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Abstract
The present work concerns the dynamical analysis of an uncertain structure in the context of nonlinear
dynamics. The structure is assumed to undergo large displacements and large deformations although the
constitutive equations remain linearly elastic. The proposed strategy is compatible with the use of high-
dimensional computational models, requiring to compute the random dynamical response from a stochastic
nonlinear reduced-order model expressed in the time domain. With the proposed method, the uncertainty
is introduced by replacing a deterministic chosen reduced-order basis with a stochastic projection basis, for
which a new nonparametric probabilistic approach is used so that each realization of the projection basis
respects some mathematical properties linked to the available information. The methodology is then applied
on a computational model of a bi-clamped tridimensional beam structure.

1 Introduction

A major challenge in many research areas consists in developing advanced methodologies in order to con-
struct predictive numerical simulation tools, which are representative of the observed dynamical behavior
dynamical systems. In particular, it is important to quantify how inherent uncertainties propagate on the con-
sidered system. Furthermore, an essential aspect is to pay attention to the various nonlinear effects that can
subsequently modify the dynamical response of the structure. There have been various researches concern-
ing the development of computational strategies for constructing stochastic nonlinear reduced-order models
that are able to accurately reproduce experimental dynamical structural responses that occur in nonlinear
vibrational operating ranges. One one hand, a particular attention has to be paid on the construction of
nonlinear deterministic reduced-order models [10, 1, 8, 7, 5], that have to be compatible with non intrusive
computational strategies regarding existing industrial softwares. On the other hand, uncertainties can be
implemented from the mechanical or geometrical parameters of a given deterministic computational model
or with nonparametric probabilistic approaches which are parameterized by hyperparameters directly linked
to the considered reduced-order models. We are interested in this latter strategy that allows both model
and parameter uncertainties to be considered. In previous researches, uncertainty was introduced from the
nonlinear reduced-operators issued from a given mean reduced-order model [9, 1, 3]. With the proposed
method, the uncertainty is introduced by replacing the deterministic reduced-order basis with a stochastic
reduced-order basis. This latter one is obtained by using a new nonparametric probabilistic approach [13, 6]
so that each realization of the random projection basis respects some mathematical properties linked to the
available information. Moreover, it is parameterized by a small number of hyperparameters. It is then used
as the projection basis for constructing the stochastic nonlinear reduced-order model. With such uncertainty
modeling, there is no need to construct the stochastic nonlinear reduced operators. The numerical effort is
focused on the construction of the stochastic nonlinear reduced internal forces, which is explicitly carried out
using the stochastic reduced-order basis combined with the finite element method. The paper is organized



as follows. In Section 2, the computational methodology is described. In particular, the computation of the
mean nonlinear dynamical finite element response is used for constructing an adapted reduced-order basis
with the proper orthogonal decomposition method. The stochastic nonlinear computational model is then
written and the main steps concerning the computational resolution of the set of stochastic nonlinear differ-
ential equations are discussed. Section 3 is devoted to a numerical application consisting in a bi-clamped
tridimensional beam subjected to a non symmetrical load and for which the uncertainty propagation of the
dynamical nonlinear response is analyzed in details.

2 Description of the methodology

2.1 Context of the method

The present research is carried out in the context of the uncertainty propagation for elasto-dynamics struc-
tural systems that undergo geometrical nonlinear effects. In this field, a complete methodology has already
been developed and a dedicated numerical tool that is adapted for large numerical computational models
and that is non intrusive with respect to the industrial softwares has been constructed. More particularly, it
has been experimentally validated in the context of the post-buckling of cylindrical shells [2] and applied
to various numerical applications [3, 4]. Until now, the uncertainties were modeled through the nonpara-
metric probabilistic approach for which a dedicated probability model issued from the maximum entropy
principle [12] was directly implemented on the reduced operators of a mean nonlinear reduced-order model.
In particular, such strategy requires the numerical construction of all linear, quadratic, and cubic operators
issued from such nonlinear mean reduced-order model. As soon as the probability model is implemented,
the numerical construction of the stochastic reduced nonlinear internal forces and of the stochastic tangent
operator is then performed. Indeed it is required by the computational algorithms used for solving the
stochastic nonlinear differential equations. In the present context, a nonparametric probabilistic approach on
the model-form recently introduced in [13] is considered. In this approach, a dedicated probability model
of random uncertainties is implemented on the projection basis used for constructing the mean nonlinear
reduced-order model. As a consequence, the computational strategy has to be adapted. The main steps of
this new methodology are summarized below and the related novel developments are explained in details.

2.2 Mean nonlinear finite element model of the structure

The considered structure is assumed to be fixed on a part of its boundary. In the context of the finite ele-
ment method, a nonlinear finite element computational model that describes the nonlinear dynamical forced
response of the considered structure is characterized in the time domain by the following set of nonlinear
coupled differential equations such that

[M ]Ü(t) + [D]U̇(t) + [K]U(t) + FNL(U(t)) = F(t) , (1)

[B]T U(t) = 0 (2)

in which the Rn-vector U(t) is the instantaneous displacement vector. In Eq. (1), the real matrices [M ], [D],
and [K] are the mass and damping, elastic stiffness (n × n) real matrices with symmetry positive definite-
ness property. The Rn-vector F(t) is issued from the finite element discretization of the external load and
the Rn-vector FNL(U(t)) describes the nonlinear finite element internal forces induced by the geometrical
nonlinearities. In Eq. (1), the real (n × nBC) matrix [B] describes the nBC constraint relations defining
the Dirichlet conditions, verifying the relation [B]T [B] = [InBC ]. Since we are interested in analyzing the
nonlinear vibrations of the structure, the external load is defined in the time domain for t ∈ R and a Fourier
transform with respect to the time domain is performed on the nonlinear solution and allows then the non-
linear dynamical response in the frequency domain to be analyzed. In the present research, it is chosen to
solve this set of nonlinear differential equations in order to construct the nonlinear dynamical response that



will be considered as the reference response. In this case, the nonlinear algorithms require to construct the
nonlinear internal finite element forces and the related tangential operator with the finite element model. it
should be noted that this calculation is particularly time consuming but is carried out once.

2.3 Construction of the projection basis

The construction of the mean nonlinear reduced-order model requires a projection basis. In the present
work, such projection basis is computed from the nonlinear reference response with the proper-orthogonal
decomposition method (POD-method), which is proved to be particularly relevant for nonlinear problems.
Let [A] be the (n × n) correlation matrix related to the nonlinear reference dynamical response U(t). It is
defined by

[A]=[Y]T [Y] , [Y]ij = U i(tj)
√
δ t , (3)

in which δ t is the constant sampling time step, and where tj denotes the sampling time number j. The
projection basis is defined by the eigenvectors�

α
related to theN most contributing eigenvalues λα, solution

of
[A]�

α
=λα�α with �T

α
�
β

= δαβ , (4)

in which δαβ is the Kronecker symbol set to 1 if α = β and to 0 otherwise. Note that in practice, for large
computational models, the numerical construction of correlation matrix [A] is difficult to achieve. In such a
case, metrics [A] is not computed and the eigenvalue problem is replaced by a singular value decomposition
of metrics [Y ] or [Y ]T (see Section 3.3).

2.4 Stochastic nonlinear reduced-order model

In this work, the nonparametric probabilistic approach of model-form uncertainties recently introduced in
[13] is used. In such case, the probability model is directly implemented in the projection basis. Let [Φ] be
the (n ×N) matrix whose columns are the eigenvectors �

1
, · · · ,�

N
. The matrix [Φ] is then replaced by a

stochastic matrix [�(a)], whose stochastic model and whose Monte Carlo numerical simulation procedure
is found in [13]. It should be noted that the random vectors contained in random matrix [�] verify the
boundary conditions and orthonormality conditions

[B]T [�]=0 , [�]T [�]=[IN ] , (5)

in which [IN ] is the identity matrix withN order. The probability distribution of random matrix [�] depends
on a Rm-valued hyperparametera={s, β, [σ]}, withm = 0.5N(N+1)+2. More specifically, s is a scalar
which controls the global amount of uncertainty on the random basis, β is a scalar which controls the noise
level around each projection vector basis and [σ] is an (N × N) real upper triangular matrix which allows
the correlations between the projection basis vectors to be controlled.

The stochastic computational model consists then in solving the set of stochastic nonlinear differential equa-
tions

[M]Q̈(t) + [D]Q̇(t) + [K]Q(t) + [�]TFNL([�] Q(t)) = [�]TF(t) , (6)

in which [M] = [�]T [M ] [�], [D] = [�]T [D] [�] and [K] = [�]T [K] [�] are the full random mass,
damping and stiffness matrices belonging to the set of positive-definite symmetric (N × N) real-valued
matrices, and where Q is the RN -valued random vector of the generalized coordinates from which the Rn-
valued random vector of the physical solution U is reconstructed by

U=[�] Q . (7)

Regarding the numerical computation, the set of these stochastic nonlinear differential equations is solved
in the time domain by using the Monte Carlo numerical simulation, using an implicit and unconditionally



stable integration scheme (Newmark method with the averaging acceleration scheme). For each sampling
time, the nonlinearity is solved iteratively by using either the fixed point method or an arc-length-based al-
gorithm, depending on the nonlinearity rate. Concerning the current strategy, the knowledge of the nonlinear
reduced-order internal force vector is required by both nonlinear algorithms whereas the knowledge of the
related reduced tangent operator (that is time consuming) is only required by the use of the arc-length-based
algorithm. Practically, the contributions of both nonlinear reduced-order internal force and tangent reduced
operator induced by each finite element are explicitly constructed with the finite element method. The assem-
blage over the finite elements is particularly quick because it only requires to sum each of these contributions.
A posterior nonlinear dynamical analysis is performed from Eq.(7) in the frequency domain by computing
the Fourier transform of the nonlinear dynamical response.

3 Numerical application

3.1 Description of the finite element computational model

The three-dimensional bounded domain Ω is a slender rectangular domain defined in a Cartesian system
(0, e1, e2, e3) such that Ω = {]0, l[×]0, b[×]0, h[} with l = 8m, b = 0.8m, h = 0.6m. Let Γ0 and Γ1 be
the boundaries described as Γ0 = {x; x1 = 0} and Γ1 = {x; x1 = l}. The structure is assumed to be fixed
on both boundaries so that we have a Dirichlet condition on Γ0

⋃
Γ1. The structure is free on boundary

∂Ω \ {Γ0
⋃

Γ1}. The structure is subjected to an external point load applied along directions e1, e2 and e3
at the excitation node located at (3.2, 0.4, 0.6). The Young modulus, the Poisson coefficient and the mass
density of the homogeneous and isotropic linear elastic material are E = 2 × 1011N.m−2, ν = 0.3 and
ρ= 8200Kg.m−3. A three dimensional finite element model is constructed with 40 × 4 × 3 = 480 solid
finite elements with 8 nodes. Therefore, the mean computational model has 820 nodes and n=2 320 degrees
of freedom (see Fig. 1).

Figure 1: Finite element mesh of the structure - localisation of the excitation node (• symbol).

It should be noted that the fundamental eigenfrequency related to the linear undamped structure is ν1 =
47.930Hz. The frequency band of analysis is then chosen as B = [40 , 2000]Hz. The damping is then
represented by a Rayleigh model [D] = α [M ] + β [K] with α = 24.2 and β = 9.4 × 10−6, which corre-
sponds to a critical damping rate ξ1 = 0.040 at fundamental frequency ν1 and such that ξ ∈ [0.015, 0.060]
in frequency band B. The chosen observation node is located at (3.2, 0.4, 0.6), where the external point load
is applied.



3.2 Description of the external loading

We are interested in analyzing the nonlinear dynamical forced response in frequency band B. The chosen
excitation frequency band is Bexc = [450 , 1200]Hz. The load intensity is chosen as f0 = 18 × 106N
that corresponds to a consequent rate of geometrical nonlinearity for the numerical application presented.
Consequently, it is no longer possible to directly compute the forced response in the frequency domain. The
forced response is then computed in the time domain according to Eq.(1) and Eq. (2). The time dependent
function g(t) is defined with ∆ν=750Hz and s=1.1. Practically, the computation is carried on a truncated
time domain T=[tini, tini +T ]. The initial load is chosen as tini=−4/∆ν=−0.053 s yielding a null initial
load. The time duration T is then adjusted so that the system be returned at its equilibrium state within a given
numerical tolerance for both linear and nonlinear computations. Even the fundamental eigenfrequency does
not belong to excitation frequency band Bexc, it ca be indirectly excited through the geometrical nonlinear
effects. Time duration is chosen as T = 0.234 s which ensures the system to return to its equilibrium state
with a relative tolerance τ = e−2πξ1ν1T = 6% when fundamental eigenfrequency is excited. The sample
frequency νe and the number of time steps are then chosen as νe = 35 000Hz and nt = 8 192 yielding a
constant sampling time step δt = 2.857 × 10−5 s and a constant sampling frequency step δν = 4.272Hz.
It should be noted that the fundamental resonance that could possibly be excited would be nearly correctly
represented with such computational choice. Let tα = tini + αδt , α ∈ {0, · · · , nt − 1} and let νβ =
−0.5νe+βδν , β ∈ {0, · · · , nt−1}. The Fourier transform ĝ(2πν) of function g(t) is numerically estimated
by using the Fast Fourier Transform since function ĝ(2πν) can be written as

ĝ(2πνβ)=exp (iπ tiniνe) exp (2iπβδνtini)
nt−1∑
α=0

(−1)α g(tα) exp(−2iπαβ/nt) . (8)

Figure 2 displays the graphs of function t 7→ g(t) and ν 7→ |ĝ(2πν)|.

Figure 2: Representation of the time dependent load in the time domain and in the frequency domain : graphs
of t 7→ g(t) (upper graph) and ν 7→ |ĝ(2πν)| (lower graph).

3.3 Construction of the projection basis for the mean nonlinear reduced-order
model

The dynamical response of the mean nonlinear finite element model is first calculated according to the
algorithm described in Section 2.4. Figure 3 displays the graphs of both linear and nonlinear finite element
dynamical responses at the observation node along the three dimensions in the time domain. It can be seen
that the chosen load intensity yields subsequent geometrical nonlinear effects. Indeed, it can be seen that the
dynamical response amplitudes are limited by the geometrical nonlinear effects. Moreover, the dynamical



system returns to its equilibrium state with a longer delay, in particular for the transverse directions. This
means that the resonances that are located outside and below the excitation frequency band are indirectly
excited by the geometrical nonlinearities. In order to quantify such geometrical nonlinear effects, a Fourier
transform of both nonlinear and linear responses is carried out in the frequency domain. Figure 4 displays the
graph of the response amplitude related to the observation node in the frequency domain for both nonlinear
and linear cases. It is clearly seen that there exists a consequent contribution of resonances located in the
very low frequency band outside the excitation frequency band.
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Figure 3: Time domain observation t 7→ uobs,1(t) (left figure), t 7→ uobs,2(t) (middle figure), t 7→ uobs,3(t)
(right graph) related to the linear (upper graph) and to the nonlinear (lower graph) finite element dynamical
responses.

Figure 4: Frequency domain observation ν 7→ ||ûobs(2πν)|| related to the linear (thin black line) and to
the nonlinear (thick black line) finite element dynamical responses for excitation frequency band Bexc =
[450 , 1200]Hz (light red zone).

The mean nonlinear finite element dynamical response is then used for constructing the projection basis with
the POD-method as described in Section 2.4. Practically, in the present case, since n < nt, the projection
basis is numerically calculated by using the single value decomposition of matrix [Y]T whose singular values
sα are sorted by decreasing order and such tha s2α=λα and whose right-singular vectors corresponds to the
basis vectors�α. Note that the projection basis strongly depends on the nature of the external load, which re-
quires to be computed for each considered load case. Figure 5 displays several basis vectors issued from this
POD decomposition. It is clearly seen that this projection basis presents local spatial displacements around
the excitation node (that was expected), contrarily to a usual basis constituted of linear elastic eigenmodes.



Figure 5: Representation of several basis vectors belonging to the projection basis computed with the POD
method over the mean nonlinear finite element dynamical response.

3.4 Computational validation of the mean nonlinear reduced-order model

First a convergence analysis is performed in order to set the optimal order of the mean nonlinear reduced-
order model that can accurately reproduce the nonlinear finite element response. Let N 7→ Convs(N) and
N 7→ ConvQ(N) be the convergence functions defined by

Convs(N) =

√∑N
α=1 s

2
α∑n

α=1 s
2
α

(9)

ConvQ(N) =

√√√√√√√
∫ +∞

0
||Q̂N

(2πν)||2 dν∫ +∞

0
||Ûref (2πν)||2 dν

. (10)

Figure 6 displays the graph of function N 7→ Convs(N). Since the projection basis is orthonormal, it can
easily be shown that ConvQ(n) = 1. Figure 7 displays the graph of function N 7→ ConvQ(N). It is seen
that a good agreement is obtained for N = 60. From now on, we use N = 60 in the numerical appli-
cation. In previous researches, the chosen projection basis was issued from nonlinear static calculations or
from linear elastic modes which did not require the knowledge of the mean nonlinear finite element dynam-
ical response. As a consequence, the systematic convergence analysis carried out with the mean nonlinear
reduced-order model was converging towards a certain value yielding a converged value of N . But there
was no computational proof that such converged value was the good one. In the present strategy, a compu-
tational effort for solving the mean nonlinear finite element model has been carried out. Consequently, it is
computationally proved that the converged nonlinear dynamical response obtained with the mean nonlinear
reduced-order model corresponds to the reference nonlinear finite element dynamical response.
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Figure 6: Convergence analysis for the mean nonlinear reduced-order model : graph of function N 7→
Convs(N).
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Figure 7: Convergence analysis for the mean nonlinear reduced-order model : graph of function N 7→
ConvQ(N).

3.5 Stochastic nonlinear dynamical response

This Section is devoted to the stochastic nonlinear dynamical analysis of the structure. The computational
results are presented for s=0.003, β=0.0025 and [σ] an upper triangular matrix with N order for which the
non-zeros entries are defined by [σ]ii = 10, [σ]i,i+1 = 5 and [σ]i,i+2 = 2.5. The results are computed with
ns=70 Monte Carlo numerical realizations.

An experimental data basis is assumed to be available for the three observation dofs. Such experimental
response is computed numerically as follows : The material properties E, ν, ρ are replaced by stochastic
fields E(x), n(x) and r(x) yielding inhomogeneous materials along the length of the beam and we have then

E(x) = E(1 + 0.03
I∑
i=0

xi sin

(
0.02πi

`
(x− 0.5`)

)
,

n(x) = ν(1 + 0.03
I∑
i=0

x′i sin

(
0.02πi

`
(x− 0.5`)

)
, (11)



r(x) = ρ(1 + 0.03
I∑
i=0

x′′i sin

(
0.02πi

`
(x− 0.5`)

)
,

in which xi, x
′
i and x′′i are independent truncated Gaussian random variables in order that ∀x ∈ Ω, E(x) > 0,

n(x) ∈]0 , 1/2[ and r(x) > 0 almost surely. Note that the nonlinear stochastic computational model cannot
reproduce this experimental data.

Let uexp(2πν) be the vector of the experimental response. Figures 8 , 9 and 10 display the graph of function
ν 7→ |uobs,i(2πν)| (black dashed line), ν 7→ |uexp,i(2πν)| (red line), and the graph of the confidence region
of random function ν 7→ |Uobs,i(2πν)| of the observation with a probability level pc = 0.95 related to the
nonlinear reduced-order model for i ∈ {1, 2, 3}. First, it can be seen that unexpected resonances that are
induced by the geometrical nonlinear effects and that are located in the low frequencies outside Bexc appear
with subsequent amplitudes. Concerning the longitudinal displacement, it is seen that the proposed com-
putational model captures well the nonlinear experimental dynamical behavior. Concerning the transverse
displacements, we have a good agreement between the computational model and the experimental response
except for the first resonance. It should be noted that the presented results have been obtained for a selected
value ofa, which does not correspond to an optimal value that would be obtained by solving an optimization
problem allowing for minimizing the distance to the experimental target.

Figure 8: Graph of functions ν 7→ |uobs,1(2πν)| (black dashed line) computed with the nonlinear finite
element model, ν 7→ |uexp,1(2πν)| (red line), graph of the confidence region of random function ν 7→
|Uobs,1(2πν)| computed with the nonlinear stochastic reduced-order model (yellow zone), localization of the
excitation frequency band Bexc=[450 , 1200]Hz (light red zone).

4 Conclusion

In the context of structural dynamics with geometric nonlinearities, a computational methodology is pre-
sented for analyzing the propagation of uncertainties on the nonlinear dynamical response. A nonparametric
probabilistic method for modeling model-form uncertainties, which is implemented from a given projec-
tion basis is used for constructing a stochastic computational nonlinear reduced-order model . A numerical
application, which consists in a bi-clamped beam, is presented and shows the capability of the stochastic
computational model to capture the unexpected resonances induced by the geometrical nonlinearities.



Figure 9: Graph of functions ν 7→ |uobs,2(2πν)| (black dashed line) computed with the nonlinear finite
element model, ν 7→ |uexp,2(2πν)| (red line), graph of the confidence region of random function ν 7→
|Uobs,2(2πν)| computed with the nonlinear stochastic reduced-order model (yellow zone), localization of the
excitation frequency band Bexc=[450 , 1200]Hz (light red zone).

Figure 10: Graph of functions ν 7→ |uobs,3(2πν)| (black dashed line) computed with the nonlinear finite
element model, ν 7→ |uexp,3(2πν)| (red line), graph of the confidence region of random function ν 7→
|Uobs,3(2πν)| computed with the nonlinear stochastic reduced-order model (yellow zone), localization of the
excitation frequency band Bexc=[450 , 1200]Hz (light red zone).
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