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1 Introduction

Most models for scheduling problems assume deterministic parameters. In contrast, real
world scheduling problems are often subject to many sources of uncertainty, for example
activities duration can decrease or increase, machines can break down, new activities can be
incorporated, etc. In this paper, we focus on scheduling problems that are cyclic and where
activity durations are affected by uncertainty. Indeed, the best solution for a deterministic
problem can quickly become the worst one in the presence of uncertainties.

In this paper, we consider the Cyclic Job Shop Problem (CJSP) where processing times
are affected by uncertainty. Several studies were conducted on the deterministic CJSP.
The CJSP with identical parts is studied in (Roundy, R. 1992). The author shows that the
problem is NP-hard and designs a branch and bound algorithm to solve the problem. Hanen
(1994) investigates the general CJSP and presents a branch and bound procedure to tackle
the problem. A general framework for modeling and solving cyclic scheduling problems is
presented in (Brucker, P. and Kampmeyer, T. 2008). The authors present different models
for cyclic versions of the job shop problem. However, a few works consider cyclic scheduling
problems under uncertainty. Che, A. et. al. (2015) investigate the cyclic hoist scheduling
problem with processing time window constraints where the hoist transportation times
are uncertain. The authors define a robustness measure for cyclic hoist schedule and a
bi-objective mixed integer linear program to optimize the cycle time and the robustness.

In order to deal with uncertainty, we use a robust optimization approach. We model
the uncertain parameters by using the idea of uncertainty set proposed by Bertsimas and
Sim (2004). Each task duration belongs to an interval, and the number of parameters that
can deviate from their nominal values is bounded by a positive number called budget of
uncertainty. This parameter allows us to control the degree of conservatism of the resulting
schedule. Finally, we propose a branch and bound procedure that computes the minimum
cycle time for the robust CJSP such that, for each scenario in the uncertainty set, there
exists a feasible cyclic schedule.

2 Problems description

2.1 Basic Cyclic Scheduling Problem (BCSP)

We are given a set of n generic operations T = {1, ..., n}. Each operation i ∈ T is
characterized by a non-negative processing time pi and has to be performed infinitely often
without preemption. We denote < i, k > the kth occurrence of the generic operation i and
t(i, k) the starting time of kth occurrence of the operation i.



The operations are subjected to a set of precedence constraints (uniform constraints).
The constraints between the occurrences < i, k > and < j, k +Hij > are given by

t(i, k) + pi 6 t(j, k +Hij), ∀ i ∈ T , ∀ k ≥ 1 (1)

where Hij is an integer that represents the depth of the occurrence shift, usually referred
to as height. The Hij parameter is an occurrence shift between the operations i and j.
For instance, for each execution of the occurrence < i, k >, the next execution of j is the
occurrence < j, k +Hij >.

A schedule S is an assignment of starting time t(i, k) for each occurrence < i, k > of
task i ∈ T . Such schedule is called periodic with cycle time α if it satisfies

t(i, k) = t(i, 0) + αk, ∀ i ∈ T , ∀ k ≥ 1 (2)

where α is the cycle time and represents the difference between the stating times of two
successive occurrences of the same task.

Therefore, a schedule S can be entirely defined by the staring times ti = t(i, 0) of the
first occurrences and the cycle time.

In this study, the objective is to minimize the cycle time α while satisfying the prece-
dence constraints between operations. Notice that different objective functions exist for
cyclic scheduling problems, such as work in progress minimization or both cycle time and
work in progress minimization.

A bi-valued directed graph G = (T , U) can be associated with any instance of BCSP. In
this graph, a node (resp. an arc) of G corresponds to a generic operation (resp. constraints)
in the BCSP. Each arc (i, j) of G has two valuations, the length Lij = pi and the heightHij .
These arcs are called uniform arcs and are built by considering the precedence constraints.
For instance, a precedence constraint between task i and task j leads to an arc (i, j) of G
labeled with Lij = pi and Hij . We denote H(c) (resp. L(c)) the height (resp. length) of a
circuit c in graph G the sum of heights (resp. lengths) of the arcs composing the circuit c.

The minimum cycle time is given by the maximum circuit ratio of the graph which is
defined by

α = max
c∈C

∑
(i,j)∈c Lij∑
(i,j)∈cHij

where C is the set of all circuits in G.
We call critical circuit the circuit c realizing the maximum circuit ratio. Several algo-

rithms have been proposed for the computation of critical circuits. An experimental study
about maximum circuit ratio algorithms was published in (Dasdan, A. 2004). The author
remarks that, among the several tested algorithms, the most efficient one is the Howard’s
algorithm. Although the algorithm has a pseudo-polynomial complexity, it shows notewor-
thy practical results.

Once the cycle time is determined, the starting times (ti)i∈T can be determined by
computing the longest path in the graph G where each arc (i, j) ∈ U is valued with
pi − αHij .

2.2 Cyclic Job Shop Problem (CJSP)

In the present work, we focus on the cyclic job shop problem (CJSP). The difference
with the problem defined above is that for CJSP the number of machines is lower than the
number of tasks to perform. As a result, the same resource must be shared between different
operations. A CJSP can be considered as a BCSP equipped with resource constraints.



Each occurrence of an operation i ∈ T has to be executed, without preemption, on the
machine M(i) ∈M = {1, ...,m}. Operations are grouped on a set of jobs J , where a job j
represents a sequence of elementary operations that must be executed in order. To avoid
overlapping between the tasks executed on the same machine, for each pair of operations
i and j where M(i) = M(j), the following disjunctive constraint holds

∀ i, j s.t. M(i) = M(j), ∀k, l ∈ N : t(i, k) ≤ t(j, l)⇒ t(i, k) + pi ≤ t(j, l) (3)

In summary, a cyclic job shop problem is defined by

• a set T of elementary tasks,
• a setM of machines,
• for each task i ∈ T , a processing time pi and a machine M(i) ∈ M on which the task

has to be performed,
• a set P of precedence constraints,
• a set D of disjunctive constraints that occur when two tasks are mapped on the same

machine,
• a set J of jobs corresponding to a production sequence of generic operations. More

precisely, a job J1 defines a sequence J1 = t1,1 . . . t1,k to be executed in that order.

The CJSP can be represented by directed graph G = (V,P ∪ D), called disjunctive
graph. The sequence of operations that belongs to the same job are linked by uniform arcs
in P where the heights are equal to 0. Additionally, for each pair of generic operations i and
j executed on the same machine, a disjunctive pair of arcs (i, j) and (j, i) occurs. These
arcs are labeled respectively with Lij = pi and Hij = Kij , and Lji = pj and Hji = Kji

where Kij is an occurrence shift variable that satisfies Kij +Kji = 1 (Hanen C 1994).
The following bounds on occurrence shift variables Kij have been proposed in (Hanen

C 1994):
K−ij ≤ Kij ≤ 1−K−ij . (4)

with
K−ij = 1−min{H(µ) |µ from j to i in G}. (5)

A schedule is an assignment of all the occurrence shifts, i.e., determine precedence
relations on the operation occurrences mapped to the same machine. Note that once the
occurrence shifts are determined the problem is equivalent to the BCSP, therefore, the
minimum cycle time can be obtained by the cited algorithms.

Previous studies have shown that the problem is NP-Hard (Hanen C 1994) for cycle
time minimization.

2.3 Robust Cyclic Job Shop Problem (RCJSP)

In this paper, we investigate the robust version of the CJSP. More precisely, we are
interested in the CJSP where processing times are affected by uncertainty and belong
to a finite uncertainty set U . Based on the budget of uncertainty concept introduced in
(Bertsimas, D. and Sim, M. 2004), the processing time deviations can be modeled trough
the following uncertainty set:

UΓ =

{
(pi)i∈T ∈ Rn : pi = p̄i + p̂iξi, ∀ i ∈ T ; ξi ∈ {0, 1};

∑
i∈T

ξi ≤ Γ

}

where p̄i represents the nominal processing time of operation i and p̂i its deviation. The pa-
rameter Γ is a positive integer and represents an upper bound on the number of processing
times deviating from their nominal value.



The objective of the problem is to find, for a given budget of uncertainty Γ , the mini-
mum cycle time such that, for each p ∈ UΓ , there exists a vector (t(p)i)i∈T satisfying both
the precedence and disjunctive constraints.

3 Branch and bound procedure for the RCJSP

Recently, an Howard’s algorithm adaptation taking into account the uncertainty set
UΓ has been presented in (Hamaz, I. et. al. 2017). The computational experiments on the
algorithm show small execution times for robust BCSP instances.

To take into account the uncertainty on the processing times for the RCJSP, we develop
a branch and bound procedure that uses the robust version of the Howard’s algorithm. The
procedure starts by initializing the upper bound on the cycle time to

∑
i∈T pi + pf where

pf is the sum of the first Γ greatest deviations and the lower bound to the optimal cycle
time of G = (T , U) computed by the Howard’s algorithm adaptation.

We use the same branching scheme as in (Fink, M. et. al. 2012). The search tree is
initialized with a node (the root) where the graph G = (T , U) contains only the uniform
arcs U and no fixed disjunctions. Then, the branching is performed on unfixed disjunctions
Kij . For this purpose, a successor node is created for each value on the interval [K−ij , 1−K

−
ij ].

The value of the node is then computed by running the robust version of the Howard’s
algorithm with G = (T , U ′ ∪ {(i, j), (j, i)}), where U ′

contains the uniform arcs and a
precedent fixed disjunctive arcs. When all the occurrence shifts are fixed, a feasible schedule
is obtained, then the upper bound can be updated.

Preliminary numerical results show that the branch and bound procedure (implemented
in C++ and executed on an Intel Xeon E5-2695 processor running at 2.30GHz CPU)
delivers promising results. Besides, the algorithm is insensitive regarding the value of the
budget of uncertainty.

Once the optimal cycle time computed by the branch and bound procedure, a periodic
schedule SΓ = (α, ((t(p)i)i∈T ) can be determined for each p ∈ UΓ .

4 Conclusion

The RCJSP with budgeted uncertainty set is addressed in this paper. We present a
branch and bound procedure that uses a Howard’s algorithm adaptation. Further investi-
gation will address dominance rules to speed up the branch and bound procedure.
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