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Abstract

Improvement of vibroacoustic models prediction capabilities in a probabilistic context requires a adapted
metric to compare experimental results with stochasitic computations. The likelihood appears as the natu-
ral tool to compare experiments with probabilistic computations as soon as the probability of a given result
may be computed. Since vibroacoustic analysis mainly rely on complex Frequency Response Functions (
[FRF| = {w + [FRF(w)]}) matrices that can be easily measured and computed, the likelihood of such com-
plex and frequency dependent matrices is investigated. A two stage statistical reduction, based on Indepen-
dant Components Analysis, is proposed in order to separate statisticaly independent components with com-
plex amplitudes which probability may be computed independently one from each others. Bi-dimensional
probability density fonctions of the complex components amplitudes are deduced from a Monte-Carlo sim-
ulation of a non-parametric stochastic model, using MSC/NASTRAN. The proposed statistical reduction
presents many interesting properties regarding the physical understanding of FRF matrices as well as a nu-
merical aspects.

1 Introduction

In the automotive industry, computational vibroacoustic models are used for designing automobiles (see for
instance [4, 15, 2]). The acoustic comfort and the vibrations of vehicles is a major issue. In the vibroacous-
tic analysis, FRFs are widely used to control the structure-borne noise transmission in the case of multiple
transmission paths. However, the computational structural model considered in this paper has about fifteen
million of degrees-of-freedom (DOFs) and the coupled acoustic cavity has about eight million of DOFs. The
high dimension of the computational model brings great difficulties. The advantage of the FRF is that, even
for such complex structures such as automobiles, it always provides a simple system of one vector-valued
input (excitation) and one vector-valued output (observation). The vibroacoustic computational model al-
lows an easy computation of FRF matrices. The same FRF matrices can also be measured experimentally.



Practical work with FRF requires to handle loadings and observation points. In order to compare experi-
mental measurement with the computational stochastic model results, we propose an approach based on the
maximum likelihood method [11, 14], which was introduced in [5, 13]. In this work, we will use the like-
lihood for quantifying the distance between the experiments and the stochastic computational model. For
this purpose, the quantity of most interest is the complex matrix-valued FRF, [FRF| = {w — [FRF(w)]}.
Both the parameters uncertainties and the model uncertainties induced by the modeling errors are taken into
account by the nonparametric probabilistic approach of uncertainties [12, 4, 13, 9]. The principle of this
approach consists in replacing the generalized matrices of the reduced-order vibroacoustic computational
model by random matrices whose probability distributions are constructed [14] using the maximum entropy
principle from Information Theory. Collections of realizations of the FRF matrices can be obtained from
a Monte-Carlo simulation. Since Monte-Carlo simulation requires hundreds or thousands of realizations to
obtain converged statistics of the results. Consequently, the required storage space may be tremendous.

The proposed approach aims to quantifying the consistency of the stochastic comptational model -described
by many of its possible realizations- with the measurements. It is based on two successive statistical reduc-
tions that are constructed using Independent Component Analysis (ICA) [7]. These statistical reductions
hopefully lead to a high data compression.

In this paper, we will first introduce the nonparametric probabilistic approach of uncertainties together with
the FRFs computations. Then, the two statistical reductions will be presented and applied to a computational
model of a car. The distance between the predictions and the experiments is then computed using the likeli-
hood concept. Finally, some observations made during this work will be discussed and assessed.

2 Reminder

A computationnal model is constructed by developing a mechanical model of a designed system in order to
predict the response of the real system which is a -later- manufactured version of the designed system. The
modelling process introduces two kinds of uncertainties : the data uncertainties and the model uncertainties.
To achieve some predictivity, these uncertainties have to be taken into account. However, the usual parametric
probabilistic approach does not consider the model uncertainties. We will use the nonparametric probabilistic
approach of uncertainties Ref.[12] which takes into account both kind of uncertainties. Let us now introduce
all the terms that we will use all along this work.

In this approach, the mean values of the generalized matrices of the mass, damping and stifness [M], [D] and
[K] are replaced by random matrices [M], [D] and [K]. The nonparametric probabilistic approach depends on
six hyperparameters controlling the spread of the 3 constitutive matrices of the fluid and structural domains.
In this approach the coupling uncertainty is not accounted.

The MSC/Nastran software, in which the nonparametic probabilistic approach has been implemented, is used
to produce n = 1, -, Nysc samples of an FRF thanks to the Monte Carlo simulation Ref.[10], provided
the dispersion hyperparameters d 4 as explained in Ref.[4].

2.1 Nonparametric probabilistic approach

In this paper we consider a linear elastoplastic problem of a complex structure coupled with an internal
acoustic cavity. The computational model is constructed using the finite element method (FEM) as shown
in Fig.1. The problem is formulated in the frequency domain w (angular frequency). We are interested in
computing FRF of the system in the frequency band analysis noted B defined by B = [win, Wmaz] With
0 < Wmnin < Wmaz (With w = 27 f). The complex vector u(w) of the m; degree of freedom (DOF) of the
FEM, corresponding to the discretization of the displacements field. Let p(w) the complex vector of the m s
DOFs representing the discretization of the acoustical pressure field. The finite element model is considered



Figure 1: Finite element mesh of the computational model with the excitation and observation points The
comptational model has 15 million structural DOFs and 8 million DOFs in the acoustic cavity

as the mean model and is written in the frequency domain as

—w![M?] + iw[D*] + [K°] [C] ] [u(w)} _ [fs(W)]

W2 [C]T — M)+ iw[D) + K| |p(w) £ (w) 0

Where [M*], [D?], and [K®] are the (mg X mg) positive-defined symmetric real mass matrix, damping
and stiffness matrices of the structure where my is the number of structural DOFs. And [M7], [D/], and
[K 1] are the (m # X my) positive-defined symmetric real mass matrix, damping and stiffness matrices of the
structure where m s is the number of acoustical DOFs. The complex vectors f*(w) and £/ (w) is related to the
discretization of the external forces applied respectively on the structure and in the cavity. [C] the coupling
complex matrix between the structure and the acoustic cavity of dimension (ms x my). For the complex
dynamical structures of interest, the number of DOFs can be relatively high. The next step is to construct
the nominal ROM which we will consider as the reduced mean computaional model. It is constructed by the
usual method of projection on subspace spanned by a set of elastic modes. such that,

([K°] = A’ [M*])¢" = 0 (2)
(K] = X [MT))e* =0 3)
u(w) = [¥¥g*(w), )
p(w) = [®/]a/ (w), 5)
F(w) = [T (), (©6)
F/(w) = [@/]" (w), )
(€] = (T[T [Cw)][@]. (®)
Where 0 < A] < --- < A7 are the eigenvalues associated with the eigenvectors ¢, -+ 4y . The
same application is done for A/ and ¢/. [¥®] reprensents the matrix of the eigenvectors such that [U*] =
(5, g ] and [®F] = [of, - ol +]. The mean reduced order model is written as
— M)+ i)+ [K) & @ _ POl
W2 [T M D]+ K| |af@)] T W)

Then, to take into account the model uncertainties, we use the nonparametric probabilistic aproach of uncer-
tainties , constructed by using the maximum entropy principle. A stochastic ROM is created by replacing the
mass, damping and stiffness matrices by random matrices.

F*(w)

[—wQ[Ms]Jriw[Ds]Jr[}CS] [C] } [Qs(w)] _ [Ff(w)] (10)

w?lC]” ~w M) +iw[D] + K] [Qf(w)



Each random matrix dispersion depends on the hyperparameter 6 4 > 0 written as,

5A:¢EHWM—KMMQ
Gl

where |[G 4] is the random matrix called germ matrix. The construction of the random matrix depends on
the random matrix germ as introduced in [13]. This approach has been implemented in Nastran and allow to
obtain N;;¢ samples of FRF with the Monte-Carlo method Ref.[10] with values of the dispersion hyperpa-
rameter ¢ 4 referenced in [4].

1D

2.2 Frequency response function
For all w fixed in B, (9) has a unique solution

{ﬂﬁ ‘TﬁwﬁﬁwﬂmwwnﬁM+WJ1gmﬂ

2]

(12)

The frequency response function of the vibroacoustic system Ref.[9] (that we will work on in this paper)
corresponds to the transfer complex matrix such that

p(w) = [h(w)If* (13)
In this paper, we consider Ff (w) = 0, then Eq.(12) yields

Q°(w) = [Zn]F° (14)
in which, [Z2;] the block matrix of the inverse of the coupling term. From Egs.(5) and (6), we obtain

p(w) = [@7][Z2][0°]" F(w) (15)
h(ew)]

with [h(w)] is a complex matrix of dimension (N, x N, ). The output of Nastran can be chosen between the
displacement, celerity or acceleration field for the structure and the acoustic pressure field for the internal
cavity. The output represents directly our FRF by approximation. The principal cause of this appoximation
is that the excitations imposed on the system are unitary loadings. FRF gives the representation of a loading
(excitation) on a specific location and the reaction it provokes in another place (observation point). And that
property is independent of the model complexity.

The finite element model, that we will use is presented in Fig.1. In this study, we will work on the acoustic
pressure field of the internal cavity. The observation points (Obs.1-4) represent the listening points of the
persons in the vehicle. The structural excitations (Exc.1-3) represent the motor excitations. A vibroacoustic
model allow to calculate FRF, which can be measured directly with captors. Those matrices are generally
rectangular. Using these matrices, we will propose measure the to predict the likelihood of a measurement in
front of the computational model. From now on, the FRF we talked in this paper are either the one computed
with Nastran or the experimental measurement.

In Fig.2, we can see the N,;c samples of the FRF computed with Nastran and the corresponding experimen-
tal measured FRF. It can noticed that the dispersion increase with the frequency. Indeed, it is widely known
that the level of uncertainties increases with the frequency. The prediction from numerical simulations are
not perfect. There is always a gap between the computational model and experimental measurement. The
difference comes from on one hand, the uncertainties of the numerical models and on the other hand from
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Figure 2: FRF from the nonparametric stochastic approach (grey), FRF from an experimental measurement
(black)

the construction of these models. In Fig.2, we can see that in the low-frequency band [0 — 20] H z, the mea-
surement is very far from the computed FRF. That can be explained partly by the captors. In the next part,
we will work on two statistical reductions. The first one will allow to decompose the complex FRF matrix
and separate the frequencial component from the spatial component. Then, the second one will permit to
decompose the random variable (the N,;o samples of Monte-Carlo) from the spatial basis. We know that
the Principal Component Analysis (PCA) yields uncorrelated component, and the Independent Component
Analysis (ICA) provides independent components. In this paper, we choose the ICA approach with the help
of the Joint Approximation Diagonalization of Eigen-matrices (JADE) algorithm.

3 Statistical reductions

In this section, we will propose a two statistical reductions. For that reduction, we will perform the Inde-
pendent Component Analysis (ICA). The main difference with the Principal Component Analysis (PCA) is
that the components will be statistically independent. This approach has been widely used and can be seen
in [7]. The ICA can lead to better physical interpretation of the extract components as shown in Fig.3. ICA
gives independent components thanks to it’s constraint. It should be noted that the PCA and ICA use the
same space. The only difference is the constraint imposed on the components which is a linear decorrelation
or independency. We use the Joint Approximation Diagonalization of Eigen-matrices (JADE) algorithm as
presented in [1] which use the fourth order moments. JADE compute the matrix such as the sum of all
non-diagonal term of the fourth order matrix equal to zero. Thus, the matrix is diagonal and proves the
independency of the component.

In this paper, it should be noted that Ml,, ,,(C) is the set of all the (n xm) complex matrices. Letwy, - -+ ,wn,
be the frequency sampling. Let introduce the observations DOFs noted N, and the excitations DOFs
are called V.. The FRF complex random matrix written as [FRF(w;)] with value in My, n.(C), with
j = 1,---,N;. We impose N = N, x N, the spatial dimension. We have F(w;) € CV the re-
shape by columns of the complex random matrix [FRF(w;)]. Let [Y] = [F(w1), -+ ,F(wn,)] with value
in My n,(C). The number of samples noted n = 1,---, Ny yields {[Y,],n = 1,---, Nyc} with
Njsco independent realizations constructed with the stochastic computational model for a fixed value S a
vector-valued of hyperparameter of the random matrices of the nonparametric approach of uncertainties. For
simplifying the writings the dependence on S’ is not written.



3.1 First statistical reduction based on ICA

We introduce

Nue
A= e 266 €M (© (16)

in which [Y;,]* stands for the transpose of the complex conjugated of [Y;] noted [Y,]7. We resolve the

eigenvalue problem of [R] such that [R]z® = A\ 2, with o = 1,---, Ny. This method shows that the
eigenvalues \, are decreasing. We can approximate [R] with a lower number NV, of terms. Let N, < Ny

Np
such that [R] ~ > Aqz®(xz®)*. The result gives less or equal indepedent principal components than the
a=1
number of correlated variables. That is rewritten as
[R] = [x][A][=]", (17)

in which [A] € My, (R) and [z] € My, n,(C). [A] is the diagonal matrix of the eigenvalues such that

[A] = Aadag
and [z] = [x!,--- ,2"7] is the matrix of the eigenvectors. It should be noted that
[2]"[2] = [IN, ), (18)

It can easily be proven that each realization [Y;,] can be written as
[Ya] = [An][a]" (19)

in which, [A,] € My, (C) is given by the projection on [Y},]. Using Eq.(18),

[An] = [Ya][z]. (20)

Let
[c] = [2] Q1)
be the complex (NN, x Ny) matrix, for which its columns are denoted by ¢ withj = 1,--- N fic=
[et -, Ny ]. Let us introduce the random vector ¢ with values in CV» whose realizations are e, eNr

We then propose to perform an Indepedent Component Analysis (ICA) of random vector "C’. We then obtain
[¢] = [B][S] (22)

in which [b] is a (N, X N,,) complex matrix and [S] an (N, x Ny) complex matrix whose columns noted
St ,SNP are independent. From Eqs.(19), (21),(22), it can be deduced that,

Vo] = [A,][S] (23)

in which [A,] is written as R
[An] = [An][t] € My n, (C) (24)

In this paper, the frequency band analysis noted B = [25, 250] H z. The frequency basis give N,, independent
principle components. The threshold for the cumulative energy is fixed at 95% which is sufficiently high to
re-synthesize the FRF by inverse step.

It should be noted that the PCA and ICA use the same space. The only difference is the constraint imposed
on the components which is a linear decorrelation or independency. We use the Joint Approximation Diago-
nalization of Eigen-matrices (JADE) algorithm Ref.[1] which use the fourth order moments. JADE compute
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Figure 3: Frequential independent components from JADE algortihm with ICA approach

the matrix such as the sum of all non-diagonal term of the fourth order matrix equal to zero. Thus, the matrix
is diagonal and proves the independency of the component. The Fig.3 show the IV, independent components
issued from the ICA approach. We can see peaks all along the frequency band B. We can suppose that
each component has a different contribution over the frequency band. In terms of analysis, we can work
on a specific frequency value by working only on the component with the greater contribution over this fre-
quency. We will take the frequency value at the maximum of each independent component from the first ICA
statistical reduction from Fig.3. It can be noticed that the contribution of the component is thin in the low
frequency. But as the frequency increases, the contribution is widening. By comparing the two approachs,
the ICA method which provides an optimal decomposition of the frequency band and a statistically indepen-
dent component which give us information on the contributions of the components over the frequency band.
Now that we have proposed a frequential base with the independent component analysis. In the next part,
we will use the same approach to defined a spatial basis. And a stochastic field which will have independent
components.

3.2 Second statistical reduction based on ICA

In the second statistical reduction, we will work on the spatial basis over the observations and excitations
DOFs. From the N, independent components from the first statistical reduction over the frequency band, we
will determine components with contribution over the spatial basis. We will use exactly the same proposed
approach in section 3.1. The independent component analysis is reused for constructing a second statistical
reduction of random matrix [A] whose realizations are {[A,],n = 1,--- , Ny;c} defined by Eq.(24). The
methodology is exactly the same of the one used in section (3.1) and allows for obtaining the following

representation of

=R Np(a) .
[Anlka = Y [Flkslxnlsa (25)
p=1
withk=1,--- ,Nanda =1,---, Ny, in which ]/\7}, < N, where [F(a)] and [x, ()] are complex matrices

of dimension (N x Np(a)) and (Np(a) x 1) respectively. [xy] represents the stochastic base over the n



samples of Monte-Carlo, which is our random variable. Substituting Eq.(23) yields

Np p(a)
=>" 3" [FlislxnlgalSlas (26)
a=1 6:1
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This statistical reduction is applied to each component from the first statistical reduction. In Fig.4 and 5,
it can be noticed that the number of component from the second statistical reduction increases with the
frequency. It can be explained by the fact that the model uncertainties increase with the frequency. The Fig.4
and 5 shows that there is an analogy between the value of « and the frequency band. In fact, it can be noticed
from Fig.3 that each component of the first statistical reduction has a contribution over a part of the frequency
of interest. With this observation we can make an analogy between the value of « and the frequency band.
The probability density function of the n samples for each component N,(«) to create a stochastic basis
which will give us the spatial and frequential contribution for each component. The probability density of
the component is calculated with the function ksdensity in Matlab. The density probability function is shown
in the bottom right in Fig.6 and Fig.7. Moreover, Fig.6 and Fig.7 show the paticipation of each excitation
point on each observation point (left figures up and bottom). The upper right figure represents the frequential
independent component of the first statistical reduction.



3.3 Projection of the experimental measurement

In this work, we deal with a unique experimental measurement of the same exciation and observation points.
We project it on the two-level ROM to obtain y..p. Note that, for [Y},] generated with the stochastic im-

plemented in the proposed algorithm yields the values of complex matrices [S], [F] and [x,]. Forall £ =1,
©, Vexp, let [Y*P] be the (N x Ny) complex matrix related to given measurements. The corresponding

values of x| noted [x“*P] are the (/V), x N,,) complex matrix such that

[yew] = )] e
R Np(a)
[A%P ] = [Flies X" o (28)
B=1
The projection of Eq.(27) yields R
A0 4) = [y 2 4][.7] 29)

in which [.#] = [S]*([S][S]*) " is the right pseudo-inverse of [S]. For « fixed in {1,--- , N,}, let [H(«)]
be the (IV,(a) x Np(cr)) complex matrix defined by

[F)pr (s (30)

E

[H(a)]ﬁ’ﬂ =

i
I

The projection of Eq.(28) on [F] yields, for o fixed in {1, - - - ,Ny}and 8 in{1,---, ]Vp(a)}, the expression
of [x®P] written as

N
X = D [ F ()] [A7P e GD
k=1

with [L?\(a)] the left pseudo-inverse such that

Ny(a)
(F @)y = D [H() g 5F ks (32)
p=1

4 Maximum likelihood method

In this section we will present the maximum likelihood method Ref.[5]. As proposed in Ref.[13], the method
consists in introducing a statistic data reduction as done in (section 3.1). Then, to apply the maximum likeli-
hood method to the random variables of the stochastic reduced model. In this study, the random variables are
the Njsc samples issued from the nonparametric probabilistic approach of uncertainties. x,, which depends
on the component, is the set of random variables from the n = 1,--- , Njs¢ realizations. If the number of
realization is sufficient, the Kernel smooth density (Ksdensity) Ref.[6] gives a good approximation of the
probability density. Let Np(a) is number of the components of the second statistical reductions for each a.
The statistical reduction will be efficient if ]Vp(a) << N. In order to decrease the computational effort,
we will work with the two statistical reductions proposed in the section. The ICA approach proposed in this
paper offer the advantage of obtaining not only uncorrelated random vectors but furthermore independent

~

components. The family {xga, &« = 1,--- ,N,, 8 = 1,--- , Ny(«)} of random variables introduced in

Ny
Eq.(25) are gathered in a random vector W = (Wy,--- , Wy, ) with Neomp = > Np(a). The corre-
a=1

sponding experimental values of W are denoted by {WSP* ¢ = 1... yo. ). Let (Wy,--- W Neomp) ™



p(Wy,---,Wh,,,,) be the probability density function on RN xNp(a) (Ref.[13]). We use the following
approximation .Z of the log-likelihood function of W for v = 1, -, Neomp

Vexp Ncomp
2= > 2 (33)
(=1 v=1
with
Z, = 101ogy pw, (WS™") (34)

The probability of an experimental realization from being issued of the stochastic model is given by
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Figure 8: Loglikelihood £,
Pllpe = pw, (WSPE). (35)

To be able to visualize the log-likelihood with the components from the first statistical reduction, we rewrite
Eq.(33) such that,

Vexp Np
L= Z Z £, (36)
=1 a=1
with
Ny ()
Z = fg 37
B=1

The Fig.9 and 10 shows the maximum and the minimum of the stochastic field. It can be noticed that the
sample of Monte Carlo is within the range of the maximum and the minimum. This is an expected result
because the stochastic field is made with the n Monte Carlo samples. A verification step has been realized to
make sure that all samples are within the range. The experimental measurement is also within the range of the
maximum and the minimum. We can interprete it as the model being sufficiently good that the measurement
is always between the maximum and the minimum of the computational model. The Fig.10 shows that the
experimental measurement is not always in the range of the stochastic field over the N, component of the
first statistical reduction. The interpretation of the loglikelihood over the frequency band comes from the
analogy of the components of the first statistical reduction and the frequency at which they are contributing.
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5 Additional observations

In this section, we will present some observation made during this work. The first important observation can
be used to verify our statistical reductions. By using Eqs.(26) and (23), we will go back to the physical space
and resynthesize the FRF. This will allow us to check the threshold we imposed in the eigenvalue problem.
With the threshold at 95% as presented in this paper, we compute [Y;,] and compare it with the initial input
corresponding FRF.

100 Resynthesis of the FRF from the first statistical reduction 100 Resynthesis of the FRF from the 2" gtatistical reduction
T T T T T T T T

Input FRF
Resynthesized FRF | |

Input FRF
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Figure 11: Resynthesized FRF from the first sta- Figure 12: Resynthesized FRF from the second
tistical reduction statistical reduction

The Figs.11 and 12 shows the resynthesized FRF with the corresponding input FRF. With the threshold at
95%, we can notice that we effectively have a loss compared to the initial FRF. The slight difference comes
from the data reduction. In fact, we keep only 95% of the cumulative energy content for each eigenvector
of the input FRF which explain the loss of some data from the initial FRF. Moreover, the resynthesis from
the first and the second statistical reduction are identical. This value of the threshold can be considered
sufficient for our analysis. The Figs.13 and 14 shows the resynthesized FRF with the corresponding input
FRF. With the threshold at 99%, we can notice that the loss is lower and is really close to the input FRF.
Moreover, the resynthesis from the first and the second statistical reduction are also identical. This value of



the threshold can be used for this analysis but the computation cost will be greater and the data reduction
factor less effective.
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Figure 13: Resynthesized FRF from the first sta- Figure 14: Resynthesized FRF from the second
tistical reduction statistical reduction

The data reduction factor noted F..q is given by

N X Ny x Nye
Neamp % (N + Narc) + (N, x Np)
Let 7 the threshold of the cumulative energy. The value of F,.4 vary with 7. The Tab.1 shows that the

Fred = (38)

7 |0.80 0.90 0.95 0.99
Frea| 78 48 34 20

Table 1: F;..q in terms of 7

evolution of the statistical data reduction depends on 7. When 7 increases Fi..q; decreases. The more the
dimension of the input data is important, the more the possibility to obtain a great data reduction factor is
high.

The last point of the observations is to plot the FRF from the maximum of the probability density function

for each component v =1, - - - , Neomp.
Figs.15 — 16 show the FRF issued from the maximum density probability function. The figures shows that
for each value of £k = 1,--- , N the synthesized FRF can be in or out of the N, input FRF.

6 Conclusion

In this paper, we have presented a methodology for constructing a statistical reduced-order representation of
the random matrix-valued FRF that is constructed using a high-dimension stochastic computational model of
a car. This reduced representation has been validated by resynthesizing the matrix-valued FRF by an inverse
step. This proposed reduction is very efficient in terms of CPU time and RAM. The use of the likelihood
method has allowed for estimating the distance between the predictions of the random matrix-valued FRF
and the experiments.

In this paper, we will start with a summary of the nonparametric probabilistic approach of uncertainties
and a description of the FRF. Then, the two statistical reductions will be presented and will be applied to a
computational model of a car with fifteen million of degrees-of-freedom. The FRF will be re-synthesized
by inverse step, which will allow for validating the statistical reductions that are proposed. Finally, we will
present the distance between the predictions and the experiments using a likelihood method.
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