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This paper presents experimental evaluation and comparative analysis on the use of various Machine Learning (ML) models for
detecting Cache-based Side Channel Attacks (CSCAs) in Intel’s x86 architecture. The paper provides performance evaluation of ML
models based on run-time detection accuracy, speed, computational overhead, and distribution of error in terms of false positives
and false negatives. Experiments are performed using state-of-the-art CSCAs namely; Flush+Reload and Flush+Flush attacks, under
realistic load conditions on RSA and AES crypto-systems. The paper provides quantitative & qualitative analysis of at least 12 ML
models being used for CSCA detection for the first time.

Index Terms—Cache-based Side-Channel Attacks, Cryptography, RSA, AES, Flush+Reload, Flush+Flush, Detection, Machine
Learning.

I. INTRODUCTION

SECURITY has already become the first-class design con-
straint in modern computing systems. Access-driven Cache-

based Side-Channel Attacks (CSCAs) are strong cryptanalysis
techniques used to break the otherwise strong cryptographic
algorithms by targeting cryptographic implementations [1], [2],
[3] for unauthorized retrieval of information. In recent years,
Intel’s x86 architecture has been exposed to high resolution and
stealthy CSCAs, such as Flush+Reload [1], Flush+Flush [4],
Spectre and Meltdown [5]. Modern-day processors do extensive
sharing and de-duplication for performance benefits. CSCAs
exploit sharing vulnerabilities in caches [6], [7] to retrieve
information. Such attacks rely on the presence of specialized
instructions to manoeuvre the state of shared caches.

Both software- and hardware-based protection techniques
have been proposed against SCAs [8], [9] in recent years. Such
attacks can be prevented at different levels such as system-level,
application-level, and hardware-level [8]. At the system level,
physical and logical isolation approaches exist [10], [11]. At
the application level, the proposed countermeasures tend to
target the source of information leakage and mitigate it [12].
At the hardware level, mitigation techniques are rather difficult
as they are not applicable on commodity systems. Hardware
solutions, nevertheless, suggest to have new secure caches,
changes in prefetching policies and either randomization or
complete removal of cache interference [13].

Despite diverse efforts, protection techniques against SCAs
are not perfect. These techniques generally protect against
any given specific vulnerability and an all-weather protection
against such attacks is often performance costly. Evidence
suggest that attacks are becoming sophisticated and stealthier
such as Spectre & Meltdown. Therefore, detection techniques
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can be used as a first line of defense against such attacks. For
detection-based prevention strategy to be effective, detection
need to be highly accurate, should incur minimum system
overhead at run-time, and be capable of early-stage detection,
i.e., before the attack completes. Thus, the evaluation metrics
for detection techniques is tough.

Machine learning techniques have proved their effectiveness
across many application domains. Recently, various ML tech-
niques are also being used in information security domain such
as in [14], [15], [16], [17], [18], [19]. In this work, we have
analyzed the effectiveness of various ML models in cache-based
SCA detection using the aforementioned evaluation metrics.
We provide experiments & results using state-of-the-art attack
techniques such as Flush+Reload & Flush+Flush, on Intel’s
x86 architecture under RSA & AES encryption algorithms.

Under the constraints such as; real-time requirements, early-
stage detection, and minimal performance overhead, the domain
of CSCA detection becomes particularly challenging and
interesting application domain for Machine Learning. This work
provides various selection metrics for ML models, supported
by our extensive experimental results, under these constraints.
Specifically, the contributions of this paper are as following:

1) We demonstrate successful detection of state-of-the-art
cache-based SCAs, Flush+Reload & Flush+Flush attacks
on RSA and AES crypto-systems, respectively.

2) We provide experimental evaluation and comparative
analysis on the use of various Machine Learning (ML)
models for detecting CSCAs on Intels x86 architecture.

3) We provide selection metrics for machine learning models
to perform run-time CSCA detection under real-time,
high-speed, and minimum overhead constraints.

Rest of the paper is organized as follows. Section II presents
necessary background on detection with the help of machine
learning models, selection of hardware events which can be



2

used as useful features and selection of machine learning
models for experimental evaluation of detection accuracy.
Section III presents that how machine learning models can be
helpful to provide security and detect certain CSCAs. Section
IV concludes this paper.

II. BACKGROUND & RELATED WORK

This section provides the constitutional background on detec-
tion of cache-based side channel attacks, hardware performance
counters, and machine learning models.

A. Machine Learning for Detection

There is very limited research work that focuses on detecting
CSCAs implemented on user-level and kernel-level processes.
Authors in [15] use machine learning techniques to detect
cache-based side channels. Neural networks have been used
in this detection mechanism to construct models by having
values of HPCs which encounter benign and spy process during
detection of stealth F+R attack. [20] proposed a malware
detector for side channel attacks. It uses a case study on P+P
attacks and utilizes values of HPCs for training of machine
learning models such as; K-Nearest Neighbor (KNN) [21],
Decision Trees [22], Random Forest and Aritficial Neural
Netwroks (ANN) [23]. [16] proposed a technique HexPADS
which does not involve machine learning and determines a
threshold for a certain number of cache misses to detect an
attack. They validated F+R and P+P attacks but the authenticity
of determining such thresholds with no sophisticated learning
is questionable. This malware detection mechanism detects
P+P without false positives. [17] trained three machine learning
models namely; Neural Networks [23], Decision Trees [22] and
K-Nearest Neighbor (KNN) [21] to detect AES cryptosystem.
[24] also proposed a threshold-based detection mechanism
named CloudRadar. It detects side channels in cloud systems
by relating crypto-systems executing on virtual machines.
CloudRadar considers that it performs detection when victim
is running crypto-application (already known). It monitors
untrusted VMs by sampling performance events at regular
intervals and if the difference crosses a certain threshold, attack
is detected. This mechanism also detected P+P and F+R and
shows 100% accuracy. But in real systems its hard to claim
when victim is running crypto-application and taking into
account performance events on a certain threshold may have
less precision. [25] relies on Intel cache monitoring technology
(CMT) and HPCs. It uses gaussian anomaly detection for cache-
based side channel attacks on VMS. The proposed mechanism
shows very good accuracy in isolated conditions but suffer
from high false positives in noisy conditions/realistic load
conditions. [18] proposed three step detection mechanism for
cache and branch predictor based side channels (detection
of anomaly, class of anomaly and correlation of malicious
process with victim). Authors in [14] present a novel technique
named as NIGHTs-WATCH to detect cache-based side channel
attacks. It comprises of different machine learning models,
which use real-time data from hardware performance counters
for detection at run-time. It detects two state-of-the-art attacks
namely; F+R and F+F. To be noted F+F being a stealth and
high frequency attack, has never been detected in the past
researches. This is the only research published with detection

of F+F attack. Both the attacks are detectable on run-time with
realistic load conditions and detection accuracy of 99.51%
(F+R) and 99.97% (F+F). Performance overhead of NIGHTs-
WATCH with highest detection speed is < 2%. This paper is
the extension of NIGHTs-WATCH, providing with comparative
analysis of machine learning models which perform best to
detect side channels.

B. Selected Hardware Events as Useful Features

Almost all modern processors support hardware performance
counters. Their type and count, however, can vary for different
processor families. PAPI library provides access to 100+ events
for Intel’s core i7 family. Such events are helpful to access
per-core, per-CPU and system wide profiling for executing
processes. Since our interest is to detect access-driven cache-
based side channel attacks, we consider only the events which
are plausible to be affected by these attacks. In order to best
select these events, we performed experiments on a set of 12
best suited events as listed in Table I. We collected a system-
wide profile for different hardware events under state-of-the-art
CSCAs, namely the F+R attack on RSA encryption algorithm
as shown in Figure 1 and F+F attack on AES encryption
algorithm as shown in Figure 2, to form a data set of benign
and malicious behavior on the system. Shown sample events
are collected under no load conditions, i.e., when no process
other than encryption and attack processes is executing.

TABLE I: Selected events related to cache-based SCAs

Scope of Event Hardware Event as Feature Feature ID

L1 Caches
Data Cache Misses L1-DCM
Instruction Cache Misses L1-ICM
Total Cache Misses L1-TCM

L2 Caches

Instruction Cache Accesses L2-ICA
Instruction Cache Misses L2-ICM
Total Cache Accesses L2-TCA
Total Cache Misses L2-TCM

L3-Caches
Instruction Cache Accesses L3-ICA
Total Cache Accesses L3-TCA
Total Cache Misses L3-TCM

System-wide Total CPU Cycles TOT CYC
Branch Miss-Predictions BR MSP

Fig. 1: Selected hardware events under Zero Load conditions
for RSA encryption algorithm: With & Without F+R Attack

C. Selected Machine Learning Models

Table II enlists machine learning models being used in
experimental evaluation in this work. We have experimented
with a total of 12 models, 6 each from linear & non-linear
category. In favor of space, we do not provide details. on
models. However, the theoretical review of these ML models
can be found in other sources such as [26], [27], [28].
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Fig. 2: Selected hardware events under Zero Load conditions
for AES encryption algorithm: With & Without F+F Attack

TABLE II: List of Machine Learning Models for CSCA
Detection (Non-exhaustive)

No. Machine Learning Model Category
1 Linear Regression (LR) Linear
2 Linear Discriminant Analysis (LDA) Linear
3 Support Vector Machine (SVM) Linear
4 Quadratic Discriminant Analysis (QDA) Non-linear
5 Random Forest (RF) Non-linear
6 K-Nearest Neighbors (KNN) Non-linear
7 Nearest Centroid Linear
8 Naive Bayes Linear
9 Perceptron Linear
10 Decision Tree Non-linear
11 Dummy Non-linear
12 Neural Networks Non-linear

III. MACHINE LEARNING FOR SECURITY

Machine learning models are mathematical functions that
tend to find such patterns from the data, which can best
explain the input output relationship. Classification of the
data is an important application of Machine Learning. CSCA
detection is basically one such binary classification problem
from machine learning prospective. In this section, we present a
comparative analysis of various ML models used for detection
of CSCAs in Intel’s x86 architecture. Most of these models
are used for the first time in CSCA detection in this work.
This analysis is based on experimental data collected at
the hardware level using Hardware Performance Counters
(HPCs). The data provides real-time behavioral information of
concurrent processes running on Intel’s x86 architecture such as;
Instruction and data cache misses & hits for L1/L2/LLC, total
CPU cycles, branch miss-predictions, and total cache accesses
etc. We create two experimental case studies for our analysis
of F+R and F+F attacks. In each case study, we evaluate
the performance of ML models under realistic system load
conditions. To do so, we vary the system load from Zero Load
(ZL), Medium Load (ML), to Heavy Load (HL) conditions
by using selected SPEC benchmarks [29] that offer memory-
intensive computations such as; gobmk, mcf , omnetpp, and
xalancbmk, to run in the background. A ZL condition involves
only Victim and Attacker processes running, a ML condition
involves at least two SPEC benchmarks running along with
Victim & Attacker processes, and a HL condition involves
at least four SPEC benchmarks running along with Victim &

Attacker processes. We have performed experiments on Intel’s
core i7− 4770 CPU running on Linux Ubuntu 16.04.1 with
kernel 4.13.0− 37 at 3.40-GHz.

Most of the existing machine learning classifiers can be
divided into two basic categories of linear and non-linear
models. We experimented with a set of 12 popular classification
machine learning models, 6 each from both categories. A
list of ML models being used in this work is provided
in Section II-C. Here we characterize and compare these
machine learning models to solve the classification problem
at hand i.e. detection of CSCA. We describe the rationale
and criteria behind selection of any particular models for
run-time CSCA detection through experimentation. Run-time
detection constraints have been discussed in Section I. We
keep the following constraints to assess selected ML models:
classification accuracy, implementation feasibility for run-time
detection (in terms of performance overhead), distribution of
error (false positives & false negatives), and detection speed.

The classification accuracy of the studied machine learning
models is shown in Figure 3 and 4 for Flush+Reload (on
RSA) and Flush+Flush (on AES) attacks, respectively, under
Zero-Load (ZL), Medium-Load (ML) and Heavy-Load (HL)
conditions. As shown in Figure 3, for detection of Flush+Reload
attack most of the machine learning models show pretty good
accuracy (close to 100% for all load conditions) except Nearest-
Centroid and Dummy Classifiers. However, for detection of
Flush+Flush attack, more number of classifiers exhibit low
accuracy (like Dummy, Perceptron, Neural Network). Moreover,
under Heavy-Load (HL) condition, the classification accuracy
of all machine learning models degrades. The degradation
of performance of classifiers for Flush+Flush attack can be
explained by the stealth nature of the attack as discussed
before. Unlike F+R, for F+F attack Nearest-Centroid manifests
good classification accuracy. Since, any detection mechanism
should only employ those machine learning models which
show acceptable accuracy for all types of attacks the detection
framework is supposed to work for, we argue that the models
that can be used for detection of CSCAs out of the studied
ones based on their accuracy include: LDA, LR, SVM, QDA,
Naive-Bayes, KNN, Decision Tree, Random Forest and QDA.

Though the most important one, but classification accuracy
is not the only parameter to consider while deploying a high-
speed run-time CSCA detection mechanism. We reason that the
other most important parameter to examine while comparing
machine learning models is the implementation feasibility.
Machine learning models should be easy to embed in the crypto-
system to be protected at run-time. They should also be able to
quickly provide their decision of CSCA detection based on the
profiling of processes using HPCs. Moreover, the performance
overhead caused to the crypto-system’s own execution due to
embedding of classification patch should be reasonable. On
analyzing the short-listed machine learning models on the basis
of accuracy, we find that two of those models i.e. Decision
Tree and Random Forest would not be easy to implement
at run-time due to their tree-based nature. We observed that,
based on our experiments, the decision trees/random forest that
show good accuracy for our classification problem, also have
high depth and a high number of branches. Not only that it
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Fig. 3: Accuracy Comparison of ML Models for F+R (RSA)
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Fig. 4: Accuracy Comparison of ML Models for F+F (AES)
makes their embedding into crypto-system difficult, it can also
result into high performance overhead due to a high number of
if − else blocks needed to implement them. KNN also shows
good classification accuracy for both attacks. However, KNN
uses all training data points at run-time to infer a classification
decision, which can result into high performance and storage
overhead. Since better training would require more data points,
KNN leads to a performance vs accuracy trade-off. Out of the
remaining machine learning models, since QDA (non-linear)
and LDA (linear) are based on Naive Bayes, Naive Bayes
can be left out in favor of LDA and QDA. This leaves us
with LDA, LR, SVM and QDA as better candidates for use
in detection of CSCAs. Our experiments indicate that these
four machine learning models show less than 2% performance
overhead for detection of Flush+Relaod and FLush+Flush
attacks, while capable of detecting way before thresholds of
security degradation with with an accuracy of more than 90%
under heavy load conditions.

IV. CONCLUSION

Machine learning has proved its effectiveness across many ap-
plication domains, including information security. In this work, we
have provided quantitative & qualitative analysis of various machine
learning models while being used in detection of the state-of-the-
art cache-based side-channel attacks, Flush+Reload & Flush+Flush,
on RSA and AES crypto-systems, respectively. We have analyzed
their effectiveness under real-time detection constraints and compared
the results for classification accuracy, run-time detection speed,
classification overhead, and distribution of error (false positives &

negatives). This paper does not conclude in favor of any particular
models. Rather, it provides contextualized evidence on the use of
these models in CSCA detection. A different and more efficient
implementation of these models might result into different results
altogether.
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