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Abstract

The modelling of the enzymatic hydrolysis of cellulosic polymers is investigated through a population

balance approach. Both Endoglucanase (EG) and Exoglucanase (CBH) activities are taken into account. EG

achieves random attacks along cellulosic chains and cleaves the β-glycosidic bonds whereas CBH produces

cellobiose molecules by chain-end scission mechanism. The EG activity is modelled as a pure breakage

while the CBH activity is assimilated to an erosion process with a specific product (cellobiose). In the two

cases, the inhibition of the cellulases activity by the end-product is incorporated. The population balance

equation (PBE) accounting for breakage processes is solved using the Direct Quadrature Method of Moments

(DQMOM) coupled to a distribution reconstruction technique based on the Maximum Entropy (ME) principle

in order to track the time evolution of the chain length distribution (CLD) during the hydrolysis reaction. The

β-glucosidase activity transforming the produced cellobiose into glucose is modelled as a Michaelis-Menten

type kinetic with a competitive inhibition effect and solved simultaneously with the PBE. The numerical

results show the time-evolution of the CLD during the hydrolysis reaction as well as the rate of conversion

of the substrate into simple sugars. These results are in concordance with those predicted analytically. The

synergistic action of the EG and CBH is highlighted and discussed and the inhibition effect is investigated.

The approach is promising by its accuracy and fastness for the analysis of dynamic experimental data of the
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enzymatic hydrolysis reaction.
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1. Introduction

The growing demand for energy, the depletion of fossil fuels and the global warming have sparked a

growth in research for renewable energy sources (Sun & Cheng, 2002). One of the promising alternatives is

the bioconversion of biomass materials to bioethanol (Jorgensen et al., 2007). The biochemical conversion of

lignocellulosic biomass to ethanol involves several processing steps (Gregg & Saddler, 1995). The reduction5

of cellulose, which is the major component of plant material, into fermentable sugars is carried out by means

of enzymatic hydrolysis.

Cellulose is a homopolymer of β-1,4 linked D-glucose units (Mittal et al., 2011). Enzymes cocktails capable

of degrading this polymer to sugars are a mixture of at least three different activities. The endoglucanase

activity (EG) cleaves randomly the β-1,4-glycosidic linkages, the cellobiohydrolase activity (CBH) attacks the10

chain-ends and releases cellobiose (dimer of glucose) and the β-glucosidase activity hydrolyzes cellobiose into

D-glucose (Andersen et al., 2008). A typical kinetic of the enzymatic hydrolysis of cellulose is characterised by

a rapid initial rate followed by a gradual slowdown caused by a multitude of factors affecting the effectiveness

of the biocatalysts, leading, finally, to a partial conversion of the substrate (Yang et al., 2006). These factors

are related to the substrate structure (nature, pretreatments), the operating conditions (pH, temperature and15

mixing) and the enzymes (nature, deactivation during the reaction, inhibition by the end-products) (Van Dyk

& Pletschke, 2012).

Understanding the complex interactions between the enzymes elementary mechanisms and the dynamic

evolution of the substrate features during the hydrolysis reaction is of critical importance for the modelling,

the design and the optimization of the transformation process. Michaelis-Menten based models are widely20

used for the modelling of this dynamic process however, since they have been developed initially for homoge-
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neous reaction conditions, the parameters fitting the experimental data are only apparent and constants are

sometimes lacking in physical or biochemical sense (Bansal et al., 2009). Mechanistic models incorporating

one or several rate limiting factors such as the substrate accessibility, the cellulases inhibition/deactivation

and the change in the substrate reactivity can be found in literature (Fan & Lee, 1983; South et al., 1995;25

Xu & Ding, 2007). A convincing critical analysis of the identifiability of these models has been published by

Sin et al. (2010).

Recently, models based on the population balance approach have been proposed in order to better de-

scribe the heterogeneity of the substrate during the dynamic enzyme catalysis. Hosseini & Shah (2011a,b)

assimilated the cellulose hydrolysis to soluble polymer degradation. The endoglucanase activity (EG) has30

been modelled as a pure random breakage of the cellulose chains and the exoglucanase activity (CBH) as

a chain-end scission (Kostoglou, 2000). To be more realistic, Griggs et al. (2012a,b) developed a popula-

tion balance model based on the depolymerisation mechanisms of EG and CBH assuming a population of

monodisperse cylindrical cellulose particles since the reaction is heterogeneous. To solve the system of rate

equations, Hosseini & Shah (2011a,b) considered all the possible chains in the system when Griggs et al.35

(2012a,b) reduced the number of equations by mapping the continuous particle size distribution (PSD) to a

fixed discrete grid points. Lebaz et al. (2015) used the discretization method developed by Kumar & Ramkr-

ishna (1996a) for the resolution of the population balance equation (PBE) with a fixed pivot technique for

the EG activity and a moving pivot technique (Kumar & Ramkrishna, 1996b) for the CBH activity since it

was assimilated to a continuous dissolution of the cellulosic chains. Ho et al. (2014), meanwhile, proposed40

a modified fixed pivot technique for the modelling of chain-end scission by CBH. All of these modelling

approaches are computationaly expensive.

Cellulose particles can be characterised by their Degree of Polymerization (DP) which is the number of

monomers (D-glucose) constituting each particle. If we note N the maximum DP in a given particulate
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system, one needs to solve N equations to describe the time-evolution of all the possible sizes undergoing45

breakage processes. The discretization method (Kumar & Ramkrishna, 1996a) reduces considerably the

number of equations by distributing the particles into a set of classes M < N. Unfortunately, the accuracy

of this method depends on the number of classes M . Increasing M implies more equations to solve and,

thereby, substantial computational time. In this study, we develop a new approach for solving the PBE

in the case of cellulose depolymerisation by EG and CBH. For the sake of accuracy and computational50

efficiency, the Direct Quadrature Method of Moments (DQMOM) is used as solution method (Marchisio &

Fox, 2005). Since DQMOM provides information only on the time evolution of the moments of the particle

size distribution (PSD), the recovering of the full distribution is needed. For this, the PSD is reconstructed

from its first moments using the Maximum Entropy based method (Tagliani, 1999). This reconstruction

method is preferred to other techniques (e.g. Spline based method, Beta Density Function based technique)55

for its fastness, accuracy and the small number of moments required (Lebaz et al., 2016). This is of critical

importance when the PSD reconstruction and the PBE resolution are conducted simultaneously. Note that

more recent moment methods are proposed in literature to solve the PBE, maintly the Conditional Quadrature

Method of Moments (CQMOM) developed by Yuan & Fox (2011) which is more suitable for multivariate

problems and the Extended Quadrature Method of Moments (EQMOM) (Yuan et al., 2012) allowing the60

reconstruction of the distribution all along the resolution using kernel density functions.

For sake of clarity, this contribution is organized in two parts. In this first part, the focus will be put

on soluble substrates. The general theoretical framework including the DQMOM approach for solving the

homogeneous monovariate PBE and the PSD reconstruction by the Maximum Entropy based method is

developed and validated against analytical solutions. We show how the cellulolytic activities are modelled65

in the case of depolymerisation of soluble cellulose chains before testing and discussing the robustness of the

model in the results section. The second part deals with the case of particulate systems.
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In both cases, the β-glucosidase activity which converts cellobiose into D-glucose is modelled as a Michaelis-

Menten type kinetic with competitive inhibition and resolved simultaneously with the PBE.

2. Theoretical framework70

The PBE describes the evolution of a density function of a given population of chains/particles undergoing

different transformation processes. In the case of enzymatic hydrolysis of cellulose chains, the substrate

chains are degraded during the reaction by the synergistic action of an enzyme mixture. Thus, considering

the chain length L as the internal coordinate, the PBE expressing the depolymerisation process in a spatially

homogeneous system is written in its continuous form as:75

∂n(L, t)

∂t
=

∫ ∞
L

β(L, λ)Γ(λ)n(λ, t)dλ− Γ(L)n(L, t) (1)

where n(L, t) is the length-based number density function, Γ(L) the breakage frequency for a chain of

length L which is related to the enzyme activity, β(L, λ) is the daughter distribution function giving the

probability of obtaining a chain of length L from the breakup of a chain λ. The first term on the right hand

side of equation (1) accounts for the formation (birth) of chains with length L resulting from the breakage

of larger chains . The last term is the death term due to the loss of chains of length L because of their80

depolymerisation. Note that, in the particular case of soluble substrates, the internal coordinate L refers to

the degree of polymerization (DP) of the cellulose chains.

Except for some cases where Γ(L) and β(L, λ) have simple mathematical expressions (Ziff & McGrady,

1985), equation (1) has no analytical solution. Numerical methods are used to solve it. We adopt in this

contribution the Direct Quadrature Method of Moments (DQMOM). A brief description of this method is85

given in Appendix A. For further details, one can refer to the original paper by Marchisio & Fox (2005).
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The kth order moment of the chain length distribution (CLD) is defined as:

mk(t) =

∫ ∞
0

Lkn(L, t)dL (2)

The moments provide the main properties of the CLD. The zeroth order moment, m0(t), represents the

molar concentration of the cellulose chains since n(L, t)dL is the number of cellulose chains per volume having

lengths between L and L + dL. The first order moment, m1(t), gives the total concentration of monomers90

present in cellulose chains. Average properties of the CLD can be derived from the moments such as the

number-averaged chain length given by the ratio of the two first moments m1(t)/m0(t) and the mass-averaged

chain length m2(t)/m1(t).

By applying the moment transformation of equation (1), the final moment transport equation is given as:

(1− k)

N∑
i=1

Lki ai + k

N∑
i=1

Lk−1i bi =

N∑
i=1

b
(k)

i Γiwi −
N∑
i=1

Lki Γiwi (3)

where95



ai =
∂wi
∂t

bi =
∂ci
∂t

ci = wiLi

b
(k)

i =

∫ ∞
0

Lkβ(L,Li)dL

(4)

(Li(t), wi(t)) are the abscissa and weights of the N Gaussian quadrature nodes. (Li(0), wi(0)) can be com-

puted using the Product-Difference (PD) algorithm (Gordon, 1968). The different steps of the transformation

are explicited in Appendix A .

Although the intrinsic activities of EG and CBH are different, they lead to the depolymerisation of the

substrate chains during the reaction. Thus, the two activities are modelled as breakage processes (equation100

1), the distinction between them will appear in the formulation of the daughter distribution functions.
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The validation of the DQMOM implementation in the case of breakage processes is given in Appendix B.

This numerical validation is based on the analytical solution of equation (1) (Lebaz et al., 2016). Moreover,

the CLD reconstruction from the moments using the maximum entropy technique is embedded with the

DQMOM algorithm in order to access the CLD evolution simultaneously. The maximum entropy technique105

is briefly described in Appendix C and its numerical validation is fully discussed in Lebaz et al. (2016).

2.1. Daughter distribution functions formulation

The depolymerisation mechanism depends on the nature of the cellulases. In our case, two main activities

(EG and CBH) are considered. This leads to the resolution of the global PBE below:

∂n(L, t)

∂t
= SEGL (L, t) + SCBHL (L, t) (5)

with110


SEGL (L, t) =

∫ ∞
L

βEG(L, λ)ΓEG(λ)n(λ, t)dλ− ΓEG(L)n(L, t)

SCBHL (L, t) =

∫ ∞
L

βCBH(L, λ)ΓCBH(λ)n(λ, t)dλ− ΓCBH(L)n(L, t)
(6)

where βEG and βCBH are the daughter distribution functions reflecting the mode of action of the enzymes.

ΓEG and ΓCBH are the breakage frequencies directly related to the enzymatic activities (Lebaz et al., 2015).

The expression of the daughter distribution functions for both EG and CBH depends on the nature of

the substrate : soluble polymer chains or particulate system. In the following paragraph, the formulation

will be restricted to the case of polymer chains. The case of particulate substrates is treated in the second115

part of the contribution.

2.1.1. EG activity: random breakage

The EG activity cleaves randomly the β-1,4-glycosidic bonds along the cellulosic chains. Thus, in the

case of soluble substrate, each EG attack leads to the scission of the initial chain λ producing thereby two
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smaller chains (λ− L) and L:120

P (λ) −→ P (λ− L) + P (L) (7)

The daughter distribution function β(λ, L) defines the probability that a chain of length λ leads to a chain

of size L when it breaks up. Under the assumption of a binary scission, two particles are always produced

and the factor 2 takes into account that either of these particles can be of size L < λ. The time-evolution of

the chain length number density function, n(L, t) is given by the PBE :

SEGL (L, t) =
∂n(L, t)

∂t

∣∣∣∣
EG

= 2

∫ ∞
L

1

λ
ΓEG(λ)n(λ, t)dλ− ΓEG(L)n(L, t) (8)

2.1.2. CBH activity: chain-end scission125

The CBH activity has not a random aspect as the EG one, each effective attack produces one soluble

cellobiose molecule and reduces, thereby, the DP of the attacked chain by 2. In the case of a soluble substrate,

the CBH mechanism is described by:

P (L) −→ P (L− LC) + P (LC) (9)

where LC is the length of the cellobiose molecule.

Since the CBH activity leads to a specific product, the daughter distribution function is given by a Dirac130

delta function (McCoy & Wang, 1994; Wang et al., 1995) and the corresponding source term can be expressed

as :

SCBHL (L, t) =
∂n(L, t)

∂t

∣∣∣∣
CBH

=

∫ ∞
L

ΓCBH(λ)δ (L− (λ− LC))n(λ, t)dλ− ΓCBH(L)n(L, t) (10)
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Additionally the cellobiose concentration CC(t) evolution during the reaction is given by :

∂CC(t)

∂t
=

∫ ∞
L

ΓCBH(λ)δ (L− LC)n(λ, t)dλ+ SEGLC
(L, t) (11)

Where SEGLC
(L, t) is the contribution of EG activity to cellobiose release which is negligible thus, the right

hand side of equation (11) is reduced to the first term.135

2.2. Moment transformation using the DQMOM formalism

The moment transformation of equations (8) and (10) is given by equation (3). We explicit hereafter the

moment transformation of the equation (11) accounting for the cellobiose release after each CBH effective

attack. Equation (11) can be written in a compact form as:

∂CC(t)

∂t
= QL(L, t) (12)

where QL(L, t) is the source term due to the erosion process.140

One has to precise that CC(t) is a delta function centered on the cellobiose length LC with a time increasing

weight. Thus, CC(t) can be expressed as:

CC(t) = wC(t)δ(L− LC) (13)

By introducing equation (13) in (12), we obtain:

δ(L− LC)
∂wC
∂t
− δ′(L− LC)wC

∂LC
∂t

= QL(L, t) (14)

Since LC is constant and by applying the moment transformation, equation (14) is reduced to:

(1− k)LkC
∂wC
∂t

=

∫ ∞
0

LkQL(L, t)dL (15)
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In the right hand side, the source term is transformed as follows :145

Q
(N)

k =

∫ ∞
0

LkQL(L, t)dL

=

∫ ∞
0

∫ ∞
L

LkΓ(λ)δ(L− LC)n(λ, t)dLdλ

=

N∑
i=1

b
(k)

i Γiwi

(16)

In equation (16), wi refers to the weight of the node i of the density n(L, t). In the specific case of erosion

process :

b
(k)

i =

∫ ∞
0

Lkδ(L− LC)dL = LkC (17)

Finally, equation 17 is tranformed to :

(1− k)LkC
∂wC
∂t

=

N∑
i=1

LkCΓiwi (18)

Since CC(t) is fully defined by the concentration of cellobiose molecules produced at the time t, one needs

only the zeroth order moment (k = 0), thus:150

∂wC
∂t

=

N∑
i=1

Γiwi (19)

Thus, equation (19) gives the time evolution of the cellobiose concentration.

2.3. Breakage frequencies formulation

The breakage frequencies for the two enzymatic activities give the rate of the depolymerisation process,

in other words, the number of effective attacks per time unit. They are directly related to the cellulases

concentration, more specifically to the active adsorbed enzymes concentration.155

Different mathematical expressions can be used for the breakage frequencies. One can, for example,

assume that ΓEG is proportional to the chain length L since longer chains are more likely to be attacked
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which is not necessarily the case for ΓCBH because of the nature of the exoglucanase attacks. Different

expressions for these frequencies are to be tested and confronted to the trends observed in experimental data

sets (expressed as CLD at various times during hydrolysis, simple sugars concentrations, . . . ). The general160

form Γ = αLp is often used (Nopens et al., 2002; Ding et al., 2006). This form is adopted and discussed in

our case with different parameters (α and p).

2.4. The EG and CBH inhibition effect

The end-products inhibition effect is known as one of the most important factors affecting the hydrolysis

rate (Xiao et al., 2004; Gruno et al., 2004) causing a progressive decrease of the cellulases activity as the end-165

product concentration increases with substrate conversion. To incorporate this critical effect in the model,

we express the breakage frequencies of EG and CBH as functions of the end-product concentration which is

time-dependent as follows (equations 20 and 21):

ΓEG = ΓEG0
· KEG

CC(t) +KEG
(20)

ΓCBH = ΓCBH0 ·
KCBH

CC(t) +KCBH
(21)

where CC(t) is the cellobiose molar concentration, KEG and KCBH are the inhibition constants for EG

and CBH respectively, ΓEG0
and ΓCBH0

are the intrinsic EG and CBH activities respectively.170

2.5. The β-glucosidase activity

Since the β-glucosidase activity takes place in the liquid phase and turns cellobiose into D-glucose,

Michaelis-Menten type kinetic is used and competitive inhibition by the accumulation of glucose is incorpo-
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rated as shown in equation (22).

dCG
dt

=
2VmCC

Km

(
1 + CG

KP

)
+ CC

(22)

where CG is the glucose molar concentration, Km and Vm the Michaelis-Menten parameters, KP the175

inhibition constant for the β-glucosidase activity. The factor 2 is due to the fact that one mole of cellobiose

gives two moles of glucose.

3. Summary

Starting from a given chain length distribution (CLD), we solve simultaneously a set of equations (equation

(23)) including a PBE accounting for a random breakage process for the EG activity, a PBE for an erosion180

process refering to the CBH activity and a Michaelis-Menten equation for the β-glucosidase activity.



∂n(L, t)

∂t
= 2

∫ ∞
L

1

λ
ΓEG(λ)n(λ, t)dλ− ΓEG(L)n(L, t)

+

∫ ∞
L

ΓCBH(λ)δ (L− (λ− LC))n(λ, t)dλ− ΓCBH(L)n(L, t)

∂CC(t)

∂t
=

∫ ∞
L

ΓCBH(λ)δ (L− LC)n(λ, t)dλ− 1

2

dCG(t)

dt
dCG(t)

dt
=

2VmCC

Km

(
1 + CG

KP

)
+ CC

(23)

The integration of this set of equations using the DQMOM approach coupled with the reconstruction

technique gives the time evolution of the CLD and the kinetic of the substrate conversion into simple sugars

(cellobiose and glucose).

The initialisation of the resolution procedure requires the initial chain length distribution n(L, 0) and the185

model parameters. These parameters are the breakage frequencies for both EG and CBH activities (ΓEG

and ΓCBH), the Michaelis-Menten parameters for the β-glucosidase activity (Vm and Km) and the inhibition

constants KEG, KCBH and KP . One has to point out the low number of parameters required compared to

the common kinetic-based models such as the model described by Kadam et al. (2004) in which 18 parameters

12



are to be identified. Thus, the low number of parameters in our case, clearly associated to the physics of the190

modelled phenomena, enhances their reliable identification from experimental data.

Numerically, the ode45 integrator of MATLAB is used to solve the set of equations (23) under a work-

station comprising of an Intel R©CoreTMi7-3740QM CPU with a clock speed of 2.7 GHz and 16 GB of installed

memory (RAM).

4. Results and discussion195

For all the results presented in this article, the initial CLD is assimilated to a Gamma distribution given

by the equation below:

n(L, 0) =
Lκ−1e−L/θ

Γ(κ)θκ
(24)

where κ and θ are the Gamma distribution parameters and Γ the classical Gamma function. The mode

of the Gamma distribution is given by (κ− 1)θ and its variance by κθ2. In our case, the Gamma distribution

parameters are κ = 60 and θ = 10.200

The two main activities EG and CBH are treated separately before showing the combination and the

inhibition effect. The breakage frequencies are set proportional to the polymer chain length which means

that longer chains are more likely to be attacked (Γ = αLp). This is the case especially for the EG random

activity. Other breakage frequency expressions can be tested easily. The daughter distribution functions and

frequencies for both EG and CBH are summerized in table 1. The system of ordinary differential equations205

(equation 23) is integrated over the time interval [0,10] hours.

For the erosion process, the formation of cellobiose is not integrated in the full CLD because it leads to a

strong peak at the length LC = 2 which constitutes a singularity and disturbs by the way the reconstruction

procedure. Thus, the daughter distribution function is reduced to b̄
(k)
i = (Li −LC)k. This is consistent with
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Mechanism β(L, λ) b
(k)

i Frequency (Γ)

EG: Uniform breakage 2/λ Lki
2
k+1 αLp

CBH: Erosion process


1 if L = LC

1 if L = λ− LC

0 otherwise

LkC + (Li − LC)k αLp

Table 1: The daughter distribution functions and breakage frequencies for EG and CBH activities in the case of depolymerisation

of soluble chains

the idea that cellobiose is no longer a chain per se but rather an elementary molecule. As a result, the total210

mass balance refers to the mass of polymer chains only. The cellobiose concentration is accessible via the

mass loss in the system as well as by equation (11).

4.1. CBH + β-glucosidase activities

CBH attacks the chain-ends and releases cellobiose molecules as a product. The loss of two monomers

by the attacked polymers is modelled as an erosion process leading to a progressive shortening of the chains215

length until their total transformation. The breakage frequency is set to ΓCBH = α.L (p = 1). The Figure

1 gives the time evolution of the first four normalised moments of the CLD undergoing CBH attacks. The

parameter α is set equal to 4.10−2 for practical considerations.

The total molar concentration (zeroth order moment) remains constant within the process which means

that the number of polymer chains is constant. In the meantime, the total mass of the polymer chains (the first220

order moment) decreases due to the loss of cellobiose molecules. In other words, the initial number of chains

is unchanged but the chains length is decreasing. This is consistent with the fact that the initial number-

averaged chain length is far from the origin (much larger than the dimer of cellobiose). In order to observe

the total transformation of the substrate (and the simultaneous diminution of the total molar concentration

of soluble polymer) it would be necessary to increase the hydrolysis time and/or erosion frequency. Note that225

the set of equations (23) being conservative, the loss of mass due to the enzymatic action on the polymer
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Figure 1: The time evolution of the first four normalised moments of the chain length distribution undergoing CBH attacks

with a frequency proportional to the polymer length

chains (Figure 1) is identical to the accumulation of cellobiose and glucose. The interpretation of higher

order moment is not direct. Indeed, in the present case, the mass is directly proportional to the chain length.

However, the ratio (m2

m1
) represents the mass averaged-chain length and is analogous to d43 for spherical

particles. The results shows that this mass averaged-chain length decreases.230

Figure 2 gives the evolution of the initial CLD reconstructed by the ME based method. The initial

distribution is shrinking as it moves to the left since the erosion frequency is not equally distributed all along

the CLD: longer chains are more frequently attacked than smaller ones.

These numerical simulations are validated against the analytical solution developed in Appendix D. The

zeroth order moment is constant while the first order moment decreases exponentially with a time constant235

equal to τ1 = 1
α.LC

. Introducing non dimensional parameters will now help in analyzing the trends when

different erosion laws are considered.

From the analytical solution, one can build a generic behaviour of the chains population undergoing erosion
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Figure 2: The time evolution of the CLD undergoing CBH attacks with a frequency proportional to the polymer length

process by introducing the adimensional time t
τ1

in the case of a length-dependent erosion frequency. In the

case of a length-independent erosion frequency (ΓCBH = α), the first order moment of the CLD decreases240

linearly while the zeroth order moment remains constant. In this case, the time constant is τ2 = m1(0)
αLCm0(0)

and the adimensional time is t
τ2

.

Figure 3 shows the evolution of the first normalised moment (m1(t)
m1(0)

) reflecting the total mass in the

system (without simple sugars: cellobiose and glucose). Two cases with length dependent/independent

erosion frequencies, with the adimensional times t
τ1

and t
τ2

respectively are considered. The evolutions are245

independent from the absolute time and the numerical value of the factor α. They are caracteristic of the

erosion frequency form.

The relative evolution of the first moment of the CLD considering the CBH attacks shown in Figure 3 is

of critical importance to determine the CBH elementary mechanism by fitting experimental data. A linear fit

of the mass versus time curve reveals a length independent frequency while an exponential fit is the footprint250

of a length dependent frequency.
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Figure 3: Evolution of the first normalised moment of the chain length distribution undergoing erosion process with a length-

dependent (continuous line) and a length-independent (dashed line) frequencies

4.2. EG activity

EG attacks randomly the cellulose chains and breaks up the glucosidic bonds leading to two daughter

smaller chains after each attack. The fragmentation process increases the total molar concentration of the

cellulose chains in the system as shown by the evolution of the zeroth order normalised moment in Figure 4.255

In this case, the breakage frequency is length-dependent ΓEG = αL and the factor α is set equal to 10−4.

The total number of chains increases while the total mass represented by the first order moment remains

constant (batch reactor). The number-averaged chain length given by the ratio of the first two moments

decreases from a DP of 600 to 375 at the end of the process.

Figure 5 gives the time-evolution of the CLD undergoing fragmentation process. The molar concentration260

of the longest chains decreases while small chains appear in the system. The initial CLD shifts toward

the smaller lengths with a consequent shape transformation (bimodal distributions appear). The CLDs

are reconstructed over the interval [0,+∞[. The action of EG on small chains with L ∈ [0, 2] is therefore
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Figure 4: The time evolution of the first four normalised moments of the chain lenght distribution undergoing EG attacks with

a frequency proportional to the polymer length

Figure 5: The time evolution of the CLD undergoing EG attacks with a frequency proportional to the polymer length

considered in the model in order to formulate a continuous daughter distribution function expression and

thus ensure low computational cost for the PBE resolution. This is conceptually erroneous but there is no265

consequence from a quantitative point of view as mentionned before (equation (11)). The probability to
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produce cellobiose when cutting a chain of length L is very small, the breakage frequency goes to zero when

L → 2. As a result, the amount of cellobiose produced by EG is several order of magnitude smaller than

that resulting from CBH activity. This supports the neglection of the term SEGLC
in equation (11).

The analytical results relative to the random breakage given in Appendix D are in concordance with the270

numerical ones. The total mass remains constant while the molar concentration of the polymers (zeroth

order moment) increases linearly with a slope equal to αm1(0). In this case the adimensional time is t
τ1

with

τ1 = m0(0)
αm1(0)

.

In the case where the breakage frequency is constant (ΓEG = α), the zeroth order moment increases

exponentially with a time-constant equal to τ2 = 1
α . Figure 6 shows the relative evolution of the normalised275

zeroth order moment of the CLD when pure breakage process is considered (EG activity) with length-

dependent/independent frequencies.

Figure 6: Evolution of the zeroth normalised moment of the chain length distribution undergoing pure breakage process with a

length-dependent (continuous line) and a length-independent (dashed line) frequencies

As mentioned previously in the case of CBH activity, the relative evolution of the zeroth order moment
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when considering EG activity (pure breakage process) shown in Figure 6 is time and parameter independent.

It depends only on the mathematical form of the breakage frequency and here again the fitting of experimental280

data (by either linear or exponential functions) can be used to identify the breakage law.

4.3. EG-CBH + β-glucosidase combined activity

The combination of the three different enzymatic activities results typically in a CLD evolution presented

in Figure 7. In this example, the breakage frequencies those used in the previous cases (Γ = αL).

Figure 7: The time evolution of the CLD undergoing EG and CBH attacks with a frequency proportional to the polymer length

for the two activities

The initial CLD in Figure 7 shifts toward small sizes and new small chains are continuously formed by285

the breakage of the longest ones because of the EG activity. This is reflected by the increase of the zeroth

order moment and the exponential decrease of the first order moment as predicted via the analytical solution.

Clearly the trends depends on the relative values of α1 and α2 i.e. the composition of the enzymatic cocktail.

In order to get access to the general behaviour of the first two moments of the CLD depending on the

form of the breakage/erosion frequencies, three different combination forms are tested. The first one is290

a length-dependent frequency (ΓEG = α1.L and ΓCBH = α2.L), the second one is a length-independent
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frequency (ΓEG = α1 and ΓCBH = α2) and the last one combines a length-dependent breakage frequency

and a length-independent erosion frequency (ΓEG = α1.L and ΓCBH = α2). The time constants for these

three cases are respectively τ1 = 1
α2L

, τ2 = 1
α1

and τ3 = 1√
α1α2LC

. The results are shown in Figure 8.

Figure 8: Relative evolution of the two first normalised moments when the two activities EG and CBH are combined with

different breakage/erosion frequency forms: ΓEG = α1.L and ΓCBH = α2.L by the continuous line, ΓEG = α1 and ΓCBH = α2

represented by the dashed line, ΓEG = α1.L and ΓCBH = α2 by the circles.

Figure 8 shows that the relative evolution of each moment depends on the form of the breakage/erosion295

frequencies. Thus, we have three generic trends for each moment. The combination of these informations

(relative to the total molar concentration of the substrate and its total mass in the system) allows the

determination of the breakage/erosion frequencies forms without any need of separation of the different

activities at the experimental scale, step which can be critical.

4.4. Influence of the frequency formulation on the prediction of simple sugars300

The synergistic action of the different activities increases the rate of degradation of the substrate. Addi-

tionally this can be quantified by comparing the time-evolution of the number-averaged chain length when

using the enzymes separately and in cocktail as shown in Figure 9 (the right subplot). This chosen criterion
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is the ratio of the first two moments (m1(t)
m0(t)

). The total amount of substrate converted into soluble sugars is

reflected by the diminution of the first moment (left subplot in Figure 9). The lower the curve the faster the305

conversion.

In the case presented in Figure 9 where ΓEG = α1.L and ΓCBH = α2, the number-averaged chain length

decreases from an initial degree of polymerization (DP) of 600 to 520 through the sole action of CBH. The

decrease reaches a DP of 375 when one considers the EG activity only. The combination of the two activities

affects substantially the number-averaged chain length. At the end of the time-process, the mean DP is only310

of 320. The repercussion of the combination of the two different activities on the production of simple sugars

is given in the first subplot (Figure 9). As shown, the conversion of the substrate is boosted when the two

enzymes are combined. This Endo-Exo synergistic effect is explained by the appearance of new chains in

the system due to the EG activity and, since all chains are equiprobably attacked by CBH, the conversion is

accelerated.315

Figure 9: Evolution of the first normalised moment (left subplot) and the number-averaged chain length (right subplot) for the

three different cases: EG (dashed line), CBH (continuous line) and EG-CBH (circles). The breakage/erosion frequencies are

ΓEG = α1.L and ΓCBH = α2.
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Figure 10: Evolution of the first normalised moment (left subplot) and the number-averaged chain length (right subplot) for

the three different cases: EG (dashed line), CBH (continuous line) and EG-CBH (circles). The breakage/erosion frequencies are

ΓEG = α1.L and ΓCBH = α2.L.

In the case presented in Figure 10 (ΓEG = α1.L and ΓEG = α2.L), the combined action of the two different

activities has no incidence on the substrate conversion curves (in terms of simple sugars). The fractions of

glucose and cellobiose produced by EG and CBH independently and in cocktail are compared and there is

no noticeable difference in the two cases. This is confirmed by the analytical solution given in Appendix D

in which the evolution of the first order moment of the CLD is similar when considering CBH activity only320

and both EG and CBH activities. This is not the case for the number-averaged chain length (right subplot

in Figure 10). So one would conclude that there is no synergistic effect.

These two numerical examples ([ΓEG = α1.L, ΓCBH = α2] and [ΓEG = α1.L, ΓCBH = α2.L]) reveal that

the erosion frequency can not be length dependent. In this case, no synergistic effect is possible observed in

terms of simple sugars production. This is in contradiction with experimental results that reveal an increase325

of the conversion rate (and hence sugar production) when the two types of enzymes are combined (Sun &

Cheng, 2002; Van Dyk & Pletschke, 2012). It appears that a size independent erosion process is necessary to
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observe synergism. From a physical point of view it is consistent to assume that the CBH activity does not

depend on the chain length since such enzymes operate at both ends of the chain irrespective of its length. We

considered synergism as a phenomenon leading to a faster conversion of the substrate. With this definition,330

a size dependent erosion process does not lead to a synergetic effect (left subplot figure 10). Yet there is

actually a consequence of the combined action of the two types of enzymes on the chain length. This could

also be regarded as a form of synergism (but the information is rarely accessed experimentally). Comparing

the right plots in figure 9 and 10 we can claim that there is always a synergetic effect (in terms of average

chain length) and that the contribution of CBH to the average chain length reduction is more pronounced in335

the case of a linear dependency.

4.5. EG-CBH + β-glucosidase inhibition effect

In a batch reactor, the disintegration of the polymer chains by the cooperative action of the different

cellulolytic activities leads to the accumulation of the end-products in the system. This causes the so-called

inhibition effect since the enzymes are sensitive to their own products, inactive enzyme-product complexes340

are formed. As a consequence, the enzymes activity slows down as reported in Figure 11 where no inhibition

and inhibition resultas are compared in terms of cellobiose and glucose fractions (last two subplots) and the

first two normalised moments ot the CLD (first two subplots).

The introduction of the inhibition effect in the population balance model leads to the slowdown of the

conversion rate of the substrate as shown in Figure 11. The total molar concentration (m0(t)) as well as the345

overall conversion rate (m1(t), cellobiose and glucose fractions) are affected. The parameters KEG, KCBH

and KP corresponding to the three main activities control the significance of the inhibition effect.

By introducing the inhibition effect, the formulation of the model is more complete. The model inhibition

parameters can be reached experimentally by fitting typical saccharification data in the specific case of

depolymerisation process for example. The model is built considering the elementary mechanisms of the350
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Figure 11: Comprison between the evolution of the two first normalised moments of the CLD and the cellobiose and glucose

fractions when considering EG-CBH combined action without inhibition effect (continuous line) and with the inhibition effect

(dashed line)

three main cellulase activities on soluble polymers.

5. Conclusion

In this first part, a dynamic population balance model has been developed in the case of cellulose polymers

degradation by the synergistic action of cellulases. The three main cellulolytic actions are taken into account

since they act differently with specific mechanisms. First, the general theoretical framework is developed in355

the case of enzymatic hydrolysis process. The random action of the endoglucanase activity (EG) is assimilated

to a pure breakage process when the cellobiohydrolase activity (CBH) is modelled as an erosion phenomenon

since it proceeds with a chain-end scission and produces cellobiose molecules.

Since the resolution of the population balance equation is computationaly intensive, the Direct Quadrature

Method of Moments (DQMOM) is adopted. This resolution method based on the time tracking of a finite360

number of moments of the chain length distribution (CLD) has been validated against an analytical solution

in the case of a specific breakage process. With a view to future comparison with transient experimental
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data, the Maximum Entropy based method is coupled to DQMOM for a simultaneous reconstruction of the

full CLDs during the PBE resolution. The β-glucosidase activity is modelled as a Michaelis-Menten type

kinetic and incorporated to the PBE model.365

The actions of EG and CBH activities are tested independently and in combination. Different break-

age/erosion frequency laws are used. The numerical results are consistent with the analytical predictions.

Global trends of the two first CLD moments (related to the molar concentration and to the mass of the sub-

strate) are shown in the different cases. This guides the experimental determination of the breakage/erosion

frequency laws. The EG/CBH synergistic action is discussed. This confirms the discriminatory character of370

the model since it proves numerically the fact that the erosion frequency can not be length dependent. The

incorporation of the inhibition effect is investigated in the last section since the accumulation of cellobiose

and glucose affects substantially the enzymes activity.

The use of DQMOM resolution method coupled with the ME-based recontruction technique reduces the

computational time drastically. It doesn’t exceed few seconds in all the considered cases offering by the fact375

the possibility to perform a global optimization loop for the determination of the model parameters based

on experimental data.
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Nomenclature

A Square matrix of the linear system in DQMOM approach

ai First time derivative of the weights of the quadrature nodes

bi First time derivative of the product of the weighted abscissas

CC Cellobiose molar concentration

CG Glucose molar concentration

ci Weighted abscissas

d Term source vector of the linear system in DQMOM approach

f(x) Target probability density function

fM (x) Reconstructed probability density function

H[f ] Shannon entropy

k Moments order

KCBH Inhibition constant of the CBH

KEG Inhibition constant of the EG

Km Parameter of the Michaelis-Menten type kinetic

KP Inhibition constant of the β-glucosidase

L Polymer chain length

LC Cellobiose length

Li Abscissas of the quadrature nodes

mk(t) kth order moment

n(L, t) Number based chain length distribution

N Number of quadrature nodes

N Maximum degree of polymerization

P (L) Polymer chain

SL(L, t) Source term of the PBE accounting for the breakage/erosion process

t Time

Vm Parameter of the Michaelis-Menten type kinetic

wi Weights of the quadrature nodes

x Generic variable

xmin, xmax Lower and upper bourdaries of the reconstruction interval

27



Greek Symbols

α Coefficient

β(L, λ) Daughter distribution function

βEG(L, λ), βCBH(L, λ) Daughter distribution function of EG an CBH respectively

Γ(L) Breakage frequency

ΓEG(L), ΓCBH(L) Breakage frequency of EG an CBH respectively

Γ Gamma function

δ(L− Li) Dirac delta function centered on Li

θ Second parameter of the Gamma distribution

κ First parameter of the Gamma distribution

λ Chain length longer than L

µ Mean of the normal law

ξj Lagrange’s multipliers

σ Standard deviation of the normal law

τ Time constant

Abreviations385

CBH Cellobiohydrolase

CLD Chain Length Distribution

DP Degree of Polymerization

DQMOM Direct Quadrature Method of Moments

EG Endoglucanase

ME Maximum Entropy

PBE Population Balance Equation

PD Product-Difference algorithm

PSD Particle Size Distribution

Appendix A: The Monovariate Direct Quadrature Method of Moments (DQMOM)

We give hereafter a succinct description of the Direct Quadrature Method of Moments (DQMOM) applied

for the population balance equation accounting for breakage processes, for more detail one can refer to the

original work by Marchisio & Fox (2005).390
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The homogeneous monovariate PBE for breakage processes can be written in a compact form as:

∂n(L, t)

∂t
= SL(L, t) (A.1)

where SL(L, t) is the source term due to the breakage, given in its explicit form in equation (1).

In the monovariate DQMOM approach, the continuous distribution function n(L, t) is expressed as a

discrete summation of Dirac delta functions (Marchisio & Fox, 2005):

n(L, t) =

N∑
i=1

wi(t)δ [L(t)− Li(t)] (A.2)

where N is the number of delta functions (nodes i), Li is the property of the node and wi its weight. By395

substituting n(L, t) by its discrete decomposition (equation A.2 in equation A.1), one obtains:

N∑
i=1

δ (L− Li)
∂wi
∂t
−

N∑
i=1

δ′ (L− Li)wi
∂Li
∂t

= SL(L, t) (A.3)

where δ′(L − Li) is the first derivative of the delta function δ(L − Li). By introducing the weighted

abscissa ci instead of the abscissa Li (equation A.4),

ci = wiLi (A.4)

and by setting :

∂wi
∂t

= ai
∂ci
∂t

= bi (A.5)

Marchisio & Fox (2005) reformulate the equation A.3 as :400

N∑
i=1

[δ (L− Li) + δ′(L− Li)Li] ai −
N∑
i=1

δ′ (L− Li) bi = SL(L, t) (A.6)
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The unknowns ai and bi are only time-dependent and are reachable by applying moment transformation.

Hulburt & Katz (1964) defined the kth integer moment of the distribution function n(L, t) as:

mk(t) =

∫ ∞
0

Lkn(L, t)dL =

N∑
i=1

wiL
k
i (A.7)

The moment transformation (multiplying by Lk and integrating over L) is applied to equation A.6. The

final equation is given as:

(1− k)

N∑
i=1

Lki ai + k

N∑
i=1

Lk−1i bi =

∫ ∞
0

LkSL(L, t)dL (A.8)

Considering the definition of SL given in equation (1), the right hand side term of equation (A.8) now405

writes:

∫
LkSL(L, t)dL =

∫ ∞
0

∫ ∞
0

Lkβ(L, λ)Γ(λ)n(λ, t)dLdλ−
∫ ∞
0

LkΓ(L)n(L, t)dL (A.9)

Thus, equation (A.8) becomes :

(1− k)

N∑
i=1

Lki ai + k

N∑
i=1

Lk−1i bi =

N∑
i=1

b
(k)

i Γiwi −
N∑
i=1

Lki Γiwi (A.10)

where

b
(k)

i =

∫ ∞
0

Lkβ(L,Li)dL (A.11)

The system in equation A.10 can be written in a matrix form as :

Ax = d (A.12)
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where A is a square matrix (2N, 2N), x is the unknowns vector (2N : a1, . . . , aN , b1, . . . , bN ) and d is the410

term source vector (2N). Thus, 2N moments (k = 0, . . . , 2N − 1) are needed to solve the system. Generally,

DQMOM requires at least a three nodes quadrature (N=3) for an accurate tracking of the time evolution of

the moments (Marchisio & Fox, 2005)). The initial abscissas Li(0) and weights wi(0) are obtained using the

Product-Difference algorithm (Gordon, 1968).

Appendix B: DQMOM validation in the case of breakage process415

The DQMOM implementation was validated considering a normal law as initial CLD in the case where

the PBE has analytical solution (Ziff & McGrady, 1985). In one hand, the time evolution of the CLD is

known (see the analytical solution of the PBE for pure breakage process given in Lebaz et al. (2016)), thus

the moments mk(t) of the distribution can be easily derived (equation 2). In the other hand, DQMOM gives

directly the time evolution of the CLD moments. The comparison between the two methods is given in the420

figure bellow:

Figure B.12: The four first moments time-evolution of a normal size distribution calculated by DQMOM (circles) and analytical

solution (continuous line). The parameters of the normal distribution are σ = 0.25 and µ = 3.
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In order to assess the error induced by DQMOM, we define the global error function as:

E(k) =
|mk −m∗k|

m∗k
(B.1)

where mk is the kth order moment estimated via DQMOM and m∗k the kth order moment calculated via

the analytical solution.

As we can see in figure B.12 , there is a good agreement between the moments calculated from the425

analytical solution and those estimated via DQMOM. The first order moment refers to the total chains

length and remains constant within the time since the polymers are broken up but their total mass correlated

with the total length is constant.

The figure B.13 represents the time evolution of the global error function E(k) for the four first moments

when using a quadrature with four nodes.430

Figure B.13: The time evolution of the global error function E(k) using a four nodes quadrature (eight first moments)
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Appendix C: Number density distribution reconstruction from the moments

The recovery of a distribution knowing only a finite number of its moments is known as the moment

problem in mathematical analysis and arises in many scientific applications (Gavriliadis & Athanassoulis,

2009). Different numerical methods have been developed for the reconstruction of distributions from the

moments reviewed by John et al. (2007). For its simplicity and accuracy, the Maximum Entropy (ME)435

approach (Tagliani, 1999) is used in this work. We give hereafter a synthetic description of this technique.

We note by f(x) the probability density function (PDF) and by fM (x) its approximation. The ME

method is based on the maximization of the Shannon entropy H[f ] given by:

H[f ] = −
∫ ∞
0

f(x)lnf(x)dx (C.1)

Under the moments constraints:

mk =

∫ ∞
0

xkf(x)dx k = 0, 1, . . . (C.2)

The explicit representation of the ME approximate is given by:440

fM (x) = exp

− 2N−1∑
j=0

ξjx
j

 (C.3)

To be supplemented by the 2N constraints:

mi =

∫ ∞
0

xifM (x)dx i = 0, 1, . . . , 2N − 1 (C.4)

The (2N) Lagrange’s multipliers ξ0, . . . , ξ2N−1 are obtained by solving the following set of 2N nonlinear
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equations:

∫ ∞
0

xiexp

− 2N−1∑
j=0

ξjx
j

 dx = mi i = 0, 1, . . . , 2N − 1 (C.5)

Numerically, iterative methods are used to solve equation (C.5) (Mead & Papanicolaou, 1984). In our

case, we use the standard Newton method starting from an initial choice of the Lagrange’s multipliers as445

ξ = (−ln(m0)/(xmax − xmin), 0, . . . , 0) with an accuracy of 10−6. The set of moments are normalised before

such as m0 = 1. For more details as well as for the validation, one can refer to Lebaz et al. (2016).

Appendix D: Analytical solution of the PBE in the case of breakage processes

The evolution of the CLD moments when considering breakage processes (EG+CBH) can be written in

a discret form as :450

∂mk(t)

∂t
=

[
N∑
i=1

b
(k)

i Γiwi −
N∑
i=1

Lki Γiwi

]
EG

+

[
N∑
i=1

b
(k)

i Γiwi −
N∑
i=1

Lki Γiwi

]
CBH

(D.1)

By substituting the breakage and erosion daughter distribution functions and frequencies in equation

(D.1) as reported in table 1, we obtain the general equation below :

∂mk(t)

∂t
= α1

(
2

k + 1
− 1

)
mk+p1 + α2

(∑
i

(Li − LC)kLp2i wi −mk+p2

)
(D.2)

with (α1, p1) the parameters of the breakage frequency of EG and (α2, p2) the parameters of the erosion

frequency of CBH.

We explicit hereafter the expected evolution of the two first moments considering length-dependent (p1 =455

p2 = 1) and length-independent (p1 = p2 = 0) frequencies.

• Case 1 : p1 = p2 = 1
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- Random breakge :

In this case, equation (D.2) is reduced to :

∂mk(t)

∂t
=

(
2

k + 1
− 1

)
α1mk+1 (D.3)

The evolution of the two first moments is given by :460


∂m0(t)
∂t = α1m1(t)

∂m1(t)
∂t = 0

(D.4)

The integration of the two differential equations in (D.4) leads to :

 m0(t) = α1.m1(0).t+m0(0)

m1(t) = m1(0)
(D.5)

- Erosion process :

Equation (D.2) is written as :

∂mk(t)

∂t
= α2

(∑
i

(Li − LC)kLiwi −mk+1

)
(D.6)

The evolution of the two first moments is :


∂m0(t)
∂t = 0

∂m1(t)
∂t = −α2LCm1(t)

(D.7)

This leads to the two first explicit moments :465

 m0(t) = m0(0)

m1(t) = m1(0).e−α2LCt
(D.8)

- Random breakage + Erosion processes :
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The combination of the two processes is traduced by the equation below :

∂mk(t)

∂t
= α1

(
2

k + 1
− 1

)
mk+1 + α2

(∑
i

(Li − LC)kLiwi −mk+1

)
(D.9)

The evolution of the two first moments is :


∂m0(t)
∂t = α1m1(t)

∂m1(t)
∂t = −α2LCm1(t)

(D.10)

The two first moments in this case are :

 m0(t) =
α1m1(0)

α2LC

(
1− e−α2LCt

)
+m0(0)

m1(t) = m1(0).e−α2LCt

(D.11)

• Case 2 : p1 = p2 = 0470

- Random breakge :

In this case, equation (D.2) is reduced to :

∂mk(t)

∂t
=

(
2

k + 1
− 1

)
α1mk (D.12)

The evolution of the two first moments is given by :


∂m0(t)
∂t = α1m0(t)

∂m1(t)
∂t = 0

(D.13)

The integration of the two differential equations in (D.13) leads to :

 m0(t) = m0(0).eα1t

m1(t) = m1(0)
(D.14)

- Erosion process :475
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Equation (D.2) is written as :

∂mk(t)

∂t
= α2

(∑
i

(Li − LC)kwi −mk

)
(D.15)

The evolution of the two first moments is :


∂m0(t)
∂t = 0

∂m1(t)
∂t = −α2LCm0(t)

(D.16)

This leads to the two first explicit moments :

 m0(t) = m0(0)

m1(t) = −α2LCm0(0)t+m1(0)
(D.17)

- Random breakage + Erosion processes :

The combination of the two processes is traduced by the equation below :480

∂mk(t)

∂t
= α1

(
2

k + 1
− 1

)
mk + α2

(∑
i

(Li − LC)kwi −mk

)
(D.18)

The evolution of the two first moments is :


∂m0(t)
∂t = α1m0(t)

∂m1(t)
∂t = −α2LCm0(t)

(D.19)

The two first moments in this case are :


m0(t) = m0(0).eα1t

m1(t) =
α2LCm0(0)

α1

(
1− eα1t

)
+m1(0)

(D.20)

• Case 3 : p1 = 1 and p2 = 0
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We explore the combination of a random breakage with a length-dependent frequency and an erosion

process with length-independent frequency. Equation (D.2) is written as :485

∂mk(t)

∂t
= α1

(
2

k + 1
− 1

)
mk+1 + α2

(∑
i

(Li − LC)kwi −mk

)
(D.21)

The evolution of the two first moments is :


∂m0(t)
∂t = α1m1(t)

∂m1(t)
∂t = −α2LCm0(t)

(D.22)

The analytical resolution of the set of equations in (D.22) is given below :

 m0(t) = m0(0) cos
(√
α1α2LC .t

)
+
√

α1

α2LC
.m1(0) sin

(√
α1α2LC .t

)
m1(t) = m1(0) cos

(√
α1α2LC .t

)
−
√

α2LC

α1
.m0(0) sin

(√
α1α2LC .t

) (D.23)

Appendix E: Supplementary data

Figures E.14, E.15 and E.16 summarize the numerical results compared to those predicted analytically

for the first, second and third cases respectively.490
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Figure E.14: Comparison between the analytical solution (continuous line) and the numerical results (circles) for the three

different cases with ΓEG = α1L and ΓCBH = α2L.

Figure E.15: Comparison between the analytical solution (continuous line) and the numerical results (circles) in the case of

EG+CBH with ΓEG = α1 and ΓCBH = α2.
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Figure E.16: Comparison between the analytical solution (continuous line) and the numerical results (circles) in the case of

EG+CBH with ΓEG = α1L and ΓCBH = α2.
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