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Adaptive Exponent Parameter: a Robust Control Solution Balancing
Between Linear and Twisting Controllers

Elias Tahoumi, Franck Plestan, Malek Ghanes and Jean-Pierre Barbot

Abstract— In this paper, a new controller is proposed, based
on a well known homogeneous controller. The suggested con-
troller gives rise to an efficient trade-off between the standard
linear state feedback and twisting algorithm. As a consequence,
the obtained controller has the advantages of both controllers
with their drawbacks reduced. To achieve this objective, a
parameter on the exponent terms of the homogeneous controller
is adapted. The convergence of the closed loop system to a
vicinity of the origin is given. Finally, some simulations validate
the effectiveness of the proposed controller.

I. INTRODUCTION

It is in general a delicate task to mathematically model the
dynamics of physical systems as well as the perturbations
that are acting on them. These systems belong to the family
of uncertain systems for which many control laws do not
result in the desired behavior.
Sliding mode control [14], [17] is a well known technique
designed to control such systems mainly because of its
robust property. Among sliding mode controllers, one can
cite standard (first order) ones that give rise to the chattering
phenomenon due to the “sign” function used in the control.
These high frequency oscillations can damage actuators.
In order to reduce the effect of this phenomenon, higher
order sliding mode algorithms [1], [5], [6], [8], [9] have
been proposed. The concept is to use the higher order time
derivatives of the sliding variable in the control. However,
the use of higher order time derivatives engenders noise.
Moreover, standard and higher order sliding modes are high
energy consuming (from a control effort point of view)
since only the bounds of the uncertainties and perturbations
are considered known and therefore the gains are usually
overestimated. A method that reduces the chattering effect
as well as the energy consumption is the adaptive gain
sliding mode technique [3], [11], [15], [16]. The idea is to
dynamically adapt the controller gains depending on sliding
mode establishment. However, accuracy can be affected due
to the loss of sliding mode, because the controller gain
transitorily becomes too small with respect to uncertainties
and perturbations.
The problem under interest is the control of an uncer-
tained/perturbed system of relative degree equal to two
with respect to the sliding variable. Several methods have
been designed to stabilize this kind of systems, notably the
twisting algorithm, which is known for its high precision and
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robustness. However, since the controller is discontinuous,
the reduction of the chattering effect is limited and the
controller is relatively high energy consuming.
Another control solution is using a linear state feedback.
This latter is smooth and low energy consuming. In fact,
in the absence of uncertainties/perturbations, the error and
energy consumption tend towards zero in the steady state.
However, the closed loop system is highly sensible to un-
certainties/perturbations where the accuracy becomes low in
their presence.
In this work, a new scheme of control is proposed with
the advantages of both the twisting control (robustness
and accuracy) and the linear state feedback (low energy
consumption). Inspired by [2], the proposed scheme allows
to achieve an efficient trade-off between the linear state
feedback and twisting algorithm by varying the parameter
on the exponent terms of the controller [2]. It is well known
that the controller proposed in [2] is homogeneous [10], [13].
To the best knowledge of the authors, there is no result yet
in the literature dealing with a variable parameter on the
exponent terms of homogeneous controller schemes.
The paper is organized as follows. In Section II, the problem
is stated. In Section III, the proposed control law is presented
as well as convergence proof. In Section IV, simulation
results comparing the proposed controller with controllers
having a constant exponent term (linear state feedback,
twisting) are given.

II. PROBLEM STATEMENT

Consider the following system

ẋ = f(x, t) + g(x, t)u

σ = σ(x, t)
(1)

with x ∈ X ⊂ Rn the state vector (X being an open bounded
subset of Rn and n being the state dimension), f and g
sufficiently differentiable uncertain functions, u ∈ U ⊂ R
the control input (U being a bounded open subset of R) and
σ the sliding variable.
The control objective is achieved when σ and σ̇ evolve
in finite time around a vicinity of the origin in spite of
perturbations/uncertainties. Assume that

A1. The relative degree of (1) is equal to 2, i.e.

σ̈ = a(x, t) + b(x, t)u (2)



A2. The internal dynamics of the system are considered
bounded. Furthermore, σ is taken such that if it reaches 0,
x asymptotically converges to zero.
A3. a(x, t) and b(x, t) are unknown but bounded perturba-
tions/ uncertainties such that ∀x ∈ X and t ∈ R+

|a(x, t)| ≤ aM ,
0 < bm ≤ b(x, t) ≤ bM

(3)

with aM , bm, bM ∈ R+.

A control solution is to use the controller [2]

u = −k1|σ|
α

2−α sign(σ)− k2|σ̇|αsign(σ̇), (4)

where k1, k2 and α are positive constants with α ∈ [0, 1].
Remark that this controller is homogeneous [10], [13]. When
α = 1, controller (16) is a linear state feedback one as

u = −k1σ − k2σ̇. (5)

The positivity of k1 and k2 is a sufficient condition for the
stability of the closed-loop system [4].

When α = 0, controller (16) is the twisting controller reading
as [7]

u = −k1sign(σ)− k2sign(σ̇). (6)

It has been proven [7] that if it is well tuned, this controller
allows the establishment of a second order sliding mode, i.e.
the system trajectories converge in a finite time to the set S
defined as

S = {x ∈ X | σ = σ̇ = 0}. (7)

In case of a sampled controller with sampling period τ , the
trajectories of the system converge in a finite time to the set

Sr = {x ∈ X | |σ| ≤ µ1τ
2, |σ̇| ≤ µ2τ} (8)

with µ1, µ2 > 0. This behavior of (1) on S (resp. Sr)
is called ideal (resp. real) second order sliding mode. The
twisting controller allows the establishement of ideal or real
second order sliding mode if the gains k1 and k2 are tuned
as [7]

k1 > k2 > 0, (k1 − k2)bm > aM ,

(k1 + k2)bm − aM >(k1 − k2)bM + aM ,
(9)

Note that α could also take any value between 0 and 1. A
discussion on the accuracy and energy consumption of (16)
for α ∈ [0, 1] is presented in the sequel.

A. Accuracy

For the sake of clarity, no uncertainty on the controller
(bm = bM = 1) and a constant perturbation a(x, t) = A
with A ∈ R are considered in this section. For α ∈ (0, 1],
the accuracy of the closed loop system in the steady state
becomes

σ =

(
|A|
k1

) 2−α
α

sign(A). (10)

Knowing that k1 is tuned as in (9) then |A|
k1

< 1. Hence,
as the value of α decreases the accuracy of the closed loop
system increases, where one has 1

lim
α→0

(
|A|
k1

) 2−α
α

= 0. (11)

The worst accuracy is when the linear state feedback is
applied (α = 1) where, in the steady state, one has

σ =
A
k1
sign(A). (12)

B. Energy Consumption

The energy consumption of a controller is defined as
follows

E =

∫ tf

t0

u2(t)dt (13)

with t0 and tf the initial and final times.
Consider that 2 |σ| < 1 and |σ̇| < 1 . Then, ∀α1, α2 ∈ [0, 1],
if α1 < α2, one has

−k1|σ|
α1

2−α1 sign(σ)− k2|σ̇|α1sign(σ̇) >

−k1|σ|
α2

2−α2 sign(σ)− k2|σ̇|α2sign(σ̇).
(14)

Hence for the same values of σ and σ̇, if α decreases, the
energy consumption increases. Due to the nonlinearity of
the system, one cannot definitely state that, as α decreases,
the energy consumption increases given that one cannot
guarantee that the system follows the same trajectory for
different values of α. However, the trend is visible via
simulations where the lowest energy consumption is with
the linear state feedback (α = 1). The twisting controller
(α = 0) is the most energy consuming since ∀α ∈ (0, 1]

−k1sign(σ)− k2sign(σ̇) >
−k1|σ|

α
2−α sign(σ)− k2|σ̇|αsign(σ̇).

(15)

Based on the discussion above, a new controller is pro-
posed in the sequel that has advantages of the linear state
feedback (low energy consumption) and twisting algorithm
(robustness and high accuracy).
Noting that the linear state feedback [10] and twisting
controller [13] are homogeneous, the proposed controller will
dynamically pass from one controller to another by varying
the value of the parameter α on the controller’s exponent
terms. Hence, in the proposed controller, a trade-off between
the linear state feedback and twisting controller is obtained.
In the next section, formalization of this adaptive process
is detailed, as well as the proof of the closed loop system
stability.

1For α = 0 (twisting controller), it has been proven that σ reaches zero
in finite time [7] as previously discussed.

2After the system converges, it is not restrictive to consider that |σ| < 1
and |σ̇| < 1.



III. MAIN RESULTS

The proposed controller is based on the controller of [2]
that reads as

u = −k1|σ|
α

2−α sign(σ)− k2|σ̇|αsign(σ̇), (16)

with k1 and k2 tuned as in (9) and α ∈ [0, 1]. The aim is to
vary dynamically α between 0 and 1 by using the following
adaptive law 3

α̇ =


−1 if γ > 0 ∧ α ≥ 1

1 if γ < 0 ∧ α ≤ 0

γ otherwise

(17a)
(17b)
(17c)

with α(0) = 0. The adaptive law of α is defined via three
equations

(17a): the objective is to avoid α increasing beyond 1.
(17b): the objective is to avoid α decreasing below 0.
(17c): the adaptation is effective and detailed in the sequel.

The degree α̇ is limited to a minimum value of 0 and a
maximum value of 1 thanks to equations (17a) and (17b). As
a consequence, the gains k1 and k2 have to be tuned to ensure
the stability of the closed loop system ∀α ∈ [0, 1]. Therefore,
the gains should satisfy (9) (note that exponential stability
of the closed loop system with the linear state feedback
is ensured if the gains are positive [4], that is a condition
guaranteed by (9)).
The logic of adaptation law (17c) is as follows. When the
accuracy of the closed-loop system is low (based on a
predefined criteria), the value of α is decreased in order to
increase the robustness of the controller. Hence, γ should be
negative. When the accuracy of the closed-loop system is
high, then the value of α is increased in order to decrease
the energy consumption and therefore γ should be positive.
Obviously, many equations can be used for γ to satisfy these
ideas. In the sequel, two propositions of such equations are
given.

A. Proposition 1

γ is defined as

γ = k(−1 + sign(εσ − |σ|) + sign(εσ̇ − |σ̇|)) (18)

with k, εσ and εσ̇ positive constants.

Remarks
- εσ and εσ̇ are linked to the accuracy of the controller.
- Initially, the twisting algorithm is applied (α(0) = 0).

By this way, the convergence of the system trajectories
to D (see Fig. 1) such that

D = {(σ, σ̇) | |σ| ≤ εσ ∧ |σ̇| ≤ |εσ̇|} (19)

is ensured, in finite time.

3∧: The notation is used for the logical AND operator.

- γ is an indicator of the accuracy of the system: if
(σ, σ̇) ∈ D, it means that the desired accuracy is
reached. Then, γ = k: α increases towards 1 to reduce
the energy consumption.

- If σ or σ̇ is outside ]−εσ, εσ[ or ]−εσ̇, εσ̇[ respectively,
it means that the desired accuracy is not reached, hence
γ = −k: α decreases towards zero in order to increase
the accuracy of the system.

- If both variables are outside of their target intervals then
the rate by which α decreases towards zero is three
times faster (γ = −3k) to increase the accuracy faster.

Theorem 1: Consider system (1) with Assumption A1,
A2 and A3 fulfilled. Then, there exist positive parameters
k, εσ and εσ̇ such that ∀x(0) ∈ X , the trajectory of system
(1) converges to a vicinity of the origin via the controller
(16)-(17)-(18) with gains k1 and k2 tuned as in (9).

Proof: Initially, the twisting algorithm is applied α(0) = 0.
As mentioned in Section II, the system trajectories will con-
verge in a finite time towards the origin (see (7)). Therefore,
it is guaranteed that the system trajectories converge to D in
a finite time (trajectory between L and M in Fig. 1). Then,
following the adaptation law, the value of α increases in order
to reduce the energy consumption, unfortunately, it makes
the controller less robust. By a general point-of-view, the
perturbation could make the trajectory of the system leave D
(point M to point N ). Therefore, α decreases again making
the controller more robust: as a consequence, the trajectory
comes back to D (point N to point O) and so on.
The trajectory of the system potentially goes out from D due
to the perturbation, but one can be sure that it will converge
back to it in finite time. Consider the worst case where α
should decrease from 1 to 0 in order to bring the trajectory of
the system back to D. This happens in finite time ( 1k s): when
the twisting algorithm is applied, the trajectory converges to
D in finite time too. Hence, the greater the value of k, the
faster the trajectory converges.

Note that by a practical point-of-view, the twisting algo-
rithm forces the trajectories to reach Sr (8). It means that, if
one wants to get an efficient adaptation of α, εσ and εσ̇
have to be chosen greater than µτ2 and µτ respectively.
Otherwise, a risk is to have the twisting algorithm all the
time.

B. Proposition 2
In this section, a similar adaptive law is proposed but with

an additional term that takes into account the control effort.

γ = k(−1 + sign(εσ − |σ|) + sign(εσ̇ − |σ̇|)) + β
|u|

|u|+ εu

(20)

where k, β, εσ , εσ̇ and εu are positive constants. Controller
(16)-(17)-(20) follows a similar logic as controller (16)-(17)-
(18) presented in Section III-A; its logic can be summarized
in the sequel.
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Fig. 1. Example of a trajectory of the system in the phase plan (σ, σ̇)

Remarks
- εσ and εσ̇ are linked to the accuracy of the controller

and εu is used as a scaling factor for the normalization
of the controller effort |u|.

- When the trajectories of the system are inside D, γ =
k+β |u|

|u|+εu : α increases towards 1 to reduce the energy
consumption.

- γ in this case has two terms: the first one (−k or
−3k) increases the robustness of the system and brings
back the trajectories to D by decreasing α. The second
term (β |u|

|u|+εu ) decreases the energy consumption by
increasing α when the energy consumption is high;

- this means that this controller even when the trajectory
of the system is outside D, not only shall increase
the robustness of the system but also shall also take
into account the energy consumption. This will help to
further decrease the energy consumption of the overall
controller.

- Hence, β is tuned such that β < k in order to obtain the
behavior described above. Otherwise, one risks to have
γ positive all the time and ultimately a linear controller.

Theorem 2: Consider system (1) with Assumption A1, A2
and A3 fulfilled. Then, there exist positive parameters k, β,
εσ , εσ̇ and εu such that ∀x(0) ∈ X , the trajectory of system
(1) converges to a vicinity of the origin via the controller
(16)-(17)-(20) with gains k1 and k2 tuned as in (9).

The proof of this theorem is similar to that Theorem 1
with one difference. The maximum finite time needed for α
to decrease from 1 to 0 in order to bring back the trajectories
of the system to D is 1

k−β s.

IV. SIMULATION RESULTS

A. Context

Simulations have as objective to show the effectiveness
of the proposed controller with the two previously exposed
expressions for γ. The performances are compared to those
of the twisting controller and the linear state feedback. The

software used is Simulink; the sampling period is taken
0.1ms with Euler integration solver. The simulation time
is 6 s.
The functions a(x, t) and b(x, t) are generated for 3 s using
the MATLAB function ’rand’ and are taken the same while
testing all controllers. For the second part of the simulation
(3 s ≤ t ≤ 6 s), the sequences for a(x, t) and b(x, t) are
repeated but with a different amplitude for a(x, t) such that
∀t ∈ [0, 3]

a(x, t+ 3) = 4 · a(x, t)
b(x, t+ 3) = b(x, t)

(21)

This is done in order to show the effect of the amplitude of
the perturbation on the controller and the system accuracy.
The bounds of these functions are (see Fig. 2)

aM = 7, bm = 0.95 and bM = 1.05
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Fig. 2. Functions a(x, t) (top) and b(x, t) (bottom) versus time (s).

The gains are stated as k1 = 30 and k2 = 10 for
all controllers satisfying condition (9). The parameters for
controller (16)-(17)-(18) are set as follows

k = 10, εσ = 10−5 and εσ̇ = 10−2.

whereas the parameters of controller (16)-(17)-(20) read as

k = 10, β = 5, εσ = 10−5, εu = 2

and εσ̇ = 10−2.

B. Results

The results are shown in Fig. 3, 4, 5, 6, 7 and 8 and some
indicators are presented in Table I.
With controllers (16)-(17)-(18) and (16)-(17)-(20), the twist-
ing algorithm (α = 0) is initially applied (see Fig. 3 and 5).
When the system converges (t ' 0.5 s), the adaptation begins
(this phase will be called the steady state). Effective analysis
of the performances is achieved on the intervals t ∈ [1, 3]
and t ∈ [4, 6] where the shape of the a(x, t) is the same but
with a different amplitude (see (21)).

The energy consumed by the two proposed controllers is
much less than that of the twisting algorithm and comparable
to that of the linear state feedback (see E in Table I). The
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Fig. 3. Controller (16)-(17)-(18). Top: Variable α versus time (s);
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Fig. 4. Controller (16)-(17)-(18) Top: σ (with zoom) versus time (s);
Bottom: σ̇ (with zoom) versus time (s).

average accuracy of |σ| (see mean(|σ|) in Table I) with
both proposed controllers is higher than with the linear state
feedback and comparable to the twisting algorithm, whereas
the average accuracy of |σ̇| (see mean(|σ̇|) in Table I)
with the proposed controllers is better than the other cases
(concerning the twisting algorithm, this is mainly due to the
attenuation of the chattering effect).

An indicator used to quantify the chattering effect is the
standard deviation of the control input std(u) (see Table
I): the standard deviation of the proposed controllers is
significantly less than that of the twisting algorithm and
slightly greater than that of the linear state feedback. This can
also be seen on the control input signals of both controllers
(Fig. 3 and 5) compared to the twisting controller (Fig.
7) and linear state feedback (Fig. 8). Less chattering for
the proposed controllers is also manifested in Fig. 4 and
6 compared to the twisting controller 7.

When the amplitude of the perturbation/uncertainty a(x, t)
is high (4 s < t < 6 s) the proposed controllers consume
more energy than when a(x, t) is low (1 s < t < 3 s) (see E
in Table I) since more control effort is needed to constrain
the trajectories to a vicinity of the origin. Notice also that
the average value of α decreases (see Table I) when a(x, t)
increases making the controller more robust and potentially
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Fig. 5. Controller (16)-(17)-(20) Top: Variable α versus time (s); Bottom:
Control input u versus time (s).
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more energy consuming.
As for the comparison between controllers (16)-(17)-(18)

and (16)-(17)-(20), with the same parameters k, εσ and εσ̇ ,
the latter is less energy consuming since it contains a term
that favors energy consumption (see E in Table I), but it is
less precise (see mean(|σ|) and mean(|σ̇|) in Table I). This
is due to the fact that controller (16)-(17)-(20) takes into
account the energy consumption even when the accuracy is
low (the trajectory is outside (D)).

V. CONCLUSION

A new controller has been proposed combining advantages
of the linear state feedback and twisting controller. Low-
energy consumption and high accuracy are taken into account
by making variable the parameter α on the exponent terms
of the proposed controller. Simulation results show the
effectiveness of the proposed controller.
Future works will be dedicated to evaluate the performances
of the controller applied to a real perturbed system.



Controller
(16)-(17)-(18)

Controller
(16)-(17)-(20)

Twisting Control
(α = 0)

Linear State
Feedback (α = 1)

1s < t < 3s

Energy E 4.46 3.67 1739.31 0.71
mean(|σ|) 1.65 · 10−5 2.62 · 10−5 2.93 · 10−6 5.57 · 10−3

mean(|σ̇|) 1.54 · 10−3 1.90 · 10−3 8.01 · 10−3 4.28 · 10−2

std(u) 1.49 1.35 29.49 0.59
mean(α) 0.51 0.52

4s < t < 6s

Energy E 25.09 22.30 1737.51 8.22
mean(|σ̇|) 2.63 · 10−5 3.88 · 10−5 2.99 · 10−6 2.17 · 10−2

mean( ˙|σ|) 2.27 · 10−3 2.49 · 10−3 8.02 · 10−3 1.53 · 10−1

std(u) 3.53 3.32 29.47 2.00
mean(α) 0.39 0.40

TABLE I
ENERGY CONSUMPTION, AVERAGE ACCURACY ON σ AND σ̇, STANDARD DEVIATION OF u (std(u)) AND AVERAGE VALUE OF α IN STEADY STATE WITH

CONTROLLER (16)-(17)-(18), CONTROLLER (16)-(17)-(20), twisting CONTROLLER AND LINEAR STATE FEEDBACK FOR 1s < t < 3s AND 4s < t < 6s
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Fig. 7. Twisting controller (from top to bottom) Control input u, σ and
σ̇ versus time (s).
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