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Abstract
The present paper describes a computational methodology adapted to the analysis of the nonlinear dynamical
behavior of a detuned bladed disk. The context of the analysis is the following : (1) the detuning is taken into
account by voluntarily breaking the cyclic symmetry of the structure with the use of a pattern constituted
of different blade types; (2) the structure is assumed to undergo large strain/displacements induced by the
geometrical nonlinear effects; (3) the prestresses and the gyroscopic effects induced by the rotating motion
are considered in the nonlinear dynamical analysis. The computational strategy has to be compatible with
the industrial context. Consequently, a particular attention is paid to the construction of an adapted nonlinear
reduced-order model. Finally, the proposed methodology is applied on a complex bladed disk structure.

1 Introduction

In turbomachinery, the mistuning of bladed-disks structures caused by the manufacturing tolerances and the
small variations in the mechanical properties from blade to blade is known to amplify and to localize the
dynamical response of some blades [1, 2]. There have been various researches concerning the computational
modeling of mistuned structures, with the development of reduced-order models (see for instance [3, 4, 5]
for linear reduced-order models and [6, 7] for nonlinear reduced-order models) and probabilistic approaches
[8, 9]. One possible strategy is also to intentionally mistune (detuning) the structure by assembling generating
sectors of different types according to a given pattern [10, 11, 12]. The pattern optimization is known to be
efficient for reducing the response amplitudes in the linear context. Nevertheless, geometrical nonlinear
effects can no longer be neglected with the current technological improvements, including the use of more
flexible and lighter materials which sometimes leads to large displacements and strains. In this context,
the present research is devoted to the computational analysis of geometrical nonlinear effects on a rotating
detuned bladed disk. The research is focused on a computational strategy for which a nonlinear reduced-
order model compatible with the consideration of both mistuning and detuning phenomena is introduced.
In the present context, we limit the investigation only to the case of detuning. The paper is organized as
follows. The first Section is devoted to the development of the methodology. In particular, an adapted
nonlinear reduced-order basis is constructed for the detuned structure with a double projection method. Such
method involves a first projection of the nonlinear dynamical response on the usual eigenmodes of vibrations
followed by a Proper Orthogonal Decomposition of the related nonlinear response including the gyroscopic
coupling effects. In a second Section, a numerical application concerning a realistic computational model of
bladed-disk is considered. The nonlinear responses of the tuned rotating structure and of a detuned rotating
structure corresponding to a given pattern are analyzed.



2 Methodology

In this Section, a methodology adapted to the nonlinear dynamical analysis of a rotating detuned bladed-
disk is developed. In this context of detuning, it is assumed that the bladed-disk is constituted of N sectors
that can be different from one sector to another one. A detuned bladed disk is constructed according to a
given pattern P which defines the distribution of the different sectors that constitute the detuned bladed-disk
structure. Furthermore, the constitutive equations are assumed to be linear elastic but the external loads are
assumed to be sufficiently large so that the structure undergoes geometrical nonlinear effects induced by the
large displacements and strains.

2.1 Nonlinear finite element model of the detuned bladed-disk

The computational model is constructed by using three-dimensional isoparametric solid finite elements. Let
P be the number of available sectors whose mesh is assumed to be compatible at the interface of each sector.
The full bladed-disk is constructed by the assembly of each sector type according to a given pattern P. Let
n be the number of dofs of the finite element mesh. The nonlinear finite element computational model that
describes the nonlinear dynamical behavior of the detuned structure at a given rotational velocity Ω consists
in finding the Rn-vector U of the displacements, solution of the following nonlinear differential equation

[M ]Ü(t) +

(
[D] + [Cg(Ω)]

)
U̇(t) +

(
[Ke] + [Kc(Ω)] + [Kg(Ω)]

)
U(t) + FNL(U(t)) = F(t) , (1)

in which the (n× n) real matrices [M ], [D], [Cg(Ω)], [Ke], [Kc(Ω)] and [Kg(Ω)] are respectively the mass
matrix with symmetry and positive definiteness properties, the damping matrix with symmetry and positive
semi-definiteness properties, the gyroscopic coupling matrix with antisymmetry property, the elastic stiffness
matrix with symmetry and positive definiteness properties, the centrifugal stiffness matrix with symmetry and
negative definiteness properties, and the geometrical stiffness matrix with symmetry and positive definiteness
properties. Matrix [Kg(Ω)] is beforehand constructed using the stress state issued from a linear static analysis
for which each type of sector is subjected to a centrifugal load [13]. It is assumed that the finite element
matrix [Ke] + [Kc(Ω)] + [Kg(Ω)] remains symmetric positive-definite for the considered valued of Ω. In
equation (1), the Rn-vector F(t) is issued from the discretization of the external loads and the Rn-vector
FNL(U(t)) describes the nonlinear finite element internal forces induced by the geometrical nonlinearities.
In the present strategy, we are interested in analyzing the nonlinear forced response in the time domain. In
consequence, the external load is defined for t ∈ R. A Fourier transform performed on the solution of Eq.(1)
allows then the nonlinear dynamical response in the frequency domain to be analyzed.

2.2 Nonlinear reduced-order model for a detuned bladed-disk

In this Section, the method used for constructing the nonlinear reduced-order model of the detuned bladed-
disk is presented. The main idea is to use a double projection method. A first projection basis is constructed
by solving the generalized eigenvalue problem related to the conservative and homogeneous dynamical equa-
tion for which the gyroscopic coupling is ignored. In a second step, this projection basis is used for con-
structing the nonlinear reduced-order model related to Eq.(1) (that includes the gyroscopic coupling effects).
A new projection basis is then computed from this nonlinear reduced-order response with the Proper Orthog-
onal Decomposition method [14].

2.2.1 Construction of the first projection basis

First, let us consider the following generalized eigenvalue problem(
[Ke] + [Kc(Ω)] + [Kg(Ω)]

)
ϕα = λα [M ]ϕα . (2)



Note that such projection basis does not correspond to the homogeneous conservative equation since the
gyroscopic coupling term is ignored in the definition of the present generalized eigenvalue problem (if the
gyroscopic coupling was taken into account, a nonsymmetric complex eigenvalue problem should be solved).
In (2), the eigenvalues λα, α = {1, ..., n} related to the elastic modes ϕα are sorted by increasing order
0 < λ1 6 λ2 6 · · · 6 λn. The m≪ n eigenvectors related to the first m eigenvalues are computed. Let
[Φ] be the (n×m) real modal matrix defined by

[Φ] = [ϕ1 . . .ϕm] . (3)

2.2.2 Construction of the second projection basis

The second projection basis is obtained by considering the first nonlinear reduced-order model that is con-
structed by projection of Eq. (1) on the subspace spanned by {ϕ1, . . . ,ϕm},

U(t) = [Φ] Q0(t) , (4)

[M0]Q̈0(t) +

(
[D0] + [C0(Ω)]

)
Q̇0(t) + [K0(Ω)]Q0(t) + FNL(Q0(t)) = F0(t) , (5)

in which the Rm-vector Q0(t) = (Q1(t), · · · , Qm(t)) is the vector of the generalized coordinates and
where the generalized mass, damping, gyroscopic coupling, and stiffness matrices [M0], [D0], [C0(Ω)],
and [K0(Ω)] are defined by

[M0] = [Φ]T [M ][Φ] , [D0] = [Φ]T [D][Φ] , [C0(Ω)] = [Φ]T [Cg(Ω)][Φ]

[K0] = [Φ]T
(

[Ke] + [Kg(Ω)] + [Kc(Ω)]

)
[Φ] (6)

In Eq. (5), the Rm-vectors of the reduced external load and of the nonlinear reduced internal load are written
as

F0(t) = [Φ]TF(t) , FNL(Q0(t)) = [Φ]TFNL([Φ] Q0(t)) . (7)

In the present context, the reduced nonlinear stiffness operators are first explicitly constructed with the finite
element method from the knowledge of the projection basis [15] and the nonlinear reduced internal loads are
computed from these nonlinear reduced operators. Note that such strategy is compatible with the possibility
of implementing random uncertainties [16], which is not considered in the present work. The nonlinear
differential equation (5) is solved in the time domain and the corresponding solution Q0(t) is then used for
constructing a new reduced-order basis with the POD method. Let nt be the number of time steps and let
{tj , j = 1, . . . , nt} be the sampling time points. We then introduce the (m × nt) real matrix [Y ] and the
(m×m) real correlation matrix [A] such that

[Y ]ij =Q0,i(tj)
√
tj − tj−1 , [A] = [Y ] [Y ]T . (8)

The projection basis is then defined as the eigenvectorsW1, · · · ,Wp of the correlation matrix [A] related to
the p most contributing eigenvalues µ1 ≥ · · · ≥ µp such that

[A]Wα=µαWα . (9)

Let [W] be the (m × p) matrix whose columns are these p eigenvectors. The new projection basis that will
be used for solving the nonlinear dynamical problem is characterized by the (n× p) matrix [Ψ] such that

[Ψ] = [Φ][W] . (10)

The nonlinear reduced-order model is then obtained by projecting the solution U of the nonlinear finite
element equation such that

U(t) = [Ψ]Q(t) , (11)



in which Q(t) is the Rp-vector of the generalized coordinates solution of the nonlinear differential equation

[M]Q̈(t) +

(
[D] + [C(Ω)]

)
Q̇(t) + [K]Q(t) + FNL(Q(t)) = F(t) , (12)

in which the generalized mass, damping, gyroscopic coupling, and stiffness matrices [M], [D], [C(Ω)],
[K(Ω)], the reduced external load vector F(t) and the nonlinear reduced internal load vector FNL(Q(t)) are
defined similarly to (7).

This nonlinear reduced-order model can be useful for two main reasons. For instance, let us consider all the
patterns related to a given number of sectors for each sector type. This leads us to parameterize the nonlinear
reduced-order model with respect to a given parameter µ for which nµ is the number of possible different
patterns. At this point, the calculation of the reduced-order basis [Ψ(µ)] can be carried out for mµ < nµ
judicious values of µ following for instance greedy strategies. Such parameterized reduced-order basis is
then wisely merged for constructing an optimal global reduced-order basis [Ψ], which is use for solving any
pattern of interest. Otherwise, let us consider the case for which both detuning and mistuning phenomena
are investigated for a given pattern. In such case, if the mistuning is implemented through the nonparametric
probabilistic approach, an optimal reduced-order basis is required in order to solve the related stochastic
nonlinear differential equations.

3 Numerical application

In this section, a numerical application concerning the nonlinear dynamical analysis of a bladed-disk struc-
ture is investigated in the detuning context.

3.1 Description of the finite element computational model

The geometric features of the generating sector are summarized in Table 1. Such given reference sector will
be called the sector of type 1. The computational model of this reference sector and issued from the finite
element method is provided with the commercial software ANSYS. This computational model is then used
for constructing the computational model of the whole tuned bladed-disk with N = 24 blades, which will
be taken as a reference. The structure is made of steel, and is assumed to be homogeneous and isotropic
with Young modulus E = 2 × 1011N ×m−2, Poisson ratio ν = 0.3, and mass density ρ = 7 650Kg ×
m−3. The structure is clamped at the inner radius of the disk sector. The numerical finite element mesh
is constituted of tridimensional solid finite elements with 20 nodes (bricks element), tridimensional solid
finite elements with 13 nodes (pyramidal elements) and tridimensional solid finite elements with 10 nodes
(tetrahedral elements), corresponding to a quadratic interpolation. The numerical data related to the finite
element model are summarized in Table 2. Figure 1 displays the 3D finite element mesh of the bladed-disk
structure.

Inner disk Radius 19.8 mm
Outer disk Radius 100 mm

Disk width 20 mm
Blade thickness at root section 4.8 mm
Blade thickness at tip section 2 mm

Table 1: Geometric parameters of the generating sector

The detuned bladed-disk structure is then considered by defining another generating sector, which is obtained
by decreasing the Young modulus E of the blade of the type-1 generating sector by 25 %. Consequently,
there is type-1 generating sector with Young modulus E = 2 × 1011N ×m−2 for the blade and a type-2



Structure Elements Nodes DOFs
Blade sector 2,714 6,896 20,688
Disk sector 836 4,554 13,662

Full structure 85,200 265,080 787,176

Table 2: Numerical finite element parameters for the generating sector and for the full structure

generating sector with Young modulus E = 1.5 × 1011N ×m−2 for the blade, the Young modulus of the
disk remaining to E = 2 × 1011N ×m−2. In the following, it is assumed that there are 2 blades of type 2
and 22 blades of type 1, which defines many possible patterns. The assembly of the full detuned bladed-disk
computational model is then performed according to a given pattern.

Figure 1: Finite element model of the bladed-disk.

The analysis is performed for two patterns. A cyclic pattern denoted as P1 that is defined by

P1 = [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] , (13)

and we consider a detuned pattern denoted by P2 and represented in Fig.2 such that

P2 = [1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1] . (14)

3.2 Choice of the excitation force

Figure 3 represents the graph of the eigenfrequencies να =
√
λα, solution of Eq. (2) related to the tuned

structure defined by P1 with a rotating velocity Ω = 465 rad × s−1 with respect to its circumferential wave
number h.

This graph allows the excitation frequency band favorable to drastic mistuning effects to be defined. In
the present case, a h = 4 engine-order excitation is chosen because there are two close eigenfrequencies
issued from two different class of vibrational modes. In consequence, the time repartition of the load g(t)



Figure 2: Pattern P2 for the detuned bladed-disk
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Figure 3: Graph h 7→ να(h) of the eigenfrequencies να related to the tuned pattern P1 of the rotating
bladed-disk with respect to its corresponding circumferential wavenumber h.

is constructed so that an excitation frequency band Be = [1000, 1600]Hz is uniformly excited. Let νmin=
1 000Hz and νmax=1 600Hz. We then have

g(t) =

Q∑
i=1

2

π t
sin(π δν t) cos(2πsi δν t) , (15)

in which Q is chosen such that Q=10. In Eq.(15), we have

δν=
νmax − νmin

Q
, si=

νmin
δν

+

(
i− 1

2

)
. (16)

As a consequence, the Fourier transform of function g(t) is such that |ĝ(2πν)|=1 on Be. Note that function
g(t) is theoretically defined for t ∈ R in order to consider in the time domain the problem of forced response.
In the numerical process, the signal is truncated by choosing tini = −0.065 s such that g(tini) = 0 with
a time duration T = 0.35 s, ensuring the low frequencies located outside Be to possibly be captured when



considering geometric nonlinear calculations. The sample frequency and the number of time steps are chosen
as νe = 10 000Hz and nt = 4 096 yielding a frequency resolution δν0 = 2.44Hz . The dynamical analysis
is carried out in the frequency band of analysis B = [0 , 4 000]Hz. Figure 4 shows the graph of the time
repartition of the load t → g(t) and its Fourier transform ν → |ĝ(2πν)|. The spatial repartition of the
external load is a normalized vector F for which all directions related to the node located at the tip of each
blade are simultaneously excited. The load intensity f0 is given by f0 = 1.2N for which it will be shown
below that geometrical nonlinear effects can be observed. The load vector F(t) is then defined in the time
domain by

F(t) = s0 g(t)F . (17)
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Figure 4: Representation of the external load in the time domain and in the frequency domain: graph of
t 7→ g(t) (left graph) and ν 7→ |ĝ(2πν)| (right graph) for Be = [1000 , 1600]Hz.

3.3 Convergence analysis

Let nobs=N be the number of observation points located at the tip of each blade of the detuned bladed-disk.
Let Uobs,j

i (t), with j = 1, . . . , nobs and i = 1, 2, 3, be the displacement at observation node j according to

dof i and let Û
obs,j

i (2πν) be its Fourier Transform. We then define the scalar quantity W obs such that

Ŵ obs(2πν) =

√√√√nobs∑
j=1

||Û
obs,j

(2πν)||2 , ||Û
obs,j

(2πν)||2=

3∑
i=1

|Û
obs,j

i (2πν)|2 . (18)

Let Ŵ obs,(m,p)
LIN (2πν) or Ŵ obs,(m,p)

NONLIN (2πν) be the observation computed with the linear or with the nonlinear
reduced-order model obtained with the first reduction, p = m, or with the second reduction, p < m.
Subscript LIN and NONLIN are omitted as soon as there is no possible confusion. A first convergence
analysis is performed with respect to the number m of modes kept in the first reduced-order model. Let
Conv1(m) be the function defined by

Conv1(m) =

√∫
B

(
Ŵ obs,(m,m)(2πν)

)2
dν , (19)

for which observation Ŵ obs,(m,m)(2πν) is constructed by solving Eq. (5). Figure 5 displays the graphs of
functions m 7→ Conv1,LIN (m) and m 7→ Conv1,NONLIN (m). It can be seen that a good approximation
is obtained for m = 60 for the linear case and for m = 100 for the nonlinear case. In the following, all the
computations are carried out with m = 100.
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Figure 5: Convergence analysis related to the first reduced-order model: graphs of m 7→ Conv1,LIN (m)
related to the first linear reduced-order model (thin line, ◦ marker) and of m 7→ Conv1,NONLIN (m) related
to the first reduction (thick line, � marker).

For fixed m, a second convergence analysis is then carried out with respect to the number p of basis vectors
calculated with Eqs. (9) and (10). Let Conv2(m, p) be the function defined by

Conv2(m, p) =

√∫
B

(
Ŵ obs,(m,p)(2πν)

)2
dν , (20)

for which observation Ŵ obs,(m,p)(2πν) is constructed by solving Eq. (12). Figure 6 displays the graph of
functions m 7→ Conv2,NONLIN (m = 100, p). It can be seen that a good approximation is obtained for
m=100 and p=20, which proves the efficiency of this proposed second reduction method.
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Figure 6: Convergence analysis related to the second nonlinear reduced-order model : graphs of p 7→
Conv2,NONLIN (m, p) related to the second reduction (thick line, ? marker).

3.4 Load sensitivity analysis

In this section, a load sensitivity is performed for pattern P1 in order to determine from which load intensity
f0, there are geometrical nonlinear effects in the dynamical response of the structure. Such analysis is
performed by quantifying the energy outside the excitation frequency band Be for f0 belonging to [0 , 1.9]N .



We then define by ConvF (f0) the quantity written as

ConvF (f0) =

√∫
B\Be

(
Ŵ

obs,(m,m)
NONLIN (2πν; f0)

)2
dν√∫

B\Be

(
Ŵ

obs,(m,m)
NONLIN (2πν; 1.9)

)2
dν

. (21)

Figure 7 displays the graph of f0 7→ ConvF (f0). It can be seen that geometrical nonlinear effects can

be seen for f0 > 0.3N . Figure 8 displays the graphs of ν 7→ ||Û
obs,10

NONLIN (2πν)|| corresponding to the
nonlinear dynamical responses obtained with four different load intensities f0. The yellow band represents
excitation frequency band Be. The upper left figure clearly shows a dynamical response which remains in the
linear domain since there is numerically a negligible response contribution. On the other hand, subsequent
contributions with unexpected resonances appear below and beyond excitation frequency band Be for larger
load intensities.
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Figure 7: Sensitivity analysis with respect to the load intensity : graph of f0 7→ ConvF (f0).

3.5 Nonlinear dynamical response analysis

In this paragraph, a nonlinear dynamical analysis is performed for both tuned and detuned patterns P1 and
P2. The time domain observation is chosen as Uobs,j02 (t), which corresponds to the transverse dof expressed
in the local frame related to observation node number j0. The observation node is defined by

j0=arg

{
max
j
|||Uobs,j |||

}
with |||Uobs,j |||=max

t
||Uobs,j(t)|| , (22)

in which ||Uobs,j(t)|| is defined similarly to Eq. (18). The frequency domain observation is then chosen as

||Û
obs,j0

(2πν)||. The linear and the nonlinear analyses are presented with a load intensity f0 = 0.60N for
both patterns P1 and P2, which correspond to moderate geometrical nonlinear effects. Figure 9 displays the
graphs of t 7→ Uobs,j02,LIN (t) for both patterns. It can be seen that both tuned and detuned structures yield dif-

ferent responses in the time domain. Figure10 displays the graphs of t 7→ Uobs,j02,NONLIN (t) for both patterns.
By comparing these figures, it can be seen that there are subsequent geometrical nonlinear effects. Further-
more, the observed nonlinear time response related to the considered detuned pattern P2 is clearly irregular,
suggesting numerous resonances contributions outside Be. The nonlinear analysis is then carried out in the

frequency domain by using a Fourier transform. Figure11 displays both graphs of ν 7→ ||Û
obs,j0
LIN (2πν)|| and

ν 7→ ||Û
obs,j0
NONLIN (2πν)|| for both patterns. The main effect induced by the present detuning is to shift the
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Figure 8: Sensitivity analysis with respect to the load intensity : representation of excitation frequency

band Be (light yellow zone), graphs of ν 7→ ||Û
obs,10

NONLIN (2πν)|| for f0 = 0.17N (upper left figure),
f0 = 0.64N (upper right figure), f0 = 1.43N (lower left figure), f0 = 1.90N (lower right figure)

two main resonances related to the linear response to the left in the excitation frequency band. It is clearly
observed that the geometrical nonlinear effects are stronger for the considered detuned pattern P2. For both
patterns secondary resonances induced by the geometrical nonlinear effects appear below and above the ex-
citation frequency band. This phenomenon is amplified for detuned pattern P2 and unexpected resonances
with non negligible amplitudes exist for higher frequencies around 3 000Hz .

time (s)
0 0.1 0.2 0.3

di
sp

la
ce

m
en

t (
m

)

#10 -3

-1

-0.5

0

0.5

1

time (s)
0 0.1 0.2 0.3

di
sp

la
ce

m
en

t (
m

)

#10 -3

-1

-0.5

0

0.5

1

Figure 9: Linear dynamical analysis in the time domain: graphs of t 7→ Uobs,j02,LIN (t) corresponding to patterns
P1 (left figure) and P2 (right figure).

4 Conclusions

A methodology that allows the nonlinear dynamical analysis of rotating detuned structures is proposed in the
context of geometrical nonlinearities. It should be noted that the nonlinear reduced-order model presented
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Figure 10: Nonlinear dynamical analysis in the time domain: graphs of t 7→ Uobs,j02,NONLIN (t) corresponding
to patterns P1 (left figure) and P2 (right figure).
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Figure 11: Nonlinear dynamical analysis in the frequency domain: graphs of ν 7→ ||Û
obs,j0
LIN (2πν)|| (red line)

and ν 7→ ||Û
obs,j0
NONLIN (2πν)|| (blue line) corresponding to patterns P1 (left figure) and P2 (right figure).

in this work is also adapted for simultaneously modeling both detuning and mistuning.The results validate
the numerical efficiency of the method and highlight the indirect excitation of the structure through the
geometrical nonlinearities. Note that the numerical analysis is carried out on one tuned and one detuned
pattern. The pattern optimization regarding the detuning is not considered in this work.
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