, one gets analogue properties on E k pR n q.

We now define the exterior differential d :

E k pR n q ÝÑ E k`1 pR n q by d " n ÿ m"1 ε m B m ,
and the co-differential δ :

E k`1 pR n q ÝÑ E k pR n q by δ " ´n ÿ m"1 ι m B m ,
where B m is the directional derivative in the direction of the basis vector e m . We set δ " 0 on E 0 pR n q " C 8 pR n q. In the light of (2.3), (2.4) and (2.5), direct computations show d ˝d " δ ˝δ " 0 and dι j `ιj d " B j , δε j `εj δ " ´Bj , 0 ď j ď n.

(2.7)

We close this section by introducing the Hodge Laplacian on differential forms, defined by ∆ :" ´pdδ `δdq "

n ÿ m"1 B 2 m .
(2.8)

Henceforth we will denote the Hodge Laplacian by Q `B Bx ˘where

Qpxq :" x 2 1 `¨¨¨`x 2 n .
(2.9)

The main identities for Riesz distributions on differential forms

For s a complex parameter, consider for ϕ P SpR n q the formula

@ R s , ϕ D " π ´n 2 2 ´n´s Γ `´s 2 Γ `n`s 2 ˘żR n ϕpxq}x} s dx. (3.1)
For ´n ă Re s ă 0, this formula defines a tempered distribution depending holomorphically on s. The normalization factor is chosen for convenience, as we shall see below (see (3.2)). By standard argument (see [START_REF] Gelfand | Spaces of fundamental and generalized functions[END_REF]) it can be analytically continued to C, yielding a meromorphic family of tempered distributions, called the Riesz distributions.

We follow the following convention for the Fourier transform on Schwartz functions ϕ P SpR n q:

Fpϕqpξq " ż R n ϕpxqe ixx,ξy dx, which extends to the space of tempered distributions S 1 pR n q. It is known (see [START_REF] Gelfand | Spaces of fundamental and generalized functions[END_REF] or [16, p. 38]) that the image of R s by the Fourier transform is FpR s qpξq " }ξ} ´n´s .

(3.

2)

The classical Riesz distributions offer a good motivation for defining Riesz distributions for differential forms on R n with coefficients in the Schwartz space SpR n q.

For 0 ď k ď n, let SE k pR n q (resp. S 1 E k pR n q) be the space of differential k-forms represented as in (2.6) with coefficients ω i 1 ,...,i k in SpR n q (resp. S 1 pR n q ). We pin down that we may extend the Fourier transform F on the space SE k pR n q by acting on the coefficients ω i 1 ,...,i k of the form (2.6).

For 0 ď k ď n and a complex parameter s, let R k s be the Riesz distribution on differential forms defined by

xR k s , ωy " π ´n 2 2 ´s´n`1 Γ `´s 2 `1Γ `s`n 2 ˘żR n }x} s´2 pι x ε x ´εx ι x qωpxqdx, (3.3) 
with ω P SE k pR n q. For ´n ă Re s ă 0, this formula defines a tempered distribution depending holomorphically on s. By [4, §3.2], R k s can be analytically continued to C, giving a meromorphic family of tempered distributions. When k " 0, the identity ι x ε x `εx ι x " }x} 2 Id E implies immediately that R 0 s is nothing but the classical Riesz distribution (3.1).

In [START_REF] Fischmann | A family of Riesz distributions for differential forms on Euclidean space[END_REF]Theorem 3.2] the authors proved that the Fourier transform of R k s is given by FpR k s qpξq " }ξ} ´s´n´2 ´´ps `2kqι ξ ε ξ `ps `2n ´2kqε ξ ι ξ ¯(3.4)

for s not a pole. Due to the facts ι ξ " 0 and ι ξ ε ξ " }ξ} 2 Id E on SE 0 pR n q " SpR n q, it follows that (3.4) for k " 0 coincides with (3.2).

In order to simplify notation, it is convenient to let

Z k s :" FpR k ´s´n q (3.5) i.e. Z k s pxq " }x} s´2 ´ps `n ´2kqι x ε x ´ps ´n `2kqε x ι x ¯.
We should point that in all arguments below we first prove the desired result when the complex parameter s is so that everything makes sense, and then we extend it meromorphically to the complex plane C.

We shall need the following crucial result (which might be of some interest in its own right):

Theorem 3.1. The distribution Z k s satisfies the following properties:

Z k s pxq " Z k s´2 pxq ´ak,s ι x ε x `bk,s ε x ι x ¯, (3.6) 
B Bx j Z k s pxq " Z k s´2 pxq ´sx j Id `ck,s ι x ε j `dk,s ε x ι j ¯, (3.7) 
Q ´B Bx ¯Zk s pxq " sps `nqZ k s´2 pxq, (3.8) 
with

a k,s " s `n ´2k s `n ´2k ´2, b k,s " s ´n `2k s ´n `2k ´2 , (3.9) 
and

c k,s " 2s s `n ´2k ´2 , d k,s " 2s s ´n `2k ´2. (3.10)
Above Q `B Bx ˘denotes the Hodge Laplacian (see (2.8)).

Proof.

(1) On one hand, we may rewrite Z k s pxq as

Z k s pxq " }x} 2 Z k s´2 pxq ´2sps `nq}x} s´2 pι x ε x ´εx ι x q.
On the other hand, using the fact ι x ε x `εx ι x " }x} 2 Id E , we may rewrite the term }x} 2 pι x ε x ´εx ι x q as follows:

}x} 2 pι x ε x ´εx ι x q " ´ps `n ´2k ´2qι x ε x ´ps ´n `2k ´2qε x ι x ¯´a 1 k,s ι x ε x `b1 k,s ε x ι x ¯, (3.11) 
where

a 1 k,s " 1 s `n ´2k ´2, b 1 k,s " 1 s ´n `2k ´2.
Thus,

Z k s pxq " }x} 2 Z k s´2 pxq `2Z k s´2 pxq pa 1 k,s ι x ε x `b1 k,s ε x ι x q.
Using again the identity ι x ε x `εx ι x " }x} 2 Id E to deduce the first statement.

(2) First we have

B Bx j pι x ε x q " ι j ε x `ιx ε j " x j Id E ´εx ι j `ιx ε j , B Bx j pε x ι x q " ε j ι x `εx ι j " x j Id E `εx ι j ´ιx ε j ,
where, for abbreviation, ι j (resp. ε j ) denotes ι e j (resp. ε e j ). Above we have used the identity (2.5). Then B Bx j Z k s pxq " ps ´2qx j }x} s´4 ´ps `n ´2kqι x ε x ´ps ´n `2kqε x ι x }x} s´2 ´ps `n ´2kqpx j Id E ´εx ι j `ιx ε j q ´ps ´n `2kqpx j Id E `εx ι j ´ιx ε j q

" ps ´2qx j }x} s´4 ´`ps ´2 `n ´2kqι x ε x ´ps ´2 ´n `2kqε x ι x ˘`2pι x ε x ´εx ι x q }x} s´2 ´2pn ´2kqx j Id E `2spι x ε j ´εx ι j q " ps ´2qx j Z k s´2 pxq `2x j }x} s´4 ´pn ´2kq}x} 2 Id E `ps ´2qpι x ε j ´εx ι j q 2s}x} s´2 pι x ε j ´εx ι j q
" ps ´2qx j Z k s´2 pxq `2x j Z k s´2 pxq `2s}x} s´2 pι x ε j ´εx ι j q. Now using again the trick (3.11) we obtain

B Bx j Z k s pxq " sx j Z k s´2 pxq `2sZ k s´2 pxqpa 1 k,s ι x ε j `b1 k,s ε x ι j q, and (3.7) follows. 
(3) The definition of Z k s pxq and the intertwining property

Q `B Bx ˘˝F " ´F ˝} ¨}2 imply Q ´B Bx ¯Zk s pxq " ´Fp} ¨}2 R k ´s´n qpxq " sps `nqFpR k ´s´n`2 qpxq " sps `nqZ k s´2 pxq.
For 0 ď k, ď n, we define the space E k, pR n ˆRn q as the space of smooth functions on R n ˆRn with values in Λ k b Λ . More generally, denote by DE k, pR n ˆRn q (resp. SE k, pR n ˆRn q, S 1 E k, pR n ˆRn q) the space of differential forms of bidegree pk, q on R n ˆRn with coefficients in DpR n ˆRn q (resp. SpR n ˆRn q, S 1 pR n ˆRn q) Theorem 3.2. For every ω P SE k, pR n ˆRn q, the following formula hols true

Q ˆB Bx ´B By ˙`Z k s pxq b Z t pyq ωpx, yq ˘" Z k s´2 pxq b Z t´2 pyq D k, s,t ωpx, yq,
where D k, s,t is the differential operator on pk, q-differential forms given by

D k, s,t " ´ak,s ι x ε x `bk,s ε x ι x ¯b ´a ,t ι y ε y `b ,t ε y ι y ¯˝Q ˆB Bx ´B By 2 n ÿ j"1 ´sx j Id E k `ck,s ι x ε j `dk,s ε x ι j ¯b ´a ,t ι y ε y `b ,t ε y ι y ¯˝´B Bx j ´B By j 2 n ÿ j"1 ´ak,s ι x ε x `bk,s ε x ι x ¯b ´ty j Id E `c ,t ι y ε j `d ,t ε y ι j ¯˝´B Bx j ´B By j 2 n ÿ j"1 ´sx j Id E k `ck,s ι x ε j `dk,s ε x ι j ¯b ´ty j Id E `c ,t ι y ε j `d ,t ε y ι j sps `nq Id E k b ´a ,t ι y ε y `b ,t ε y ι y ¯`tpt `nq ´ak,s ι x ε x `bk,s ε x ι x ¯b Id E .
The coefficients a k,s , b k,s , c k,s and d k,s are given by (3.9) and (3.10) (and similarly when the subscripts k, s are replaced by , t).

Proof. A routine calculation gives 

Q ˆB Bx ´B By ˙´Z k s pxq b Z t pyqωpx
"Q ˆB Bx ˙Zk s pxq b Z t pyqωpx, yq `Zk s pxq b Q ˆB By ˙Z t pyqωpx, yq ´2 n ÿ j"1 B Bx j Z k s pxq b B By j Z t pyqωpx, yq "sps `nqZ k s´2 pxq b Z t pyqωpx, yq `tpt `nqZ k s pxq b Z t´2 pyqωpx, yq ´2Z k s´2 pxq b Z t´2 pyq ! n ÿ j"1 ´sx j Id E k `ck,s ι x ε j `dk,s ε x ι j ¯b ´ty j Id E `c ,t ι y ε j `d ,t ε y ι j ¯)ωpx, yq "Z k s´2 pxq b Z t´2 pyq ! sps `nq Id E k b ´a ,t ι y ε y `b ,t ε y ι y ¯`tpt `nq ´ak,s ι x ε x `bk,s ε x ι x ¯b Id E ´2 n ÿ j"1 ´sx j Id E k `ck,s ι x ε j `dk,s ε x ι j ¯b ´ty j Id E `c ,t ι y ε j `d ,t ε y ι j ¯)ωpx, yq.
Secondly, the identity (3.6) gives

Z k s pxq b Z t pyqQ ˆB Bx ´B By ˙ωpx, yq " Z k s´2 pxq b Z t´2 pyq !´a k,s ι x ε x `bk,s ε x ι x ¯b ´a ,t ι y ε y `b ,t ε y ι y ¯Q ˆB Bx ´B By ˙)ωpx, yq.
Finally, using again (3.6) and (3.7) we obtain

r Q ˆB Bx , B By ˙`Z k s pxq b Z t pyqωpx, yq ˘" 2Z k s´2 pxq b Z t´2 pyq ! n ÿ j"1 ´sx j Id E k `ck,s ι x ε j `dk,s ε x ι j ¯b ´a ,t ι y ε y `b ,t ε y ι y ¯Bω Bx j px, yq `n ÿ j"1 ´ak,s ι x ε x `bk,s ε x ι x ¯b ´ty j Id E `c ,t ι y ε j `d ,t ε y ι j ¯Bω By j px, yq ´n ÿ j"1 ´ak,s ι x ε x `bk,s ε x ι x ¯b ´ty j Id E `c ,t ι y ε j `d ,t ε y ι j ¯Bω Bx j px, yq ´n ÿ j"1 ´sx j Id E k `ck,s ι x ε j `dk,s ε x ι j ¯b ´a ,t ι y ε y `b ,t ε y ι y ¯Bω By j px, yq ) "2Z k s´2 pxq b Z t´2 pyq ! n ÿ j"1 ´sx j Id E k `ck,s ι x ε j `dk,s ε x ι j ¯b ´a ,t ι y ε y `b ,t ε y ι y ¯´B Bx j ´B By j ¯ωpx, yq ´n ÿ j"1 ´ak,s ι x ε x `bk,s ε x ι x ¯b ´ty j Id E `c ,t ι y ε j `d ,t ε y ι j ¯´B Bx j ´B By j ¯ωpx, yq ) .
This finishes the proof of the theorem.

For s P C, let

J k s ωpxq :" ż R n
R k s px ´yqωpyqdy, ω P SE k pR n q.

(3.12)

We may see J k s as a convolution operator with the distribution R k s , J k s ω " R k s ˚ω. So (3.12) defines a meromorphic family of operators from SE k pR n q to S 1 E k pR n q.

Recall the following formulas for the Fourier transform : This is merely the Fourier transform version of Theorem 3.2, using (3.5) and formulas (3.13), (3.14) and (3.15). We omit details.

F
Next, we need to rewrite E k, s,t in its normal form (i.e. multiplications after differentiations). Before stating the result, let us introduce for 0 ď k ď n, 1 ď j ď n the following differential operators:

l k,s :" α k,s δd `βk,s dδ, ∇ k,s,j :" ´2α k,s B Bx j ´4pn ´2kqε j δ `4pn ´2kqdι j ¯´´s α k,s B Bx j `γk,s ε j δ `δk,s dι j " p2 ´sqα k,s B Bx j ´p4pn 
´2kq `γk,s qε j δ `p4pn ´2kq ´δk,s qdι j " p2 ´sq " ps `n ´2kqps ´n `2k ´2q B Bx j `2ps ´n `2kqε j δ `2ps `n ´2kqdι j ı ,

where the coefficients α k,s , β k,s , γ k,s and δ k,s are given by (3.9) and (3.10). Similarly, we introduce the operators l ,t and ∇ ,t,j with respect to the y-variable.

Theorem 3.4. The operator E k, s,t in Theorem 3.3 can be rewritten in the following normal form:

E k, s,t " ´}x ´y} 2 l k,s b l ,t `2 n ÿ j"1 px j ´yj q t∇ k,s,j b l ,t ´lk,s b ∇ ,t,j u `2 n ÿ j"1 ∇ k,s,j b ∇ ,t,j
`pt ´2qpt ´n ´2qpt ´n `2 qpt `n ´2 q l k,s b Id E `ps ´2qps ´n ´2qps ´n `2kqps `n ´2kq Id E k b l ,t .

(3.20)

The proof is straightforward, but long and tedious. We first need some elementary formulas .

Lemma 3.5. Let ω be a k-form. Then, for fixed y P R n ,

δ dpx j ´yj qω " px j ´yj q δ d ω ´2 B Bx j ω ´εj δ ω `d ι j ω d δpx j ´yj qω " px j ´yj q d δ ω `εj δ ω ´d ι j ω δ d }x ´y} 2 ω " }x ´y} 2 δ d ω `2 n ÿ j"1 px j ´yj qp´2 B Bx j ´εj δ `d ι j qω ´2pn ´kqω d δ }x ´y} 2 ω " }x ´y} 2 d δ ω `2 n ÿ j"1
px j ´yj qpε j δ ´d ι j qω ´2kω.

Derivations are taken with respect to the x-variable.

Proof. This is a direct consequence of the identities # dpx j ´yj qω " ε j ω `px j ´yj q d ω δpx j ´yj qω " ´ιj ω `px j ´yj q δ ω, and # d }x ´y} 2 ω " }x ´y} 2 d ω `2 ř n j"1 px j ´yj q ε j ω δ }x ´y} 2 ω " }x ´y} 2 δ ω ´2 ř n j"1 px j ´yj q ι j ω.

We may now start the proof of Theorem 3.4. In the light of Lemma 3.5 (and its version with respect to y) together with the anti-commutator laws in (2.7) we arrive at the expressions below for the first three terms of the operator E k, s,t in Theorem 3. px j ´yj q ´´2pn ´2kqpε j δ ´dι j q `αk,s B Bx j ¯b ´α ,t δd `β ,t dδ

4 n ÿ j"1
px j ´yj q ´αk,s δd `βk,s dδ ¯b ´´2pn ´2 qpε j δ ´dι j q `α ,t B By j

8 n ÿ j"1
´´2pn ´2kqpε j δ ´dι j q `αk,s B Bx j ¯b ´´2pn ´2 qpε j δ ´dι j q `α ,t B By j 2ppn

´ qα ,t ` β ,t q ´αk,s δd `βk,s dδ ¯b

Id E `2ppn ´kqα k,s `kβ k,s q Id E k b ´α ,t δd `β ,t dδ ¯.
The second term of the operator E k, s,t in (3.19) can be rewritten as: 

´2 n ÿ j"1 px j ´yj q ´sα k,s B Bx j `γk,s ε j δ `δk

¯.

It remains to sum up all terms to finish the poof of Theorem 3.4

We close this section by writing the operator E k, s,t in the particular case k " " 0. Here the operator E 0,0 s,t will act on the space SE 0,0 pR n ˆRn q " SpR n ˆRn q. Since δ " 0 and ι j " 0 on scalar functions, the operators l 0,s and ∇ 0,s,j reduce to l 0,s " α 0,s δd " ´α0,s Q `B Bx ˘, (see (2.8)), and ∇ 0,s,j " p2 ´sqα 0,s B Bx j .

Similar identities hold with respect to y. Hence Up to the normalization constant ps `nqps ´n ´2qpt `nqpt ´n ´2q and the change of variables s by 2s and t by 2t, the operator E 0,0 s,t coincides with the differential operator obtained in [START_REF] Ben Saïd | Conformally covariant bi-differential operators on a simple real Jordan algebra[END_REF]Proposition 10.3] to build covariant bi-differential operators under the (diagonal) action of the Lie group Opn `1, 1q.

E 0,0 s,t " α 0,s α 0,t ! ´}x ´y} 2 Q `B Bx ˘b Q `B By ˘´2 n ÿ j"1 pt ´2qpx j ´yj qQ `B Bx ˘b B By j `2 n ÿ j"1 ps ´2qpx j ´yj q B Bx j b Q `B

Background on the conformal group of R n

Let R 1,n`1 be the n `2-dimensional real vector space equipped with the Lorentzian quadratic form rx, xs " x 2 0 ´px 2 1 `¨¨¨`x 2 n`1 q, x " px 0 , x 1 , . . . , x n`1 q.

Let Ξ be the isotropic cone defined by Ξ " tx P R 1,n`1 zt0u : rx, xs " 0u.

For x P R 1,n`1 zt0u, denote by rxs " R ˚x the ray through x and consider the space of isotropic rays, i.e. the quotient space Ξ{R ˚.

The subspace tx P R 1,n`1 : x 0 " 0u will be identified with R n`1 under the isomorphism

R n`1 Q x 1 Þ ÝÑ p0, x 1 q P R 1,n`1 .
Denote by S n the unit sphere of R n`1 . The map

S n Q x 1 Þ ÝÑ R ˚p1, x 1 q
yields an isomorphism of S n with Ξ{R ˚; the inverse isomorphism being described by

Ξ{R ˚Q R ˚x Þ ÝÑ R ˚x X tx 0 " 1u.
Let G " SO 0 p1, n `1q be the connected component of the identity in the group of isometries for the Lorentzian form on R 1,n`1 . Then G acts on Ξ and commutes with the action of R ˚on R 1,n`1 , so that G acts on Ξ{R ˚and yielding an action of G on S n .

Let us give more details on the action of G on the unit sphere S n . For x 1 " px 1 1 , . . . , x 1 n`1 q P S n and g P G, observe that pgp1, x 1 qq 0 ą 0 and define gpx 1 q P S n by p1, gpx 1 qq " pgp1, x 1 qq ´1 0 gp1, x 1 q.

For g P G and x 1 P S n , set cpg, x 1 q " pgp1, x 1 qq ´1 0 .

Clearly cpg, x 1 q is a smooth and strictly positive function on G ˆSn . Moreover, the function c satisfies the cocycle property cpg 1 g 2 , x 1 q " c `g1 , g 2 px 1 q ˘cpg 2 , x 1 q, g 1 , g 2 P G, x 1 P S n .

This action turns out to be conformal on S n , i.e. for any g P G, x 1 P S n and arbitrary ξ P T x S n , the differential Dgpx 1 q satisfies }Dgpx 1 qξ} " cpg, x 1 q}ξ}, and the term cpg, x 1 q is called the conformal factor of g at x 1 . Let e n`1 " p0, 0, . . . , 0, 1q, and let

κ : R n ÝÑ S n t´e n`1 u defined by px 1 , . . . , x n q Þ ÝÑ ˆ2x 1 1 `|x| 2 , ¨¨¨, 2x n 1 `|x| 2 , 1 ´|x| 2 1 `|x| 2
ḃe the inverse map of the stereographic projection. The action of G on S n can be transferred to a rational action (not everywhere defined) on R n , for which we still use the notation

G ˆRn Q pg, xq Þ ÝÑ gpxq P R n .
The map κ is conformal and hence, the rational action of G on R n transferred from its action on S n is conformal. For g P G defined at x P R n , denote by Ωpg, xq the corresponding conformal factor. Below, among other things, we will find an expression for Ωpg, xq.

where n " LiepN q. Now let x P R n and let g P G be defined at x. Since gpxq " gn x p0q, it follows from (4.2) that Dgpxq " Dpgn x qp0q " e ´tpgnxq mpgn x q. (4.3) As a consequence, we obtain Ωpg, xq " e ´tpgnxq , g P G, x P R n . (4.4)

We close this paragraph by the following standard result.

Lemma 4.1. Let x, y P R n and let g P G be defined at x and y. Then

}gpxq ´gpyq} 2 " Ωpg, xq }x ´y} 2 Ωpg, yq. (4.5) 
5. The principal series representations of SO 0 p1, n `1q on the space of differential forms Let E k pS n q be the space of differential k-forms on the unit sphere S n (0 ď k ď n). For λ P C, let ρ k λ be the representation of G " SO 0 p1, n `1q on E k pS n q given by ρ k λ pgqω px 1 q " cpg ´1,

x 1 q λ `Lg ´1 ω ˘px 1 q, g P G, ω P E k pS n q,
where L g is the diffeomorphism x 1 Þ ÝÑ gpx 1 q on S n and L g is the induced action on differential forms. Here cpg ´1, x 1 q is conformal factor given by (4.1). Below we will describe the noncompact model for this series of representations, obtained from the present model through the stereographic projection.

Denote by DE k pR n q the space of k-forms represented as in (2.6) with the complexvalued coefficients ω i 1 ,...,i k in DpR n q.

Now, for g P G and ω P E k pR n q let

π k λ pgqωpxq " Ωpg ´1, xq λ L g´1 ωpxq, (5.1) 
where Ωpg ´1, xq is given by (4.4). This formula defines formally a representation of G. As it stands, the representation is not globally defined. In what follows, it will be enough to observe that for a relatively compact open subset U of R n , there exists a small neighborhood V of the neutral element in G (depending on U ) such that for any g P V , g ´1 is defined on U . Hence, for any smooth differential k-form ω with Supppωq Ă U , the object π k λ pgq ω is well defined, it belongs to E k pR n q and has a compact support. This allows us to define the corresponding infinitesimal representation dπ k λ of the Lie algebra g " LiepGq by

dπ k λ pXqω :" d dt π k λ pexpptXqqω ˇˇt"0 , X P g.
The expression is well defined when ω P DE k pR n q. The operator dπ k λ pXq is a first order differential operator with polynomial coefficients and hence can be extended to SE k pR n q.

The representations π k λ can also be viewed as principal series representations. Indeed, rewrite (5.1) as π k λ pgqωpxq " Ωpg ´1, xq λ ωpg ´1pxqq ˝Dg ´1pxq,

where ωpg ´1pxqq ˝Dg ´1pxq is the k-form given by ωpg ´1pxqq ˝Dg ´1pxqpv 1 , . . . , v k q " ωpg ´1pxqqpDg ´1pxqv 1 , . . . , Dg ´1pxqv k q. Now using (4.3) and (4.4) we get π k λ pgqωpxq " e ´pλ`kqtpg ´1nxq σ k `mpg ´1n x q ˘´1 ωpg ´1pxqq, (

where σ k is the representation of M " SOpnq on Λ k " Λ k pR n q b C. The presentation (5.2) is just the noncompact realization of a principal series representation (cf [START_REF] Knapp | Representation Theory of Semisimple Groups[END_REF]). This yields the identification

π k λ » Ind G P pσ k b χ λ`k b 1q, (5.3) 
where, for λ P C, we denote by χ λ the character of A giver by χ λ pa t q " e λt . We pin down that the representation σ k is an irreducible representation of SOpnq, except for the case where n is even and k " n 2 (see [START_REF] Fischmann | Conformal symmetry breaking differential operators on differential forms[END_REF][START_REF] Ikeda | Spectra of eigenforms of the Laplacian on S n and P n pCq[END_REF]), but for our purpose, this makes no difference.

The intertwining Knapp-Stein operators play a crucial role in semi-simple harmonic analysis. In the present situation they are given as follows (see [START_REF] Fischmann | A family of Riesz distributions for differential forms on Euclidean space[END_REF]),

I k λ ωpxq " ż R n R k ´2n`2λ px ´yq ωpyqdy, ω P SE k pR n q
where R k ´2n`2λ is the tempered distribution defined by (3.3). In the notations of the previous section, I k λ is nothing but the convolution operator J k s , defined in (3.12), with s " ´2n `2λ. The operators I k λ , defined first for n 2 ă Re λ ă n so that the integral converges for ω P SE k pR n q, can be analytically continued to the complex λ-plane as a meromorphic family of convolution operators by tempered distributions, thus mapping SE k pR n q into S 1 E k pR n q. The following (a priori formal) relation holds for any g P G :

I k λ ˝πk
λ pgq " π k n´λ pgq ˝Ik λ .

(5.4)

The relation is first proved when n 2 ă Re λ ă n, and shown (using the covariance property (4.5) of }x ´y} 2 ) to be valid for forms in DE k pR n q and g in an appropriate small neighborhood of the neutral element of G. The corresponding infinitesimal form of the intertwining relation (5.4) is

I k λ ˝dπ k λ pXq " dπ k n´λ pXq ˝Ik λ , (5.5) 
for X P g and valid on SE k pR n q. By analytic continuation, it is then extended meromorphically in λ.

The following property will be required later on.

Proposition 5.1. For generic λ, the operator I k λ is injective on the space SE k pR n q. Proof. Since I k λ is the convolution product with the tempered distribution R k ´2n`2λ , then saying that I k λ is injective is equivalent to prove that (for generic λ) the multiplication operator by the Fourier transform F `Rk ´2n`2λ ˘is injective on SE k pR n q. Recall from (3.4) that, generically in λ, we have F `Rk ´2n`2λ ˘pxq " 2}x} n´2λ´2 ´pn ´k ´λqι x ε x `pλ ´kqε x ι x ¯.

Recall also from Section 2 that pι x ε x q 2 " }x} 2 ι x ε x , pε x ι x q 2 " }x} 2 ε x ι x , pι x ε x qpε x ι x q " 0, pι x ε x q 2 `pε x ι x q 2 " }x} 4 Id Λ .

(5.6)

If we assume, in addition, that n ´k ´λ ‰ 0 and λ ´k ‰ 0, then the identities (5.6) imply that for x ‰ 0 the operator pn ´k ´λqι x ε x `pλ ´kqε x ι x is invertible. Let ω P SE k pR n q and λ as above so that FpR k ´2n`2λ qpxqωpxq " 0. As FpR k ´2n`2λ qpxq is invertible for x ‰ 0, it follows that ωpxq " 0 for x ‰ 0, and therefore ω " 0 on R n .

The covariance property of the source operator

We can now start to give the conformal interpretation of Theorem 3.3. On one hand, we saw in the previous section that the convolution operators J k s are related to the Knapp-Stein intertwining operators. So it remains to understand the conformal property of the multiplication by }x ´y} 2 .

The group G " SO 0 p1, n `1q acts rationally on the space R n ˆRn by the diagonal extension of its action on R n , and hence on E k, pR n ˆRn q, giving a realization of the tensor product representation π k λ b π µ . More explicitly π k λ b π µ pgq ωpx, yq " Ωpg ´1, xq λ Ωpg ´1, yq µ L g´1 ω px, yq. Define the multiplication operator M : E k, pR n ˆRn q ÝÑ E k, pR n ˆRn q by M ωpx, yq " }x ´y} 2 ωpx, yq.

The covariance property (4.5) of }x ´y} 2 immediately implies the following result. Here again the relation is valid when applied to differential forms in DE k, pR n ˆRn q and g in a small enough neighborhood of the neutral element of G. The rigorous infinitesimal version reads as follows : For every X P g, we have 

M ˝d`π k λ b π µ ˘pXq " d `πk λ´1 b π µ´1 ˘pXq
k, λ,µ " 16}x ´y} 2 r l k,λ b r l ,µ ´32 n ÿ j"1 px j ´yj q ! p2λ ´n `2q r ∇ k,λ,j b r l ,µ ´p2µ ´n `2q r l k,λ b r ∇ ,µ,j ) ´32p2λ ´n `2qp2µ ´n `2q n ÿ j"1 r ∇ k,λ,j b r ∇ ,µ,j ´32p2µ ´n `2qpµ `1qpµ ´ qpµ ´n ` q r l k,λ b Id E ´32p2λ ´n `2qpλ `1qpλ ´kqpλ ´n `kq Id E k b r l ,µ
, where r l k,λ " pλ ´n `kqpλ ´k `1q δ d `pλ ´n `k `1qpλ ´kq d δ r ∇ k,λ,j " pλ ´n `kqpλ ´k `1qB x j ´pλ ´kqε j δ ´pλ ´n `kq δ ι j , and similarly for r l ,µ and r ∇ ,µ,j . We will call F k, λ,µ the source operator.

Theorem 3.3 can now be reformulated as follows.

Theorem 6.2. The differential operator F k, λ,µ acts on E k, pR n ˆRn q and satisfies κ

k, λ,µ M ˝`I k λ b I µ ˘" `Ik λ`1 b I µ`1 ˘˝F k, λ,µ
, where κ k, λ,µ " 16pλ ´k `1qpλ ´n `k `1qpµ ´ `1qpµ ´n ` `1q.

Moreover, we have the following covariance property of the source operator F k, λ,µ . Theorem 6.3. For all λ, µ P C and for any X P g, we have

F k, λ,µ ˝d`π k λ b π µ ˘pXq " d `πk λ`1 b π µ`1 ˘pXq ˝F k, λ,µ . Proof.
In the light of Theorem 6.2, Proposition 6.1 and the identity (5.5), we have

`Ik λ`1 b I µ`1 ˘˝F k, λ,µ ˝d`π k λ b π µ ˘pXq " κ k, λ,µ M ˝`I k λ b I µ ˘˝d `πk λ b π µ ˘pXq " κ k, λ,µ M ˝d`π k n´λ b π n´µ ˘pXq ˝`I k λ b I µ " κ k, λ,µ d `πk n´λ´1 b π n´µ´1 ˘pXq ˝M ˝`I k λ b I µ " d `πk n´λ´1 b π n´µ´1 ˘pXq ˝`I k λ`1 b I µ`1 ˘˝F k, λ,µ " `Ik λ`1 b I µ`1 ˘˝d `πk λ`1 b π µ`1 ˘pXq ˝F k, λ,µ . Now, use Proposition 5.1 to finish the proof.
As G is connected, the infinitesimal covariance property of the operator F k, λ,µ implies first its covariance under the group G, that is

F k, λ,µ ˝`π k λ b π µ ˘pgqω " `πk λ`1 b π µ`1 ˘pgq ˝F k, λ,µ ω,
for ω P DE k, pR n ˆRn q and g P G is such that g ´1 is defined on a neighborhood of the support of ω.

Remark 6.4. Let us mention that improving on our results, it is possible to construct a differential operator r F k, λ,µ on S n ˆSn , which admits F k, λ,µ as its local expression on S n tp0, 0, . . . , 0, ´1qu ˆSn tp0, 0, . . . , 0, ´1qu » R n ˆRn and which is covariant for G with respect to pρ k λ b ρ µ , ρ k λ`1 b ρ µ`1 q. We skip the proof as this corresponds to general standard results. See for instance Section 8.2 in [START_REF] Ben Saïd | Conformally covariant bi-differential operators on a simple real Jordan algebra[END_REF] or Fact 3.3 in [START_REF] Kobayashi | Conformal symmetry breaking operators for differential forms on spheres[END_REF].

It is possible to compose the source operators, to yield more covariant differential operators. Indeed, for arbitrary integer m ě 1, we set

F k, λ,µ;m :" F k, λ`m´1,µ`m´1 ˝¨¨¨˝F k, λ`1,µ`1 ˝F k, λ,µ . Then F k, λ,µ;m intertwines the representations π k λ b π µ and π k λ`m b π µ`m .
The following statement gives another approach to these operators. 

Conformally covariant bi-differential operators on differential forms

From the source operators F k, λ,µ , one can construct covariant bi-differential operators under the action of G " SO 0 p1, n `1q. First, introduce the restriction map res : E k, pR n ˆRn q ÝÑ C 8 pR n , Λ k b Λ q defined by pres ωqpxq " ωpx, xq, where C 8 pR n , Λ k b Λ q denotes the space of complex-valued smooth functions on R n with values in Λ k bΛ . Let G acts on E k, pR n ˆRn q by π k λ bπ µ . Using the realization of π k λ and π µ as principal series representations (see (5.3)), the following result is immediate. As a representation of M " SOpnq, the representation σ k b σ is in general not irreducible. Let Γ be a minimal invariant subspace of Λ k b Λ under the action of SOpnq. Let σ Γ be the corresponding irreducible representation of SOpnq on Γ and let p Γ be the orthogonal projection on Γ. Define the map res Γ by res Γ " p Γ ˝res .

We can refine the previous proposition as follows. In some cases, it is possible to give an explicit expression for these covariant bidifferential operators. For instance, assume that 0 ď k ` ď n, then the representation Λ k` appears in the decomposition of the tensor product Λ k b Λ with multiplicity one and the projection (up to a normalization factor) is given by p Λ k` pω b ηq " ω ^η.

For m " 1, the bi-differential operator B k, ;Γ λ,µ;1 is given by B k, ;Γ λ,µ;1 pω b ηqpxq " ´32 ! p2µ ´n `2qpµ `1qpµ ´ qpµ ´n ` q r l k,λ ωpxq ^ηpxq `p2λ ´n `2qp2µ ´n `2q n ÿ j"1 r ∇ k,λ,j ωpxq ^r ∇ ,µ,j ηpxq `p2λ ´n `2qpλ `1qpλ ´kqpλ ´n `kqωpxq ^r l ,µ ηpxq

) (7.1)
If in addition k " " 0, i.e. ω, η P C 8 pR n q, then B 0,0;C λ,µ;1 pω b ηqpxq " ´64pλ `1qpλ ´nqpµ `1qpµ ´nq 

!
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 61 The operator M satisfies M ˝`π k λ b π µ ˘pgq " `πk λ´1 b π µ´1 ˘pgq ˝M .

Proposition 6 . 5 .

 65 For any integer m ě 1, we haveκ k, λ,µ;m M m ˝`I k λ b I µ ˘" `Ik λ`m b I µ`m ˘˝F k, λ,µ;m , where κ k, λ,µ;m " κ k, λ`m´1,µ`m´1 ¨¨¨κ k, λ`1,µ`1 κ k, λ,µ and M m " M ˝¨¨¨˝M , m-times. Proof. For m " 1, this is Theorem 6.2. Assume m ě 2. By induction on m we have κ k, λ,µ;m M m ˝`I k λ b I µ ˘" κ k, λ,µ;m M ˝M m´1 ˝`I k λ b I µ " κ k, λ`m´1,µ`m´1 M ˝pI k λ`m´1 b I µ`m´1 q ˝F k, λ,µ;m´1 " `Ik λ`m b I µ`m ˘˝F k, λ`m´1,µ`m´1 ˝F k, λ,µ;m´1" `Ik λ`m b I µ`m ˘˝F k, λ,µ;m .

Proposition 7 . 1 .

 71 For any pλ, µq the map res intertwines the representations π k λ b π µ and Ind G P `pσ k b σ q b χ λ`µ`k` b 1 ˘.

Proposition 7 . 2 .

 72 For any pλ, µq the map res Γ intertwines the representations π k λ b π µ and Ind G P `σΓ b χ λ`µ`k` b 1 ˘. Now define the bi-differential operators B k, ;Γ λ,µ;m : E k, pR n ˆRn q ÝÑ C 8 pR n , Γq by B k, ;Γ λ,µ;m :" res Γ ˝F k, λ,µ;m , where C 8 pR n , Γq denotes the space of smooth functions on R n with values in Γ Ă Λ k bΛ . Theorem 7.3. The operator B k, ;Γ λ,µ;m is a bi-differential operator covariant with respect to π k λ b π µ and Ind G P pσ Γ b χ λ`µ`k` `2m b 1q.
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	n ÿ j"1 Bx Finally, the third term of the operator E k, B ´sα k,s s,t in (3.19) can be rewritten as:
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j `γk,s ε j δ `δk,s dι j ¯b ´´2pn ´2 qpε j δ ´dι j q `α ,t B By j 2`n sκ k,s `pn ´kqγ k,s `kδ k,s ˘Id E b ´α ,t δd `β ,t dδ ¯. j `γ ,t ε j δ `δ ,t dι j 2`n tκ ,t `pn ´ qγ ,t ` δ ,t ˘´α k,s δd `βk,s dδ ¯b Id E .

Choose e n`1 " p0, 0, . . . , 0, 1q as origin on the sphere S n , and let rp1, e n`1 qs be the corresponding isotropic ray. The stabilizer of rp1, e n`1 qs is a parabolic subgroup P of G, which has the Langlands decomposition P " M AN with

Denote by N the opposite nilpotent subgroup,

The origin e n`1 on the sphere S n corresponds to the point 0 " p0, 0, . . . , 0q in R n , and hence the parabolic subgroup P is the stabilizer of 0. The group M » SOpnq acts on R n by its natural action and A acts on R n by a t pxq " e ´tx, a t P A.

The group N acts on R n by translations, n y pxq " x `y, n y P N .

The explicit action of N on R n (which is rational) will not be needed, but it is easily verified that Dn y p0q " Id n , n y P N.

Up to a closed subset of null Haar measure, the group G is equal to N ˆM ˆA ˆN . The corresponding decomposition of g P G is g " npgqmpgqa tpgq npgq.

An elementary computation gives

Dgp0q " Ad mpgqp0q |n ˝Ad a t pgq |n " e ´tpgq mpgq, (4.2)