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A Controller Switching between Twisting and Linear Algorithms for an
Electropneumatic Actuator

Elias Tahoumi, Franck Plestan, Malek Ghanes and Jean-Pierre Barbot

Abstract— This paper presents a new control strategy for a
perturbed electropneumatic actuator. This new control law is
evolving between a robust second order sliding mode controller
(based on twisting algorithm) and a linear one. This objective is
to ensure high accuracy tracking and low energy consumption,
in spite of perturbations and uncertainties. This new control
solution is evaluated on an experimental set-up.

I. INTRODUCTION

Pneumatic actuators are very common in industrial appli-
cations due to their low cost and weight, easy installation
and maintenance, and high power/weight ratio [2], [3], [7].
However, they are part of uncertain and complex systems
that make this kind of actuators quite difficult to accurately
control in position. Indeed, the very nature of these systems
and the different interactions with external parameters and
elements make them difficult to describe, model and control.
Sliding mode control [4], [10], [14] has been intensively used
to control this type of systems thanks to its robustness to
uncertainties and perturbations.
Among the sliding mode approaches, one can cite the
standard sliding mode approach [2]: the control law con-
taining a sign function induces high frequency oscillations
of the system input, a phenomenon called chattering, that
engenders high frequency motions of the servodistributors’
mobile parts. These high frequency motions can deteriorate
the components of the actuator and therefore have to be
reduced as much as possible. An alternative solution is the
use of higher order sliding mode approaches (see for example
[5], [7], [15]): the interest of such control laws is a better
accuracy and a reduction of the chattering. However, their
tuning is not a simple task given that the bounds of the un-
certainties and perturbations, whose knowledge is important
for the computation of the control parameters, are not easily
determined and are very often overestimated. Then, another
way consists in using adaptive versions (time-varying gain)
of standard sliding mode controllers [9], second order sliding
mode controllers [11], [13]: these approaches allow to sim-
plify the tuning of the controller gains but transiently reduce
the performances of the closed-loop system (accuracy).
A very recent solution [12] for the reduction of high-
frequency oscillations consists in switching between a robust
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second order sliding mode controller (that is applied when
the accuracy of the tracking is high relative to a predefined
criteria) and linear controller (that is applied when the
accuracy of the tracking is low). This approach allows to
reduce chattering and energy consumption, but maintains a
high level of accuracy.
The objective of the paper is to control the position of
a perturbed electropneumatic actuator thanks to this novel
control approach, and to show that it allows to get accurate
tracking in spite of perturbation forces and uncertainties
on some physical variables (especially mass flow rate).
The control performances are compared to a sliding mode
controller based on twisting algorithm [8] and to one based
a linear state feedback, and evaluated on an experimental
setup.

II. ELECTROPNEUMATIC SYSTEM DESCRIPTION

The electropneumatic actuator experimental setup (see
Fig. 1) is composed of (for details, see [15])

• a main double acting actuator composed of two cham-
bers P and N . The air mass flow rate entering the
chambers is controlled by 2 proportional 3-way ser-
vodistributors;

• a second actuator, identical to the main actuator, called
“perturbation actuator” whose air mass flow rate is
controlled by a 5-way servodistributor. Its purpose is
to apply a dynamical load force on the main actuator.
Note that the force control of the second actuator is
performed by an analog PID controller developed by
the bench manufacturer;

• a pneumatic jack which moves horizontally a load
carriage of mass M . This carriage is coupled with the
perturbation actuator.

The mathematical model of the electropneumatic system
(detailed in [15]) reads as

ṗP =
krT

VP (y)

[
ϕP + ψP .u−

S

rT
pPυ

]

ṗN =
krT

VP (y)

[
ϕN − ψN .u+

S

rT
pNυ

]

υ̇ =
1

M

[
S(pP − pN )− bυυ − Fext

]
ẏ =υ

(1)



This model can be written as a nonlinear system affine in
the control input, i.e.

ẋ = f(x) + g(x)u

with x the state vector defined as x =
[
pN pP υ y

]T ∈
X ⊂ R4, and u the control input. Furthermore, vectors f(x)
and g(x) read as

f(x) =
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0
0


with y the piston position, υ its velocity, Fext the external
perturbation produced by the perturbation actuator, pP and
pN the pressures in chambers P and N respectively, r the
perfect gas constant, bυ the viscous friction coefficient, T the
supply temperature, k the polytropic constant, and S the pis-
ton surface. u is the control input of the system; physically,
this input is a voltage acting on both servodistributors: given
that there are two servodistributors, a voltage is applied to
the first one whereas the opposite value is applied to the
other one. The volume in each chamber reads as

VP (y) = V0 + S · y
VN (y) = V0 − S · y

with V0 the half-cylinder volume. The functions ϕP , ϕN ,
ψP and ψN describe the mass flow rate and defined as 5th

order polynomials of the pressures as depicted in [11]. X is
the operating domain such that

X ={x | 1 bar ≤ pN ≤ 7 bar, 1 bar ≤ pP ≤ 7 bar,

|y| ≤ 72 mm, |υ| ≤ 1 m.s−1}

Mechanical and physical parameters of the main actuator
read as

M = 3.4 kg, V0 = 3.40 · 10−4 m3, S = 0.0045 m2,

bυ = 50, k = 1.2, r = 287 J.kg−1.K−1, T = 293 ◦K.

III. CONTROLLER DESIGN

A. Problem statement

The control objective is to force the main actuator to track
a sufficiently differentiable reference signal yref. Given that
the controller developed in the sequel is based on the sliding
mode concept, define the sliding variable

σ = υ − ẏref + λ(y − yref) (2)

with λ > 0. One recalls from the sliding mode theory [14],
[10] that the control law has to ensure at least1 σ = 0 in a
finite time; such a behavior is called sliding mode. Once the
sliding mode is established, and given the definition of σ, it
yields that the tracking error ey = y − yref converges to 0
exponentially with a rate depending on λ.

B. Control scheme

The relative degree2 of σ with respect to u is 2; σ̈-
dynamics read as

σ̈ =
1

M

[
S(ṗP − ṗN )− bυυ̇ − Ḟext

]
− y(3)ref

+
λ

M

[
S(pp − pN )− bυυ − Fext

]
− ÿref

=Ψ(.) + Φ(.)u

(3)

with
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SkrT

M
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+
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]
Functions Ψ(.) and Φ(.) are uncertain functions due to
parametric uncertainties (for example, the temperature T
in the chamber is time-varying whereas it is supposed to
be constant in the control design) and given that there are
external perturbations Fext (consequently Ḟext) applied by the
perturbation actuator on the main one. Then, the functions
Ψ(.) and Φ(.) can be written as

Ψ(.) =ΨNom(.) + ∆Ψ(.)

Φ(.) =ΦNom(.) + ∆Φ(.)
(4)

with ΨNom(.) and ΦNom(.) being the nominal terms and
∆Ψ(.) and ∆Φ(.) the uncertain terms. In [13], it has
been numerically observed that, under current operating
conditions, ΨNom and ΦNom are bounded and only depend
on measured or estimated variables. Furthermore, ΦNom >
0 ∀x ∈ X . Hence, a control law is given as

u =
1

ΦNom
(−ΨNom + ω) (5)

1If the control law is a standard (first order) sliding mode one, the system
trajectories are forced such that σ = 0 in a finite time; if the control law
is based on high order sliding mode approach, a finite number (depending
on sliding mode order) of time derivatives of σ are also forced to 0 in a
finite time.

2Given that the relative degree is lower than the state dimension, it means
that there is internal dynamics incorporating the pressures in chambers P
and N . It is supposed that these internal dynamics are stable in the operating
domain.



Fig. 1. Left. Photo of the electropneumatic setup. Right. Scheme of the control architecture of the electropneumatic setup [15]

with ω being a controller switching between the twisting and
the linear algorithms (defined in the next subsection). After
substituting (4)-(5) in (3), one gets

σ̈ =∆Ψ−∆ΦΦ−1
NomΨNom + (1 + ∆ΦΦ−1

Nom) · ω
=a(x, t) + b(x, t) · ω

(6)

with

a(x, t) =∆Ψ−∆ΦΦ−1
NomΨNom

b(x, t) =1 + ∆ΦΦ−1
Nom

As previously mentioned, under the considered operating
conditions, the functions Ψ and Φ are bounded with ΦNom >
0. Therefore, there exist positive constants aM , bm and bM
such that, ∀x ∈ X and t ≥ 0,

|a(x, t)| ≤ aM
0 < bm ≤ b(x, t) ≤ bM .

(7)

C. Control law ω

The control law ω is given in order to stabilize system (6)
in spite of uncertainties and perturbations while reducing the
energy consumption. Both objectives can be fulfilled by the
control strategy proposed in [12] that reads as

ω = −k1|σ|
α(t)

2−α(t) sign(σ)− k2|σ̇|α(t)sign(σ̇), (8)

where k1 and k2 are the controller gains. The time-varying
exponent α is switching between 0 and 1 thanks to the
following law3

α =

{
1 if |σ| < εσ ∧ |σ̇| < εσ̇

0 otherwise
(9)

Parameters εσ and εσ̇ are positive constants set by the user.
Note that α = 0 corresponds to the twisting algorithm [8]
and α = 1 means that a linear state feedback is applied.

Main ideas.
• The controller (8) is based on a homogeneous control

law [1] where the exponent α is considered constant.

3The notation ∧ is used for the logical AND operator.

This form of controller will give all its interest for a
continuously time-varying exponent (see Section V);

• The controller (8)-(9) switches from a twisting con-
troller (α = 0) to a linear one (α = 1), the commutation
depends on the accuracy performance of the closed-loop
system. The accuracy depends on both parameters εσ
and εσ̇;

• The twisting algorithm (α = 0) is known for its
high accuracy and robustness with respect to matching
perturbations; however, it is high energy consuming.
Then, the proposed control scheme allows the use of the
twisting algorithm only when the desired accuracy is not
established. In this case, as a second order sliding mode
algorithm, the twisting forces the system trajectories to
reach a vicinity of the origin of the phase plan (σ, σ̇)4.

• Once the trajectories have reached a vicinity of the
origin of the phase plan (σ, σ̇), the idea is to reduce
the energy consumption. Then, as long as the system
trajectories are evolving in the origin vicinity defined
via εσ and εσ̇ , the linear controller (α = 1) is applied.

• Given that the linear controller is less robust in case
of perturbations, the system trajectories can leave the
origin vicinity. In this case, the parameter α switches
to 0, the twisting algorithm is applied, and so on.

The controller (8)-(9) allows a trade-off between the twisting
algorithm and the linear state feedback and has the advan-
tages of the twisting algorithm (robustness) and linear state
feedback (low energy consumption) with their drawbacks
reduced.
To summarize, the logic of controller (8)-(9) is as follows.
If the trajectories of system (6) are inside D such that

D = {(σ, σ̇) | |σ| < εσ ∧ |σ̇| < εσ̇} (10)

then the desired accuracy of the system is reached; therefore,
the linear state feedback (α = 1) is applied to decrease the

4This property is connected to the concept of real sliding mode [10]: as a
second order sliding mode control, in case of sampled control input with τ
the sampling period, the twisting control law allows the system trajectories
to reach the so-called real sliding mode set defined by |σ| ≤ µ1τ2 and
|σ̇| ≤ µ2τ .



energy consumption. If the trajectories of the system are
outside D, it means that the desired accuracy is not reached
probably due to perturbations and uncertainties. Hence, the
twisting algorithm (α = 0) is applied in order to force the
trajectories back to D.

Theorem 1 ([12]): Consider system (6) with the control
strategy (8)-(9). Suppose that the gains k1, k2 and the
parameters εσ and εσ̇ satisfy the conditions

k1 > k2 > 0, (k1 − k2)bm > aM ,

(k1 + k2)bm − aM >(k1 − k2)bM + aM ,
(11)

k1εσ + k2εσ̇ < k1 − k2, (12)

then σ and σ̇ are evolving in a finite time in a vicinity of
the origin defined as

|σ| < ε2σ̇
2Kmin

M

+ εσ

|σ̇| <
√
ε2σ̇ + 2Kmax

m εσ

(13)

with Kmax
m = bM (k1 − k2) + aM and Kmin

M = bm(k1 +
k2)− aM .

Details of the proof can be found in [12].

Remark 1: Condition (11) is needed to guarantee the
convergence of the closed loop system when the twisting
algorithm is applied [8] whereas condition (12) is required
to make sure that controller (8)-(9) is less energy consuming
than the twisting algorithm [12].

IV. EXPERIMENTAL RESULTS

A. Context

Controller (8)-(9) is now implemented on the experimen-
tal setup using MATLAB/Simulink coupled with dSpace
DS1104 datacard. The sampling period has been set to
ς = 0.2 ms. The position of the mass load as well as the
pressures pP and pN are measured via sensors. The velocity
and the acceleration are obtained using a differentiator.
Subsequently, the performances of the three controllers (the
linear one, the twisting one, and the controller (8)-(9)) are an-
alyzed. This analysis is made by evaluating the tracking error
with respect to a position reference trajectory yref detailed in
the sequel, and by evaluating the energy consumption (from
a control input point of view).
The mass load connected to the main actuator has to track
a reference trajectory that reads as

yref = 0.04sin(0.15πt+ π) for 0 ≤ t < 20 s

yref = 0 for 20 ≤ t < 40 s

yref = 0.04sin(0.3πt) for 40 ≤ t ≤ 60 s

This reference trajectory has been used in order to evaluate
the performances of the controllers in case of relatively
fast and slow motions (sinusoidal references) or in case
of constant position. All the tests are made by considering
perturbations. Thus, the selected reference trajectory for the

perturbation actuator is Fext = 500sin(0.34πt) (N) (Fig. 2).
This trajectory is tracked using a PID controller parametrized
by the setup manufacturer. Note that the perturbation is
considered unknown by the controller (only the bound of
the perturbation is known).
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Fig. 2. External perturbation Fext(N) versus time (s).

The gains k1 and k2 of the three controllers are set to 3000
and 1500 respectively. The parameters εσ and εσ̇ of (8)-
(9) are taken 0.01 and 0.9 respectively. These parameters
satisfy conditions (11)-(12); furthermore, this choice has
been made in order to get the best performances during the
experimentation, for all controllers. Finally, the performances
of the controllers are analyzed by evaluating the mean of
the absolute value of the tracking accuracy ey = y− yref all
along the trajectories. Furthermore, the energy consumption
will be evaluated via two values; first-of-all, the standard
deviation of the control input u which is a good indicator
of the presence (or not) of chattering that is high energy
consuming. Another indicator of the energy consumption
from instant t0 to t1 is defined by

E =

∫ t1

t0

u2dt. (14)

B. Results

As it can be seen from Fig. 3, both controller (8)-(9)
and the twisting algorithm lead to a good tracking of the
reference trajectory whereas the linear state feedback has a
low tracking accuracy. The mean tracking accuracy provided
by controller (8)-(9) is significantly better than that of the
linear state feedback (the mean tracking error is divided by
34) and comparable to that of the twisting algorithm (see
Fig. 4 and Table I).
The consumed energy E (evaluated for 0 ≤ t ≤ 60 s)
by controller (8)-(9) is less than the consumed energy
with the twisting algorithm (60.16 % decrease in energy
consumption) but greater than the energy consumed with the
linear state feedback (see Fig. 5 and Table I).
The evolution of α with controller (8)-(9) for 22.5 ≤ t ≤ 23s
is depicted in Fig. 6. The mean value of α is 0.67; this
means that the linear state feedback is applied 67 % of the
time; therefore, the chattering effect with controller (8)-(9)
is reduced but the accuracy is kept at a very high level (see
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Fig. 3. Reference position yref (m) (red dotted) and measured position
y (m) (blue solid) versus time (s) for (from top to bottom) controller
(8)-(9), twisting algorithm and linear state feedback.
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Controller
(8)-(9)

Twisting
Algorithm (α = 0)

Linear State
Feedback (α = 1)

Energy E 164.02 411.68 28.06

Mean(|ey |) 4.39 · 10−4 2.46 · 10−4 1.52 · 10−2

Std(u) 1.65 2.62 0.68

Mean(α) 0.67

TABLE I
ENERGY E , Mean(|ey |), Std(u) AND Mean(α) FOR CONTROLLER

(8)-(9), twisting ALGORITHM AND LINEAR STATE FEEDBACK FOR

0 ≤ t ≤ 60 s.

Table I). The indicator used to quantify the reduction of the
chattering is the standard deviation (Std) of the control input
u: it can be seen that, thanks to the proposed controller,
the standard deviation of u is less than that of the twisting
algorithm (-37.02 % - see Table I).
All these tests and analysis allow to conclude that the
proposed controller has kept the advantages of the linear
and twisting controllers but with a strong reduction of
their respective drawbacks. Thus, one gets a robust and
accurate control law, with reduced chattering and energy
consumption.
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V. PROSPECTIVE TOWARDS CONTINUOUS α-DYNAMICS

Another solution5 consists in proposing a controller (8) for
which the exponent α dynamically (continuously) evolves
between 0 and 1. It is necessary to recall that the homoge-
neous controller (8) is intrinsically robust even if α is not
strictly equal to 0; in fact, it is not necessary to have α = 0
(twisting algorithm) to have robust features. Furthermore,
when α 6= 0, the control law is smoother and then, there is a
natural reduction of the chattering, and therefore a reduction
of energy consumption.
Then, the idea is the following: the value of α decreases
dynamically when the accuracy of the system is low, in order
to get if necessary the twisting algorithm. It is important
to note that it could be unnecessary to apply the twisting
algorithm (α = 0) to achieve the required accuracy. When
this latter is achieved, the value of the exponent α is
increased in order to decrease the energy consumption.

A. A continuous adaptation law for α

In the sequel, the following adaptation law for α in the
frame of the control law (8) has been chosen as (of course,
this choice is not unique)

α̇ =


−1 if β > 0 ∧ α ≥ 1

1 if β < 0 ∧ α ≤ 0

β otherwise
, α(0) = 0

β = k(−1 + sign(εσ − |σ|) + sign(εσ̇ − |σ̇|))

(15)

5The use of a continuous adaptation law for α is presented here as a
prospective and will be theoretically studied in future works.



with k, εσ and εσ̇ positive constants.

The minimum/maximum values of the output of the integra-
tor of α̇ are limited to respectively 0/1. This is necessary
to ensure the trade-off between the linear and twisting
controllers; therefore, the gains k1 and k2 have to be tuned
to ensure the stability of the closed-loop system ∀α ∈
[0, 1] fixed. Hence, the gains should satisfy (11) (note that
exponential stability of the closed-loop system with the linear
state feedback is ensured if the gains are positive [6], that is
a condition guaranteed by (11)).

Main ideas.
• At t = 0, α is initialized at 0: the twisting algorithm

is applied to ensure the convergence of the system
trajectories, in a finite time, to a vicinity D of the origin
of the phase plan (σ, σ̇);

• Once (σ, σ̇) ∈ D, it means that desired accuracy is
reached. Then, α̇ = k: as a consequence, α increases
towards 1 to reduce the energy consumption;

• If σ or σ̇ is outside ]−εσ, εσ[ or ]−εσ̇, εσ̇[ respectively,
then it means that desired accuracy is not reached;
hence, α̇ = −k: α decreases in order to increase the
accuracy, and so on;

• if both variables σ and σ̇ are outside of their respective
intervals, then the rate by which α decreases towards
zero is three times faster (α̇ = −3k) to restore the
accuracy faster.

B. Experimental results

The controller (8)-(15) is applied to the experimental setup
with the following parameters

k = 15, k1 = 3000, k2 = 1500, εσ = 0.01, εσ̇ = 0.7

The results are shown in Fig. 7. The average tracking error
is 4.83 · 10−4, that corresponds to 96.82 % decrease with
respect to the linear state feedback. The energy consumed
for 0 ≤ t ≤ 60s is 137.16, 66.68 % decrease from the
twisting algorithm. The average value of α is 0.38. The non-
application of the twisting algorithm has a great interest, as
proved by the standard deviation of u, that is equal to 1.51, a
42.37 % decrease with respect to the twisting algorithm. As
a consequence, it means that the chattering effect is reduced,
the control input has a better profile for the actuator, whereas
the accuracy performance is very good.

VI. CONCLUSION

A new controller for an electropneumatic actuator has
been developed combining the advantages of the linear state
feedback and twisting controller. The accuracy of the system
is taken into account in order to switch between the twisting
and linear algorithms thanks to the adaptation of a parameter
(exponent) appearing in the controller. Hence, an accurate
and low energy consuming controller is obtained. Experi-
mental results show the effectiveness of the controllers, with
two different exponent adaptation laws.
Future works will be dedicated to further analysis of the
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control solution with the continuous exponent adaptation law,
and an estimation of its domain of convergence.
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