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Abstract

The observation of data which counts the arrivals at the ED in scales of hours or days reveals
that these arrivals are characterized by the phenomenon of burstiness. The burstiness is a
phenomenon that appears in the majority of Emergencies due to a batches of arrivals coming to
the ED in a small time interval over a wide scales. The prediction of congestion in ED caused by
the batched arrivals seems important to the medical staff. The proper modeling data like arrivals
process that has this scaling property is relevant with the self similar time series. The goal of
our study is to establish that the time series of patient flow displays fractal behavior, whose
quantitative characteristics vary with time. To discover whether a Patients flow has begun to
congest, we analyze the time series of patients arrivals data with a Multi- Fractal Detrended
Fluctuation (MF-DFA) algorithm.

Keywords: Fractals Systems, Decision Support Systems, Detection, Signal Analysis, Data Flow

Analysis

1. INTRODUCTION

Overcrowding in the Emergency Department (ED) is a
worldwide problem impairing the ability of hospitals to
offer emergency care within a reasonable time frame Lin
et al. (2014); Bouleux et al. (2015). It is a reflection of
several internal or external effects such as the capacity of
the ED or the stream of arrivals. During the last several
years, many research papers have been devoted to the topic
of patient flow or stream of arrivals in the ED. One can see
for example, the following manuscript and the references
that are quoted in it Armony et al. (2015). The work
proposed in Monte et al. (2002) analyze the ED admissions
time series and search the distribution that best models it.
In her thesis, Jlassi (2009) improved the performance of
patient logistics flows in a hospital emergency department
by applying to the hospital the analysis methods and the
resolution tools from the manufacturing field. By using
the time series, specifically an ARIMA model, Kadri et al.
(2014) modeled the daily flows of patients for the pediatric
emergency of Lille, France, Hospital. Finally, the most
commonly encountered model for the hospital emergency
arrivals is definitely the Poisson process. This modeling
is for example introduced in Lin et al. (2014) where
the authors have estimated the waiting time of multi-
priority emergency patients using the Fast track system
and a queueing model. They modeled the arrival process
of demand accessing the ED by a Poisson process so. In
Koizumi et al. (2005), the authors divide the whole day
into several segments such that the arrival rate in each
segment can be assumed to be constant and affirme that
the arrival process of emergency patients in most time
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segments can be modeled as a Poisson process with varying
rates. Nevertheless, these approaches turn out not to work
for ED; the pattern of arrivals found by the staff of the
emergency ward service suggested that this model was
inadequate Monte et al. (2002). Indeed, the time series
of arrivals in ED exhibit burstiness over a wide range of
time scales due to pikes of arrivals process batched over
hours, days or weeks.

A process which takes into account features related to
bursts is known to be a self-similar process with the Long
Range Dependence (LRD) property Radev et al. (2010).
Such a process has a statistical structure that repeats
itself on subintervals or time scales Espen (2012). This
statistical characteristic has shown its good performances
in network traffic congestion prediction Kim et al. (2006)
and some works initiated the reflexion on ED admissions
modeling by self-similar processes Monte et al. (2002). If
the self-similarity propose a global scaling description of
the process, the fractality and multifractily are properties
which focus on local scaling behavior and appears as key
features for congestion detection as well Feng et al. (2018).
Consequently, we propose in this paper a Multifractal
analysis of the ED arrivals time series with the aim of
being able to detect the burstiness and congestion caused
by this phenomenon.

We present next the basic notions of our study and recall
the fundamental of the self-similarity properties for a time
series. Section 3 is dedicated to the local study of time
series exhibiting scaling by the multifractal analysis. We
illustrate then this analysis on real ED data admissions
flow, in view to depict the congestion caused by the burst
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of arrivals at the ED. Finally, a conclusion is drawn in the
last section.

2. FRACTAL ANALYSIS
2.1 Notion Of Self-Similarity

A time series Xy,t € N with mean pu(t), variance o2(t) and
autocorrelation function p(k),k > 0 is called a stationary
process if
E[X,) = u(t) =V t € N (1)
with E[.] the mathematical expectation, and
cov(Xe, Xi—j) = E[(Xe — p)(Xe—j —p)] =75,V £,V 5. (2)

For each m = 1,2,..., constructs from the covariance
stationary process X; a new covariance stationary time

series X (™) = {X,Em) : k = 1,2,..} with corresponding
autocorrelation function p("™), given by

1
x(m) . — E(ka_mﬂ ot Xpm), k> 1. (3)

X, is said to exhibit self-similar (or asymptotically self
similar) property, if for all t =0, 1,2, ...,

X, £ m-H) x(m) (4)

holds Vm (or as m — o), where 1 < H < 1 and

2 is the finite dimensional law equality. X; is said to

exhibit (exactly) second-order self-similar property with

self-similarity parameter H if m"—# )Xt(m) has the same

autocorrelation function as X;, V. m and V ¢.

cov(X ™) = 2m2H =Y and p™ (k) = p(k), k> 0. (5)

In other words, X; is exactly second-order self-similar
if the aggregated processes X(m) are indistinguishable
from X; with respect to their first and second order
properties Strzalka et al. (2012). In addition, X; is said to
exhibit asymptotically second order self-similar with self-
similarity parameter H (H-a.s.0.s.s.) if V k,

lim o™ (k) = p(k) (6)

m—r0o0

2.2 Notion of Long Range Dependence

The Long Range Dependence (LRD) as a phenomenon was
first observed by Hurst Hurst (1956) when he studied the
flow of water in the Nile river. Many works have emerged
since but Mandelbrot (1965) is certainly the reference
papers. Mathematically, a stationary process X; is said
to exhibit short range dependence if its autocorrelation
function p(k) satisfies

S olh) < oo, (7)

k=1

Conversely, if the autocorrelation function p(k) is not
summable, the process X; is said to exhibit Long Range
Dependence such as
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> lo(k)] = oc. (8)
k>0
An equivalent definition is often proposed regarding
whether the autocorrelation behaves like a power function
decaying to zero hyperbolically

p(k)

with L,(k) a slowly varying function Bingham et al.
(1989). Lastly, the Karmata definition of this class of
functions is the set of functions such that the following
equation holds

~Ly(k)k ™ 0<ax<l 9)

ti Zelb0n)

B L, () @) (10)

2.8 The connection of Self similarity and LRD

The connection between Self-similarity and long memory
phenomena was studied extensively by Samorodnitsky
(2006). It was shown that asymptotically second order self-
similarity property implies LRD propertyLazarou et al.
(2009); Park and Willinger (2000). The autocorrelation of
a Self Similar process with Hurst exponent H and finite
second order momentEmbrechts and Maejima (2000) is
then given by

1
p(k) = 5 ((k + D2H 4 (B —1)27 —2k*H). (11)
From this identity we straightforwardly obtain

p(k) X H(2H —1)k—20-H) (12)
in asymptotic sense so. If 0.5 < H < 1, then the process
admits LRD, we say it is persistent. On contrary, when
0 < H < 0.5 it is short range dependence and is qualified
as antipersistent Park and Willinger (2000). The Hurst
exponent H is also understood in that context as a mea-
sure of the decay speed of the autocorrelation function
tail. It captures then both, the intensity of LRD Vemuri
(2005) and the degree of self-similarity Cervantes-De la
Torre et al. (2013).

2.4 The Fractal Analysis and the ED arrivals process

The burstiness phenomenon we have mentioned in the in-
troduction is very much related to the Hurst exponent. To
describe quantitatively the burstiness due to the batches of
arrivals processes, which depend on the time scale, Gusella
Gusella (1991) propose the Index of Dispersion for Counts
(IDC). It is defined as

var(T, Xi)
E(3CL, Xt)
where X; is the self-similar arrivals process at the ED. In

the case of persistence for X;, the IDC varies exponentially
with the interval length and follows the relation

IDC(N

) = (13)

IDC(N) ~c¢ N1 (14)
log(IDC) ~ (2H — 1) log(N) + const. (15)
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Figure 1. The cumulated time series of Arrivals, (a) time series aggregated over 1 hour (black), (b) time series aggregated

over 6 hours (red) and 8 hours (blue).
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Figure 2. Plot in logarithmic scales of the Index of Dis-
persion of Counts (IDC) for the ED arrivals process
with respect to hours (red) and days (blue) scales.The
Hurst exponent of both is H=0.54

The IDC can also served as a statistical method for testing
the self-similarity as illustrated by Figure 2. This plot
gives the picture of IDC for the ED arrivals for different
aggregation sizes N. The Figure indicates that the hurst
exponent for the ED arrivals process is around H ~ 0.54.

Another popular approach adopted for self-similarity char-
acterization is the Detrended Fluctuation Analysis (DFA),
originally introduced by Peng Peng et al. (1995) and has
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Figure 3. The DFA-Method to estimate the Hurst expo-
nent of ED arrivals stream.

been established as an important method to reliably detect
long range correlations. We performed such an analysis on
ED admissions and the results are depicted along with
the Figure 3. This Figure shows a small detrend due to
the long range correlations and the approximated slope
of the line allows us to consider that the ED arrivals
time series displays fractal behavior, whose quantitative
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characteristics vary with time. Such behavior is called
multifractal.

3. THE MULTIFRACTAL ANALYSIS

The multifractal framework has become a major concept
and tool involved in practical analysis of scaling in data.
The multifractal (MF) framework relates the scaling prop-
erties to the local regularity properties Lashermes et al.
(2008). In general, multifractality in time series is due to
different LRD of the small and large fluctuations in the
time seriesKantelhardt et al. (2002).

A self-similar stochastic process {X; : t € [0,T]} is
multifractal Thompson and Wilson (2016) if it satisfies

El|X )7 = c(q)t™ P+ VieGandge Q (16)
where 0 < T < oo, G and Q are open intervals on
[0,7] € G and [0,1] C Q. The function 7(q) is called
the scaling function Calvet and Fisher (2002) of the
multifractal process.

The Multifractal Formalism is based on the calculation
of two sets of coefficients: the Holder exponents h which
quantifies the local regularity of a process X; and the
MultiFractal Spectrum that quantifies the multifractality
of the process Xiong et al. (2012).

3.1 The Holder Exponent and the Spectrum of Singularities

The local regularity of the sample path of stochastic
process X; is commonly studied via the notion of pointwise
Holder exponent. Recall that X; is assumed to be locally
bounded, i.e it belongs to C*(ty), top € R with @ > 0,
if there exists a constant C' > 0 and a polynomial P
satisfying deg(P) < « and such that, in a neighborhood of
to

| X — P(t —to)| < C[t —to]*. (17)

The Holder exponent of X; at tg is therefore defined as

h(tg) = sup{a: X € C%(to)}. (18)
The value of the Holder exponent is interpreted as follows:
the closer to 0 h(tp) is, the more irregular (or singular)
at point tg the function is. In contrast, a larger value of
h(to) is related to a smoother (more regular) behavior
at to Lashermes et al. (2008). The points ¢, associated
with a specific Holder exponent value h are distributed on
interwoven fractal subsets E'(h) such as

E(h) = {a: h(ty) = a}. (19)
The fluctuations, along time ¢ of the Holder exponent h are
usually described through the singularity (or multifractal)
spectrum, labelled D(h) and defined as the Hausdorff
dimension Przytycki and Urbanski (1989) of the set of
points E(h) where the Holder exponent takes the value

h, this leads then to
D(h) = dimg (E(R)). (20)

10th IFAC Symposium - BMS 2018, Sao Paulo, Brazil,
September 3-5, 2018

The MultiFractal analysis aims at characterizing or derive
the spatial distribution of Holder exponents with singular-
ity spectrum D(h) Lashermes et al. (2008). Some relations
between the two sets of multifractal scaling exponent have
been established.

7(q) = qh(q) — 1 (21)

with h(q) the generalized Hurst exponent or the g-order
Hurst exponent (F,(s) ~ s"@) and 7(g) the scaling expo-

nent and (Z, ~ s7(9)) the generalized multifractal dimen-
sions. We obtained consequently the following relation

7(q) _ ghlg) -1
B (22)

qg—1 qg—1
Next, the spectrum of singularity is related to the scaling
exponent via the so called Legendre transform

a=17'(q) = h(g) +qh(q), (23)

and
fla) = qor—7(q) = qlah(q)] +1 (24)
where « is the Holder exponent, while f(«) denotes the
dimension of the subset of the series that is characterized
by «. When Holder exponent takes a unique value H
at every point tg, the multifractal process becomes a
monofractal one and we obtain
lifa=H

f(a):{Oifoz#Handa>O (25)

3.2 The MF-DFA Method

We propose here to introduce the Multifractal Detrend
Fluctuation Analysis, originaly introduced by Kantelhardt
Kantelhardt et al. (2002) as a generalization of the DFA
method. It has a practical interest in giving singularities
information, reason why we give its implementation princi-
ples in what follows. Suppose that X;,t = 1,...T is a series
of the arrivals by days with mean p. Timely integrate the
detrended series X; to obtain
t
Y, = Z (Xk — )

k=1

(26)

Next, divide the profile Y; into Ny = |N/s| (with |.| the
integer part ) non-overlapping segments of equal length
s. Then, calculate the local trend for each of the 2N,
segments by a least-square fit of the series and determine
the variance with

Fws)i= - S Yl = Ds+il - n )P,

and

1< 2
F? ==Y Y[N—(v— N, ] — ()7,
(5,v) = - ; [N — (v )s + 1] = yu (i)
v=Ng+1,..,2N;
where y,(7) is the fitting polynomial in segment v. Com-

pute the average over all segments v to obtain the ¢-th
order fluctuation function
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Figure 5. The g-order Hurst exponent of Arrival in ED
estimated by the MF-DFA.

o, N
Fy(s) = {m Z(F%s,u))z} .

If the time series X; has a long-range power-law correlated,
then Fj(s) increases for large values of s as a power-law

which means that F,(s) ~ s"(9).

(27)

8.8 The Arrivals Process and the MultiFractal Analysis

In this section we analyse the time series of ED arrivals
of Saint Etienne University Hospital (CHU), France, from
06/01/2013 to 08/31/2017. To estimate the q-order Hurst
exponent of Figure 5, the local Hurst exponent Figure
6 and the the MultiFractal Spectrum (figure 4), we use
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Figure 6. The local Hurst exponent of the arrivals by day
estimated by the MF-DFA.

the MF-DFA method Kantelhardt et al. (2002). The Mul-
tiFractal Spectrum (MFS) of the time series is plotted
in Figure 4. The MFS is a downward concave function
with maximum value 1 and minimum value around 0.45.
This particular shape justifies the multifractal approches.
To depict the congestion in the stream, we observe the
local Holder exponent through Figure 6. A cursory glance
at the Holder exponent plot which depicts the temporal
dynamics, shows that the arrivals time series admits a
high variability of corresponding so to fractal behavior.
However, it is not possible to distinguish a regularly regime
of tensions. The average of arrivals at ED is 136 patients a
day. Overall, the local Hurst exponent oscillates between
0.6 and 0.8 and when it exceeds 0.8 we notice that the
arrivals are globally below the daily average of arrivals. On
the other hand, when it is down 0.6, the system registers
peaks of arrivals more than average.

4. CONCLUSION

Led by recent statistical analysis taking into account
burstiness effects in view to early predict congestion on
computers networks and traffic networks, we have pro-
posed in this work to apply the underlying fractal meth-
ods to the stream of patients’ arrivals at an Emergency
Department (ED). The stream of arrivals at ED is charac-
terized by a high variability not only on the dynamics of
the process but also on strong irregularities of its scaling
exponent. To fully characterize the arrivals flow, the frac-
tal methods appeared to be insufficient and MultiFractal
Analysis (MFA) is thus recommended. MFA only based
on patients’ arrivals at the ED gives information on the
regimes of the arrivals, but it does not reveal all the
system characteristics, particularly the burstiness induced
by capacity constraints. Thus, MFA could be giving more
information if the Length Of Stay (LOS) of patients at
the ED were considered and used in conjonction with the
patients’ arrivals.
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