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Abstract
This paper deals with a computational methodology for analyzing a fluid-structure system taking into account

sloshing and capillarity phenomena. The fluid is assumed to be linear acoustic and the structure is assumed

to undergo large displacements/deformations, which induce geometrical nonlinearities in the fluid-structure

system. An adapted nonlinear reduced-order model is constructed using a modal characterization of each part

of the coupled system. A numerical application is considered in order to study the effects of the geometrical

nonlinearities on the dynamical forced response of the structural acoustic system.

1 Introduction

The understanding of fluid-structure dynamic interactions has always received a great attention and is of

fundamental interest with respect to numerous applications (see for instance [2, 14, 10]). In particular, the

sloshing phenomenon and the influence of the surface tension on the vibrational motion of the free surface of

a fluid have been widely studied these last decades (see [10, ?, 6, 12]). Note that the physics and modeling of

surface tension can be found, for instance, in [7, 8]. The present work is devoted to a computational nonlinear

dynamical analysis of a fluid-structure system, for which the fluid is a liquid is presence of a gravity field,

taking into account both surface tension and sloshing effects. The structure is assumed to undergo large dis-

placements and large deformations that could possibly influence the dynamical response of the fluid-structure

system. Hence, the formulation used to analyze such fluid-structure system is the one recently proposed in

[12, 13] that allows for considering the geometrical nonlinearities related to the structure through the use of

an adapted computational nonlinear reduced-order model. This nonlinear reduced-order model relies on pro-

jecting the fluid-structure boundary value problem onto an adapted reduced-order basis that is constructed by

considering several generalized eigenvalue problems related to the dynamics of the structure, of the acoustic

fluid, and of the free surface. A detailed computational methodology for constructing this projection basis in

the context of large scale fluid-structure systems has been proposed and validated in [1].

The computational model is constructed with the finite element method [15, 9] for which the unknowns of

the problem are the nonlinear displacements of the elastic structure, the acoustic pressure in the liquid, and

the free-surface normal elevation of the liquid. Furthermore, each reduced operator (linear or nonlinear)

of the reduced-order computational model is explicitly calculated. The algorithm for solving the nonlinear

reduced-order computational model uses simultaneously the arc-length algorithm (see [5]) and the fixed-

point method.

The paper is organized as follows. Section 2 is dedicated to the formulation of the fluid-structure problem. In



particular, the construction of the nonlinear reduced-order model is explained in details. Section 3 is devoted

to a numerical application that consists in a large scale computational model of an elastic cylindrical tank

partially filled with the liquid (water). The nonlinear response of the fluid-structure system is analyzed in

details.

2 Formulation of the fluid-structure problem

2.1 Notations and hypotheses

The equations of the fluid-structure system are written with a total Lagrange formulation and the related

reference configuration is described in Figure 1. The structure, which is taken in its natural state without

prestresses, occupies a bounded domain ΩS and is assumed to be constituted of a homogeneous isotropic

linear viscoelastic material without memory. The structure contains a linear dissipative acoustic fluid occu-

pying a bounded domain ΩF . Gravitational and surface tension effects are taken into account in the present

formulation but internal gravity waves are neglected. It should be noted that the geometry of the free surface

is obtained by a pre-computation allowing the static equilibrium to be found. The acoustic fluid is assumed

to be dissipative. This dissipation is modeled by an equivalent damping term in the Helmholtz equation [11].

Figure 1: Reference configuration of the fluid-structure system (figure from [13])

The boundary of ΩF is written as ∂ΩF = ΓL ∪ γ ∪ Γ (with ΓL ∩ γ = ∅, Γ ∩ γ = ∅, ΓL ∩ Γ = ∅),

where ΓL is the fluid-structure interface, Γ is the free surface of the fluid and γ is the contact line between

the structure and the fluid. The boundary of ΩS is denoted by ∂ΩS = ΓE ∪ ΓL ∪ γ ∪ ΓG, where ΓE and

ΓG are the external structural boundary of the structure and the part of the internal structural boundary that

is not in contact with the fluid. The structure is submitted to a given body force field b in ΩS and to a

given surface force field f on ΓE . The external unitary normals to ∂ΩS and ∂ΩF are denoted by nS and

n. Let ν and νL be the external unit normals to γ belonging respectively to the tangent plane to Γ and

to the tangent plane to ΓL. The structure is assumed to be fixed on a part of its boundary ΓE . We are then

interested in analyzing the vibrations of the coupled fluid-structure system around its reference configuration.

Let x = (x1, x2, x3) be the generic point in a Cartesian reference system (O, e1, e2, e3). The gravity vector is

g = −g e3 with g = ‖ g ‖. The boundary value problem is expressed in terms of the structural displacement



field u(x, t), of the internal pressure field p(x, t), and of the normal displacement field of the free surface

η(x, t). In order to simplify the notations, the convention for summation over repeated Greek and Latin

indices is considered and parameters x and t are removed if there is no possible confusion. Let a(x, t) be a

given function, the following notations are used : a, j = ∂a/∂xj , ȧ = ∂a/∂t and ä = ∂2a/∂t2.

2.2 Finite element computational model

In this work, the computational model is constructed with the finite element method. We are interested in

analyzing the nonlinear forced response of the fluid-structure system and the equations are formulated in the

time domain. Let nPHS = nP +nH +nS be the total number of dof on the computational model, where nP ,

nH , and nS correspond to the number of dofs of the fluid, of the free surface, and of the structure. We then

denote by P, H, and U the R
nP -vector, RnH -vector, and the R

nS -vector corresponding to the finite element

discretization of the pressure field in the acoustic fluid, of the normal elevation of the free surface, and of the

nonlinear structural displacement. The computational finite element model of the fluid-structure system is

then described by the following set of nonlinear coupled differential equations,

[M ] P̈+ [D] Ṗ+ [K]P− [Cpη]
T
Ḧ− [Cpu]

T
Ü = 0 , (1)

[Cpη]P+ [Kgc]H+ [Cηu]U = 0 , (2)

[Cpu]P+ [Cηu]
T
H+ [MS ] Ü+ [DS ] U̇+ [KS ]U+ FNL(U) = FS . (3)

In Eq. (1), the (nP × nP ) symmetric positive definite matrix [M ] is the fluid mass matrix. The (nP × nP )
symmetric positive semidefinite matrices [D] = τ [K] and [K] are the damping and stiffness matrices of

the fluid, in which τ is the acoustic damping coefficient. In Eq. (2), the (nH × nH) symmetric positive

definite matrix [Kgc] is the matrix related to the sloshing/capillarity effects on the free surface. In Eq. (3),

the (nS × nS) symmetric positive definite matrices [MS ], [DS ] = τS [KS ], and [KS ] are the mass, damping,

and stiffness matrices of the structure with τS the elastic damping coefficient. The rectangular (nS × nP ),
(nH ×nP ), and (nH ×nS) real matrices [Cpu], [Cpη], and [Cηu] are the coupling matrices between the fluid

and the structure, between the fluid and the free surface, and between the structure and the free surface. In

Eq. (3) the R
nS -vectors FS and FNL(U) correspond to the discretization of the external force field applied to

the structure and to the nonlinear internal forces in the structure induced by the geometrical nonlinearities.

The numerical resolution of the set of nonlinear coupled differential equations (Eqs.(1) to (3)) appears to

be time consuming or even impossible when considering large finite element models. It is thus essential to

introduce an efficient reduced-order model.

2.3 Nonlinear reduced-order computational model

The nonlinear reduced-order model is constructed by projecting the equations on an adapted reduced-order

basis, whose basis vectors are represented by the (nPHS ×NPHS) real matrix [Ψ]. The corresponding approx-

imated solution is denoted by the R
nPHS-vector (P,H,U) that is written as follows




P

H

U


 =



[ΦP ] [ΦPH ] 0
0 [ΦH ] 0
0 0 [ΦS ]






qP

qH

qU


 = [Ψ]Q , (4)

in which the R
NP -vector qP , the R

NH -vector qH , and the R
NS -vector qU are the generalized coordinates.

The total number of generalized coordinates is NPHS = NP+NH+NS . In Eq. (4), the (nP×NP ) real matrix

[ΦP ] is made up of the acoustic modes of the internal fluid, the (nH ×NH) real matrix [ΦH ], of the sloshing

modes of the free surface, and the (nS × NS) real matrix [ΦS ], the eigenmodes of the linearized structure

for which the added mass matrix effect is taken into account [10]). It should be noted that the (nP × NH)
real matrix [ΦPH ] is made up of the corresponding acoustic part associated with each sloshing modes. For



more details concerning the computational aspects of the construction of such proposed reduced-order basis,

we refer the reader to [1]. The R
NPHS-vector Q = (qP , qH , qU ) is then solution of the following set of NPHS

nonlinear coupled differential equations

[MFSI] Q̈(t) + [DFSI] Q̇(t) + [KFSI]Q(t) + FNL(Q(t)) = F (t) , (5)

in which the (NPHS × NPHS) matrices [MFSI ], [DFSI], [KFSI], and the R
NPHS vectors F and FNL are such

that

[MFSI] = [Ψ]T



[M ] −[Cpη]

T −[Cpu]
T

0 0 0
0 0 [MS ]


 [Ψ] , (6)

[DFSI] = [Ψ]T



[D] 0 0
0 0 0
0 0 [DS ]


 [Ψ] , (7)

[KFSI] = [Ψ]T




[K] 0 0
[Cpη] [Kgc] [Cηu]
[Cpu] [Cηu]

T [KS ]


 [Ψ] , (8)

F (t) = [Ψ]T




0
0

FS(t)


 , (9)

FNL(Q(t)) = [Ψ]T




0
0

FNL(Q(t))


 . (10)

In Eq. (5), vector FNL(Q(t)) denotes the nonlinear internal forces induced by the geometrical nonlinearities

of the structural part that are computationally constructed from the knowledge of the nonlinear reduced

operators [4].

3 Numerical Application

3.1 Computational finite element model

The fluid-structure system is constituted of a thin circular cylindrical tank made up of aluminum. This

cylinder is closed at both ends by a circular aluminum disk. Let Ri = 0.03m and ecyl = 10−4m be the

internal radius of the cylinder and its thickness. Let eb = 2 × 10−4m be the thickness of the two circular

aluminum disk at the top and at the bottom. The total height of the cylinder is h = 0.1504m. The Young

modulus of aluminum is E = 62× 109N.m−2, Poisson ratio ν = 0.33, mass density ρS = 2,700Kg.m−3,

and damping coefficient τS = 10−6 s. This tank is partially filled (at 30%) with water (see Figure 2)for

which the sound velocity is c0 = 1,480m.s−1, mass density ρ0 = 1,000Kg.m−3, damping coefficient

τ = 10−6 s, surface tension coefficient σΓ = 7.28 × 10−2N.m−1, and the contact angle between water

and aluminum is α = 70◦. The origin O of the Cartesian coordinates system (O, e1, e2, e3) is located at

the center of the bottom of the cylindrical tank. Axis e3 coincides with the revolution axis of the tank. The

equilibrium position of the fluid in the cylindrical tank is precomputed using the software Surface Evolver

[3]. The cylinder is clamped at its bottom. The finite element model of the fluid-structure requires to use

high orders elements due to the slenderness of the cylinder wall and of the high flexibility of the free surface

motion. The finite element discretization of the system is thus constructed using 27-nodes 3D-solid finite

elements for the structure and for the acoustic fluid. The free surface of the liquid is meshed using 9-nodes

2D finite elements and the triple line is meshed using 3-nodes 1D finite elements. Table 1 summarizes the

numerical data concerning the finite element mesh.



Figure 2: Finite element meshes of the structure (left) and of the liquid with its free surface (right).

Nodes Dof Elements

Fluid 21,097 21,097 2,400
Free surface 1,241 1,241 300
Structure 16,806 50,418 1,400

Table 1: Table of the finite element mesh numerical data

3.1.1 Observation points

The dynamical response of the fluid-structure system is analyzed at different observation nodes. The first

observation node is common to both structure and free surface, in order to see the coupling between the

structural displacement and the elevation of the free surface. It is denoted by xobsH1
on the free surface and

by xobsU on the structure. Then, two observation points denoted by xobsP1
and xobsP2

, and corresponding to

a node located at the fluid bottom and to a node located at mid-depth in the fluid are chosen. Finally,

another observation node, denoted by xobsH2
and that is located at the center of the free surface is chosen. The

coordinates of these observation points are summarized in Table 2. In the following, for the sake of clarity,

the notations Pi and Hi are introduced for representing the pressure and the elevation of the free surface at

the observation point xobsPi
and xobsHi

for i = 1, 2. The notation Uj is used for representing the component

number j of the structural displacement observed at observation node xobsU .

3.2 Computational reduced-order bases

The computational reduced-order basis [Ψ] is constructed according to Section 2.3, by solving three gen-

eralized eigenvalue problems associated with P, H, and U [12, 1]. Some acoustic, sloshing, and elastic

eigenmodes are represented with their respective eigenfrequencies denoted by ν a
i , for i = 1, . . . , Na with



Location Name x coordinate y coordinate z coordinate

Fluid xobsP1
0.0147 0 0.0002

xobsP2
0.0147 0 0.0185

Free surface xobsH1
0 0.03 0.0497

xobsH2
0 0 0.0452

Structure xobsU 0.0168 −0.0168 0.0467

Table 2: Localization of the observation nodes for the fluid, the structure and the free surface

a ∈ {P,H, S}.

3.2.1 Acoustic eigenmodes of the internal fluid

Figure 3 displays some acoustic eigenmodes of the liquid computed with zero pressure on the free surface,

and their respective eigenfrequencies. For the present numerical application, it should be noted that the

resonance of the internal fluid is a high-frequency phenomenon since the fundamental frequency of the fluid

is νP
1
= 7,824Hz.

νP
1

= 7,824Hz νP
9

= 30,718Hz νP
15

= 39,279Hz νP
18

= 41,226Hz

Figure 3: Example of acoustic modes of the internal fluid

3.2.2 Sloshing eigenmodes of the free surface

Figure 4 displays some sloshing modes of the free surface for which the fundamental eigenfrequency is νH
1

=
3.68Hz, which is of order 103 smaller than the fundamental frequency of the internal fluid. Moreover, it can

be seen that the modal density of the sloshing is high since the 500-th eigenfrequency is νH
500

= 56.38Hz.

The corresponding acoustic part of the sloshing modes [ΦPH ] is displayed in Figure 5. It can be seen that

there is effectively an exponential decreasing of the pressure as function of the distance to the free surface.

3.2.3 Elastic eigenmodes of the structure

Figure 6 and 7 display some elastic eigenmodes of the structure related to the empty and the partially filled

fluid-structure system. In particular, since these modes have been calculated by including the added mass

effect induced by the fluid, this influence can be quantified regarding both modal shapes and relative eigen-

frequencies. Note that the eigenmodes and the associated eigenfrequencies, whose modal contribution is

concentrated at the top of the structure remain unchanged.



νH
1

= 3.68Hz νH
15

= 8.28Hz νH
22

= 9.89Hz νH
28

= 11.22Hz

νH
37

= 13.06Hz νH
59

= 16.99Hz

Figure 4: Example of sloshing modes of the free surface.

νH
1

= 3.68Hz νH
15

= 8.28Hz νH
22

= 9.89Hz νH
28

= 11.22Hz

νH
37

= 13.06Hz νH
59

= 16.99Hz

Figure 5: Example of corresponding acoustic part of the sloshing modes.

3.3 Dynamical excitation of the system

The dynamical excitation of the system is defined in the time domain and is chosen in order to uniformly

excite a frequency band of interest that corresponds to some of the structural and sloshing resonances of the

fluid-structure system. Since the fundamental sloshing eigenfrequency of the free surface is νH
1

= 3.68Hz
and since the fundamental frequency of the internal liquid is νP

1
= 7,824Hz, the time domain excitation is

chosen such that the corresponding excitation frequency band is Be = [νmin , νmax]Hz, with νmin = 15Hz



νS
1
= 510Hz νS

7
= 1,461Hz νS

9
= 1,514Hz

Figure 6: Example of elastic modes of the empty structure.

νS
8
= 510Hz νS

5
= 530Hz νS

9
= 639Hz

Figure 7: Example of elastic modes of the structure when considering the influence of the liquid.

and νmax = 1,550Hz. In this frequency band, the first 9 eigenmodes of the structure are excited. The

dynamical excitation is located on the surface zone defined by r = R + ecyl, θ ∈ [−π/32, π/32] and x3 =
[h/2−hf , h/2+hf ] with hf = 0.02m in cylindrical coordinates. Figure 8 displays the graph t 7→ g(t) of the

time repartition of the excitation (whose maximum over the time domain is set to 1) and of its corresponding

Fourier transform. It can be seen that such a choice allows the frequencies between 15Hz and 1,550Hz to

be excited. The maximum load intensity is given by f0 = 2,000N that corresponds to subsequent nonlinear

geometrical effects. The computations is carried out with a sampling frequency νe = 15,500Hz and with

nt = 106 time steps. The initial time is chosen as tini = −1.30 s yielding a null initial load and the time

duration is chosen as T = 67 s. Consequently, these computational parameters are adapted for observing the

resonances related to the sloshing motion, which is also known to be a low-frequency and weakly damped

phenomenon in the present numerical application. It should be noted that the nonlinear dynamical response

of the fluid-structure system is calculated in the time domain with a Newmark algorithm for which the
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Figure 8: Graph of the dynamical excitation of the fluid-structure system (left) and its Fourier transform

(right).

nonlinearity is solved using either the fixed point method or arc-length based algorithms. The nonlinear

dynamical analysis is carried out a posteriori in the frequency domain by evaluating its Fourier transform

from a FFT algorithm. The frequency band of analysis is given by Ba = [0 , νmax] with νmax = 5,000Hz.

In the following, the notation Â(2πν) denotes the Fourier transform of quantity A(t).

3.4 Reduced-order model convergence

In order to construct an efficient reduced-order model, a convergence analysis is performed in order to de-

termine the optimal number NP , NH , and NS of bases vectors. Due to the large dimension of the finite

element model, the computation of the solution (P,H,U) of Eqs. (1) to (3) is not calculated. Thus, the so-

lutions (P,H,U) obtained by using the nonlinear reduced-order model cannot be compared to the reference

solution. For circumventing this problem, we assume that the solution is converged for a high number of

eigenmodes Nmax
P = 500, Nmax

H = 500, and Nmax
S = 200. Then, three convergence analyses are per-

formed with respect to NP , NH and NS . In the following, the results presented are calculated using the

optimal number of eigenmodes.

3.5 Linear and nonlinear dynamical responses of the fluid-structure system

The influence of the geometrical nonlinearities of the structure on the fluid-structure system is quantified

by comparing the linear and the nonlinear dynamical responses of the fluid-structure system. The linear

dynamical response of the system is calculated by solving the set of differential equations defined by Eq.

(5) for which FNL(Q(t)) = 0. These results are then compared to the nonlinear dynamical analysis of the

fluid-structure system. For convenience, we denote by superscript L the quantities calculated for the linear

system and by superscript NL the quantities calculated for the nonlinear system. Figure 9 displays the graphs

of ν 7→ |P̂L
i (2πν)| (left figure) and of ν 7→ |P̂NL

i (2πν)| (right figure) for i ∈ {1, 2}. Figure 10 displays

the graphs of ν 7→ |ĤL
i (2πν)| (left figure) and of ν 7→ |ĤNL

i (2πν)| (right figure) for i ∈ {1, 2}. Figure 11

displays the graphs of ν 7→ |ÛL
i (2πν)| (left figure) and of ν 7→ |ÛNL

i (2πν)| (right figure) for i ∈ {1, 2, 3}.

These results show that the geometrical nonlinearities that are taken into account in the computational mod-

elling have a significant impact on the responses of the fluid-structure system. When considering the linear

responses of the fluid-structure system, we clearly see that the resonances that are located in the excita-

tion band Be well match with the elastic and sloshing eigenfrequencies. The nonlinear responses of the

fluid-structure system are more interesting. Unexpected resonances that are localized below and beyond Be

appear. Moreover, their contribution appear to be significative with resonance amplitudes of the same order

as the resonance amplitudes that are localized in Be.
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Figure 9: Graph of the linear (left) and nonlinear (right) FRF of the pressure in the internal liquid seen at the

observation points.
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Figure 10: Graph of the linear (left) and nonlinear (right) FRF of the elevation of the free surface seen at the

observation points.
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Figure 11: Graph of the linear (left) and nonlinear (right) FRF of the structural displacement seen at the

observation point.

4 Conclusion

This paper proposes a computational methodology adapted to a fluid-structure system for which sloshing and

capillarity effects are taken into account and for which the structure is assumed to undergo large displace-



ments/deformations. The construction of an adapted nonlinear reduced-order model is required for reducing

the computational costs, mostly if large finite element models are considered. The formulation used for

such nonlinear reduced-order model allows for constructing a projection basis for each part of the fluid-

structure system in order to circumvent the possible gap between the eigenfrequencies of each sub-system.

This means that if the eigenmodes of the coupled fluid-structure system were directly calculated, about ten

thousands eigenmodes should be computed in the considered frequency band of analysis instead of the 500
that have been computed. In addition, the mesh should considerably be refined for computing this huge

number of sloshing modes. The numerical application constituted of a cylindrical tank partially filled with

a fluid demonstrate the efficiency of the proposed method. In particular, the results show that the responses

are strongly modified by the presence of the geometrical nonlinearities.
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