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Abstract

The resolution of the Population Balance Equation (PBE) using moment-based methods offers a high com-

putational efficiency however, information on the time evolution of the probability density function (PDF) is

out of reach. For this, several PDF reconstruction methods using a finite number of moments are proposed

in the literature. In this contribution, three different methods (i.e. Beta Kernel Density Function based

method, Spline based technique and the Maximum Entropy based approach) are tested and compared to the

analytical solution of a depolymerization process. The Maximum Entropy method gives the most accurate

approximations using only a set of six moments. This method is combined with the Quadrature Method of

Moments (QMOM) for a simultaneous reconstruction during the PBE resolution. A three nodes and a four

nodes quadrature are tested. The results show that the quality of the reconstruction is highly dependent on

the accuracy of the computed moments.
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1. Introduction

The recovery of a probability density function (PDF) knowing only a finite number of its moments is

known as the finite-moment problem in mathematical analysis and arises in different scientific applications

(e.g. physics, chemical engineering, economics) (Gavriliadis & Athanassoulis, 2012; John et al., 2007). This

problem is generally declined in three different problem categories for the mono-variate case (Abramov, 2007):5

• The Hausdorff moment problem: the PDF is supported on the closed interval [a, b]

• The Stieltjes moment problem: the PDF is supported on [0,+∞)

• The Hamburger moment problem: the PDF is supported on the real line (−∞,+∞)

In chemical engineering, especially for particulate/dispersed systems (e.g. crystallization, polymeriza-

tion/depolymerization, liquid-liquid extraction, multiphase systems), population balance models (PBM) are10
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widely used for the description of the time evolution of the variable-based distribution (e.g. size, vol-

ume) undergoing elementary processes. Among these processes, one commonly finds breakage, aggrega-

tion/coalescence, nucleation, growth/dissolution . . . etc (Ramkrishna & Mahoney, 2002). The resolution of

the population balance equation (PBE) is computationally intensive when using classical approaches (e.g.

Monte Carlo methods (Lin et al., 2002), discretization methods (Kumar & Ramkrishna, 1996)). This draw-15

back is limiting when population balance modelling is coupled with Computational Fluid Dynamics (CFD)

which is the case for multiphase systems. In order to overcome this issue, moment based methods (MOM:

Standard Method of Moments (Hulburt & Katz, 1964), QMOM: Quadrature Method of Moments (McGraw,

1997; Marchisio et al., 2003a), DQMOM: Direct Quadrature Method of Moments (Marchisio & Fox, 2005))

have been developed. The problem is reduced to the time-tracking of a finite number of the PDF moments20

offering by the fact a high computational efficiency. In QMOM the transported moments are calculated by

reducing the PDF to an n-point distribution (sum of n weighted Dirac delta functions), the corresponding

weights and abscissas are computed using specific algorithms (John & Thein, 2012). In DQMOM, the weights

and the abscissas of the initial n-point distribution are directly tracked instead of the moments.

Even though the moment-based methods are computationally efficient, information regarding either the25

shape or pointwise values of the PDF are identically out of reach. However, this level of knowledge is important

for different applications as in the case of evaporation process where one needs to accurately evaluate the

PDF at zero size (Massot et al., 2010) or in the enzymatic hydrolysis of particulate substrates where the loss

of small solubilized particles produced by the enzymatic attacks has to be taken into account (Lebaz et al.,

2015). To address this issue, different numerical techniques have been proposed for the reconstruction of the30

PDF from its moments reviewed by John et al. (2007), mainly for the Hausdorff moment problem since in

chemical engineering applications, the support of the PDF is known in most cases.

From a mathematical point of view, the moment problem has been extensively studied focusing on the

conditions of existence of a unique or infinite solution(s) (Shohat & Tamarkin, 1943; Akhiezer, 1965; Dette,

1997). Theoretically, a perfect reconstruction can be obtained using an infinity of PDF moments with an a35

priori restriction of the class of basis functions (John et al., 2007). Numerically, this problem is known as

a difficult inverse problem since the finite number of moments define a high ill-posed system of equations

(Athanassoulis & Gavriliadis, 2002). Thus, there is no absolute method for reconstructing accurately the

PDF from a finite number of its moments. From an experimental point of view the number of moments that

can be obtained with a reasonable accuracy is limited.40

The most intuitive reconstruction technique is to approximate the target PDF by a sum of elementary

distributions (e.g. Gaussian, log-normal) (Lee, 1983; Diemer & Olson, 2002) when an information on the shape

of the PDF is available a priori. Thus, the problem is reduced to a simple parameter fitting. This technique

offers some advantages like the reduced number of moments required for the reconstruction, its simplicity

and fastness but the shape of the target PDF has to be stipulated. This constitutes its principal limitation45

when the initial shape of the PDF changes dramatically during the course of the process. Inspired by this
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approach, Athanassoulis & Gavriliadis (2002) proposed a robust technique based on the PDF approximation

by a finite superposition of kernel density functions (KDF) for the Hausdorff moment problem, tested and

validated successfully against both monomodal and bimodal PDFs. This approach has been extended for the

Stieltjes moment problem using a generalized Gamma function as the kernel density function (Gavriliadis &50

Athanassoulis, 2012, 2009) but unfortunately it was not confronted to realistic cases.

John et al. (2007) proposed an innovative technique using a piecewise polynomial function without any a

priori assumption about the shape of the target PDF. Linear, quadratic or cubic splines can be used, their

coefficients are computed by solving an ill-conditioned linear system of equations. De Souza et al. (2010)

improved the spline-based method by developing an adaptive algorithm in order to optimize the distribution55

of the grid nodes and capture more accurately the PDF in critical domains. This technique has been coupled

recently with a PBE describing aggregation of urea particles (Hackbusch et al., 2012), droplet coalescence

(Bordás et al., 2012) and pharmaceutical drying process (granules) (Mortier et al., 2014).

The third class of methods that will be considered in this paper is the Maximum entropy (ME) method

which received increasing interest in the last two decades(Mead & Papanicolaou, 1984; Tagliani, 1999, 2001;60

Biswas & Bhattacharya, 2010). This technique is based on the maximization of the Shannon entropy from

information theory, by solving a constraint optimization problem. Abramov (2006) extended it to multi-

dimensional problems. Massot et al. (2010) coupled this technique with DQMOM in the case of droplet

evaporation process.

In this paper we propose firstly an assessment of these methods in terms of accuracy, rapidity and minimum65

number of moments required for the reconstruction. The issue concerns the identification of the most efficient

method to perform the reconstruction throughout the process (not only for a particular distribution). The

performances of the three methods will be evaluated through a comparison of the reconstructed PDFs with

an analytical solution of the PBE accounting for a breakage process. Finally, the implementation of the

relevant method in the QMOM code for a simultaneous resolution of the PBE and reconstruction of the PDF70

is investigated. The outlines of this contribution are schematically summerized in figure 1.

2. Reconstruction methods

The purpose of the reconstrution techniques is to recover a function f(x), given its integer moments

sequence µn defined as:

µn =

∫
xnf(x)dx, n = 0, 1, . . . (1)

We give hereafter a succinct description of the reconstruction techniques used in this contribution. For75

more detail, one can refer to the original works cited and/or to Appendix A. As common point, the bounded

support [a,b] is rescaled to [0,1] for a general formulation.
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Figure 1: Schematic representation of the organigram of the contribution

2.1. Kernel Density Function-based method

In the KDF based technique, the target PDF is approximated by a sum of weighted kernel density

functions (equation 2) (Athanassoulis & Gavriliadis, 2002):80

f(x) =

I∑
i=1

piK(x;xi, h) (2)

where K(x;xi, h) are the KDFs, centered at xi, with bandwidth h, I is the total number of kernel density

functions used for the reconstruction. The coefficients pi satisfy:

pi ≥ 0, i = 1, 2, . . . , I;

I∑
i=1

pi = 1 (3)

Since the target PDF is univariate, the KDF is chosen as a Beta Kernel. Thus, the objective is the deter-

mination of the optimal coefficients pi. For this, the finite-moment problem is reformulated as a constrained

optimization problem aiming to find the coefficients pi which minimize the error between the set of initial85

moments and those estimated via the sum of Beta KDFs. Numerically, Nonnegative Least Square algorithm

(NNLS) can be used in this case. Optimization techniques are to be supplemented in order to improve the

efficiency of this procedure. The properties of the Beta Kernel Function, the formulation of the constrained

optimization problem, the optimization technique based on the shifted moments and the general algorithm
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of this method are described in Appendix A.1.90

2.2. Spline-based method

This method is extensively described by John et al. (2007). The support of the target PDF [a, b] is

subdivided into n subintervals such as a = x1 < x2 < · · · < xn+1 = b. In each subinterval [xi, xi+1], the

target PDF is approximated by a piecewise polynomial s(l)(x) of degree l. The system of equations is detailed

for cubic splines (l = 3). The unknowns are the four coefficients of the n splines. A smooth transition at the95

boundaries of the interval is assumed meaning that the PDF, its first and second derivatives are null at the

boundaries, this gives 2× 3 equations. The continuity of the splines, their first and second derivatives at the

nodes provides 3(n− 1) equations. The remaining (n− 3) equations are supplemented by the moments. This

leads to solve a 4n× 4n ill-conditioned linear system.

Since the set of the known moments limits the number of splines, one has to compute the reconstruction100

in the optimal support of f(x) thus, the reconstruction is computed iteratively starting from an initial

reconstruction f (0)(x) in an initial interval [x
(0)
1 , x

(0)
n+1]. To ensure the positivity of the reconstructed PDF a

tolerance tolneg is introduced. Furthermore, the optimization of the distribution of the nodes improves the

efficiency of the method especially for multimodal functions. More details on these techniques are given in

Appendix A.2105

2.3. Maximum Entropy method

The Maximum Entropy method is based on the maximization of the Shannon entropy H[f ] from infor-

mation theory given by:

H[f ] = −
∫ ∞
0

f(x)lnf(x)dx (4)

Under the moments constraints defined by equation 1.

The explicit representation of the ME approximation fM (x) of the target PDF takes the form:110

fM (x) = exp

− N∑
j=0

ξjx
j

 (5)

To be supplemented by the (N + 1) constraints:

µi =

∫ ∞
0

xifM (x)dx i = 0, 1, . . . , N (6)

The (N + 1) Lagrange’s multipliers ξ0, . . . , ξN are obtained through the resolution of the following set of

(N + 1) nonlinear equations:

∫ ∞
0

xiexp

− N∑
j=0

ξjx
j

 dx = µi i = n, 1, . . . , N (7)
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Numerically, iterative methods are used to solve equation 7 (Mead & Papanicolaou, 1984). In our case,

we use the standard Newton method starting from an initial choice of the Lagrange’s multipliers ξ(0) with115

a given tolerance for stopping the iterative procedure. Commonly used parameters are given in the results

section.

3. Population balance modelling (PBM)

The mathematical modelling of polymer chain fragmentation processes (thermal, thermochemical and bio-

logical) is a fundamental issue in polymer science and engineering (McCoy & Madras, 2001; Bose & Git, 2004).120

Population balance modelling (PBM) is the classical approach since it describes the dynamical evolution of

the Chain Length Distributions (CLD) (or MWD: Molecular Weight Distributions) during depolymerization

reactions (Ziff & McGrady, 1985; Madras & McCoy, 1998).

For a homogeneous system, the time evolution of the CLD undergoing fragmentation processes is described

by the population balance equation (PBE) below, written in its continuous form:125

∂n(L, t)

∂t
=

∫ ∞
L

β(L,L′)γ(L′)n(L′, t)dL′ − γ(L)n(L, t) (8)

where n(L, t) is the length-based number density function (CLD), γ(L) the breakage frequency for a chain

of length L, β(L,L′) is the breakage kernel giving the probability of obtaining a chain of length L from the

breakup of a chain of length L′. The first term on the RHS accounts for the formation (birth) of chains with

length L resulting from the breakage of longer chains L′. The last term is the death term due to the loss of

chains of length L because of their breakup.130

Except for some cases where analytical solutions exist, equation 8 is solved numerically. Since the resolu-

tion of this equation is not the objective of this contribution, an analytical solution is briefly described and

used as reference for the moment problem.

3.1. Analytical solution of the PBE accounting for breakage process

Ziff & McGrady (1985) considered linear polymers of length L and gave the analytical solution of the135

equation 8 with the breakage kernel β = 2/L and the breakage frequency γ = αL2 (α is a factor of pro-

portionality) which can be regarded as the number of attacks per time unit. Under these considerations,

equation 8 can be rewritten as:

∂n(L, t)

∂t
= 2α

∫ ∞
L

L′n(L′, t)dL′ − αL2n(L, t) (9)

The general solution of the equation 9 is given as (Ziff & McGrady, 1985):

n(L, t) = e−αtL
2

(
n(L, 0) + 2αt

∫ ∞
L

L′n(L′, 0)dL′
)

(10)
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where n(L, 0) is the initial CLD.140

In order to explicit this solution, we assume that the initial chain length distribution (CLD) follows a normal

law (equation 11) with (m,σ) its mean and standard deviation respectively.

n(L, 0)) =
1

σ
√

2π
e−

(L−m)2

2σ2 (11)

The explicit solution in this specific case is given as (details are given in Appendix B) :

n(L, t) =
1

σ
√

2π
e−αtL

2

[
(2αtσ2 + 1)e−

1
2 (L−mσ )

2

+mσαt
√

2π

(
1− erf

(
1√
2

L−m
σ

))]
(12)

where erf refers to the error function.

Thus, starting with a CLD following a normal law with specific fragmentation process, one can obtain the145

exact CLD and compute its moments at any given time during the degradation reaction.

3.2. The Monovariate Quadrature Method of Moment (QMOM)

The PBE’s resolution using Moment Methods is based on the time tracking of a finite set of the CLD

moments instead of the CLD itself. This class of methods is widely used for its low computational cost thus,

it can be implemented in CFD codes or extended to multidimensional problems. A succinct description of150

the well-known Quadrature Method of Moments (QMOM) proposed by McGraw (1997) and validated by

Marchisio et al. (2003b) is given in the specific case of breakage processes.

By a moment transformation of equation 8, the transport equation for the kth moment is:

∂µk(L, t)

∂t
=

∫ ∞
0

Lk
∫ ∞
0

γ(L′)β(L,L′)n(L′, t)dL′dL−
∫ ∞
0

Lkγ(L)n(L, t)dL (13)

The Quadrature Method of Moments (QMOM) is based on the Gaussian quadrature of the continuous

CLD (McGraw, 1997):155

n(L, t) ≈
M∑
i=1

wi(t)δ(L− Li(t)) (14)

where M is the number of nodes i, Li is the property of the node (length), wi its weight, and δ is the

Dirac function. Thus, the kth moment can be expressed as :

µk(t) =

∫ ∞
0

n(L)LkdL ≈
M∑
i=1

wi(t)Li(t) (15)

where weights (wi) and abscissas (Li) are determined through the Product-Difference algorithm (Gordon,

1968). By substituting equations 14 and 15 in 13, we obtain (Marchisio et al., 2003b) :

∂µk
∂t

=

M∑
i=1

γib
(k)

i wi −
M∑
i=1

Liγiwi (16)
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with160

b
(k)

i =

∫ ∞
0

Lkβ(L,Li)dL (17)

Generaly, the QMOM requires at least a three nodes quadrature (M = 3) for an accurate time-tracking

of the moments (Marchisio et al., 2003b).

MATLAB is used under a work-station comprising of an Intel R© CoreTMi7-3740QM CPU with a clock

speed of 2.7 GHz and 16 GB of installed memory (RAM).

4. Results and discussion165

The reasons for searching efficient reconstruction techniques when one deal with solving PBM are multi-

ple. First of all, Methods of Moments are rather powerful in terms of numerical performance but since these

are integral methods the connection with the physical distribution (Chain Length Distribution or Molecular

Weight Distribution) is lost. Moreover, high order moments of an experimental distribution are often hard

to evaluate and the direct comparison of numerical and experimental moments remains difficult to analyze.170

In some cases, the distribution itself is necessary to evaluate some terms in the equations. To finish with, ex-

perimental and numerical distributions are not always known over the same range: the range of experimental

methods is limited by lower and upper detection bounds. For all these reasons, an accurate reconstruction

of a PDF from its moments is an essential tool for those involved in the analysis of experimental results with

the help of mathematical models such as PBM solved with a method of moments.175

4.1. Reconstruction of the analytical solution

As described before, the three reconstruction methods will be compared to the analytical solution given in

section 3-1. We assume that the initial CLD is given by a normal law centered at a Degree of Polymerization

(DP) of 60 (the mean number of monomers constituting a given polymer) with a standard deviation (σ) of

7. Equation 12 gives the time evolution of the CLD for (β = 2/L and γ = αL2). This solution is illustrated180

in figure 2 with α = 10−3 and t ∈ [ti, tf ] = [0, 1].

Figure 2 shows a rapid degradation of the long polymers since the breakage frequency is proportional to

L2, the concentration of the small polymer chains increases all along the depolymerization process.

For sake of clarity, the ability of the different methods to reconstruct the time evolution of the CLD is

described separately and illustrated for five different instants: t0 = ti, t1 = 1
4 tf , t2 = 1

2 tf , t3 = 3
4 tf and185

t4 = tf before addressing a comparative analysis. At any given instant, the reconstruction is initiated by

computing the set of the moments of the analytical CLD given in equation (12). The integrations leading to

the associated moments, equation (1), are performed using the Matlab function quad with a tolerance set to

10−6. Since the number of the moments required for the reconstruction is critical, the methods are tested

with the same set of moments transformed systematically to the normalized interval [0,1] before rescaling the190

reconstruction result (figure 1).
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Figure 2: Time evolution of the CLD given by the analytical solution of Ziff & McGrady (1985)

In order to compare the different reconstruction methods, we introduce the mean absolute error between

the reconstructed CLD (fM (x)) and the analytical solution used as a reference (f(x)):

Er(t) =
1

q

q∑
i=1

|f(x, t)− fM (x, t)| (18)

where q is the length of the discretized support.

4.1.1. Kernel Density Function-based method195

The algorithm of this method was implemented in Matlab using the set of moments of each target CLD

with their associated shifted moments by setting x̄ = 0.8 in order to increase the number of the constraints

and thus improve the efficiency of this technique. The number of Beta Kernel Density Functions (BKDFs) I

is set to 15 thus, the support [0,1] is divided into 15 equal intervals, each BKDF is centered on the midpoint of

its corresponding interval. Athanassoulis & Gavriliadis (2002) showed that the optimal bandwidth parameter200

h varies in the interval [0.04,0.09]. In order to identify the optimal values for h, the interval is scanned and

the reconstruction is conducted at different parameter values before selecting the most accurate. Once the

BKDFs parameters are fixed, the associated Beta PDF parameters are calculated and the coefficients Bn,i

and B̃n,i (equations A.3 and A.8) are computed. The constraint minimization problem (equation A.10) is

solved using LSQLIN subroutine.205

Figure 3 shows the results for the five different instants using the first six moments of each target CLD.

Although the initial CLD is reconstructed with great accuracy most probably because of its simple form,

the other CLDs are not recovered. Their singular shape mainly around the origin makes their reconstruction

challenging. The reconstructions are oscillating around the target CLDs and take the value zero at the origin.
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Figure 3: Comparison between the target CLDs (continuous line) and their reconstructions (dashed line) using the BKDF based

technique with a sequence of six analytical moments

To be more accurate, this technique requires a large number of constraints which means a higher number210

of moments. In figure 4, the same problem is treated using the first eleven moments of each target CLD.

Figure 4: Comparison between the target CLDs (continuous line) and their reconstructions (dashed line) using the BKDF based

technique with a sequence of eleven analytical moments

The figure 4 shows that the use of a high number of moments can improve the reconstruction quality
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as illustrated in Table 1 where the mean absolute errors (equation 18) are calculated in both cases. But,

since the technique is treating a highly ill-posed problem, the solution of the constraint system of equations

may diverge. This is for example the case when the reconstruction of the initial CLD using eleven moments215

is attempted (figure 4). To sum up, this method requires a finetuning of the numerical parameters and

an increase in the number of moments does not always guaranties an easier reconstruction. However if the

reconstruction is successful, the accuracy increases with the number of moments.

Time
Mean absolute error

BKDF: 6 moments BKDF: 11 moments

t0 0.0002 /

t1 0.0061 0.0014

t2 0.0026 0.0033

t3 0.0028 0.0024

t4 0.0068 0.0023

Table 1: Reconstruction accuracy using the BKDF based technique with 6 and 11 moments

4.1.2. Spline-based method

The adaptive algorithm with cubic splines proposed by De Souza et al. (2010) is implemented and used in220

this contribution. The Matlab script for the original algorithm was freely downloaded from (http://www.uni-

magdeburg.de/isut/LSS). The default tolerances proposed by the authors (tolred and tolsing) are kept un-

changed. This procedure is adopted deliberately because when the reconstruction is conducted simultaneously

with the PBE resolution, one has to set the parameters of the algorithm a priori. The authors recommended

to set tolneg at a very small negative value instead of 0. In our case, tolneg = −10−1 is used initially. The225

results of the reconstruction using the spline based method with six moments are shown in figure 5.

Only the initial CLD has been recovered using the parameters described before. For the other instants,

the algorithm has been stopped after 103 iterations. The modification of the negative tolerance to tolneg =

−5.10−3 leads to the convergence of the algorithm for t1 but the reconstruction is highly oscillating. As

mentioned by Mortier et al. (2014), the algorithm is highly sensitive to the negative tolerance leading to230

different reconstructions for the same target PDF as illustrated in figure 6. This is a main drawback since

tolneg may affect the algorithm and even its rate of convergence. In fact, for the example given in figure 6,

the convergence is reached after 27 iterations for the case where tolneg = −10−1 when the algorithm needs

42 iterations for the second case (tolneg = −10−2).

Furthermore, a smooth transition at the boundaries of the recontruction interval was assumed. This is235

the case only for the initial distribution thus, one has to change the boundary conditions during the process.

This is not reachable without an a priori information on the shape of the target PDF.
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Figure 5: Comparison between the target CLDs (continuous line) and their reconstructions (dashed line) using the spline based

technique with a sequence of six analytical moments

Figure 6: The sensitivity of the spline based method to tolneg

4.1.3. Maximum Entropy based method

The non-linear system in equation 7 is solved using Newton method starting from an initial choice of the

Lagrange’s multipliers as ξ(0) = (−ln(µ0)/(xmax − xmin), 0, . . . , 0) with a tolerance of 10−6 (Massot et al.,240

2010). The moments are scaled to [0,1] and normalized before such as µ0 = 1. The results are given in figure

12



7.

Figure 7: Comparison between the target CLDs (continuous line) and their reconstructions (dashed line) using the ME based

technique with a sequence of six analytical moments

Unlike the two previous methods, the Maximum Entropy technique reconstructs the analytical CLDs

with high accuracy even when they are singular using only the first six moments. The Newton method used

in this case converges in a few iterations (< 10) making the coupling of the PBE resolution with the PDF245

reconstruction possible. In addition, except for the tolerance of the Newton method, there is no additional

parameter to set which simplifies its use.

Time
BKDF based method Spline based method ME based method

Error Cost (s) Error Cost (s) Error Cost (s)

t0 0.0002 6.48 0.0011 6.48 0.0000 0.27

t1 0.0061 6.47 0.0105 5.86 0.0008 0.26

t2 0.0026 6.39 / / 0.0005 0.23

t3 0.0028 6.31 / / 0.0004 0.20

t4 0.0068 6.30 / / 0.0004 0.20

Table 2: Comparison of the three different reconstruction methods (using the first six analytical moments) in terms of mean

absolute error and computational cost

Table 2 gives the comparison between the three methods according to the quality of the reconstructed

CLDs (mean absolute error) and the computational cost using the first six moments. The ME method gives
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the best results for this case of study not only for the reconstruction efficiency but also for the number250

of moments required and the computational cost among other criterions as resumed in Table 3. For these

reasons, this method is selected to be implemented in the QMOM code for coupling the PBE resolution in

the case of depolymerization process with the CLD reconstruction.

Criterion Beta KDF method Spline-based method ME based method

Principle Approximation via a sum

of kernel density functions

Approximation via con-

nected peicewise polyno-

mials

Approximation based on

the maximization of Shan-

non entropy

Target PSD No a priori information

on its shape

No a priori information

on its shape

No a priori information

on its shape

Number of mo-

ments

> 10 to be accurate Related to the number of

intervals

Six or more

Computational cost Acceptable Acceptable when it con-

verges

Very low

Robustness The convergence is not

guaranteed in all cases

The convergence is highly

dependent on the parame-

ters of the method

The convergence is guar-

anteed in most cases

Accuracy of the re-

construction

Depends on the number of

moments, acceptable for

simple shapes and oscil-

lates for complex shapes

Highly oscillating results

even for simple shapes, de-

pends on the parameters

of the method

Good occuracy even with

just six moments, not af-

fected by the parameters

initialisation

Table 3: General comparison between the three different reconstruction methods

4.2. QMOM coupled with ME based method

The main objective of the development of reconstruction methods from a finite set of moments, especially255

in the chemical engineering field, is to have access to the shape of the PSD and/or some relevant pointwise

values during the process evolution. This kind of information is necessary when some aspects of the problem

cannot be expressed from the moments only. This offers a valuable addition when the PBE is solved using

moment methods coupling by the fact the computational efficiency of such methods with a simultaneous

information on the PDF shape.260

In this section, the ME based method tested successfully against an analytical solution giving the time

evolution of the CLD undergoing breakage process is implemented in the QMOM code resolving the same

breakage problem. Thus, on the one hand, the analytical CLDs are available for comparison, on the other
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hand, the PBE accounting for the same breakage process is solved using QMOM giving the time evolution

of the moments which are used for the reconstruction (see figure 1) .265

For this numerical approach, a three nodes quadrature is used (M=3), the abscissas (Li) and the weights

(wi) are computed using the Product-Difference algorithm (Gordon, 1968). The system of ordinary differ-

ential equations (equation 16) is integrated using ode45 with a tolerance fixed to 10−6. First, the QMOM

implementation is validated by confronting the computed moments against those predicted by the analytical

solution.270

Figure 8: The time evolution of the six first moments: comparison between the analytical solution (continuous line) and QMOM

with three nodes (dashed lines)

The results for the six first moments are given in figure 8. The two different methods lead to the same

time evolution of the moments thus, the QMOM implementation is validated.

Since a three nodes quadrature is used, six moments are tracked. This set of moments is used as input

for the ME based method. The reconstruction is conducted simultaneously with the PBE resolution. The

result at different process time is shown in figure 9.275

The reconstructions based on the numerical moments computed via QMOM (figure 9) are less accurate

than those obtained previously with the exact analytical moments (figure 7). Note that the same number

of moments is used in the two cases. This can only comes from the numerical error introduced by QMOM.

In order to improve the accuracy of the method, one can increase the number of the quadrature nodes. For

quantifying the gain in terms of accuracy, we introduce the global error function below:280

E(k) =
|µk − µ∗k|

µ∗k
(19)
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Figure 9: Comparison between the target CLDs (continuous line) and their reconstructions (dashed line) using the ME based

technique with a sequence of six moments computed via QMOM with a three nodes quadrature

where µk is the kth order moment estimated via QMOM and µ∗k the exact kth order moment calculated

via the analytical solution.

We give in figure 10 the error E(k) induced by QMOM for both a three and four nodes quadrature for

the six first moments. Note that the use of a four nodes quadrature implies a time tracking of the first eight

moments of the CLD.285

The use of a four nodes quadrature in QMOM improves the accuracy of the computed moments, which

consitutes a trivial and expected result. Note however that the use of a higher number of nodes induces

supplementary moments meaning more equations in the system (equation 16) and may lead to near-singular

matrix limiting the efficiency of PD algorithm.

Now, if the first six moments computed using a four nodes quadrature are used for the reconstruction,290

the result is completely different as shown in figure 11 and in Table 4.

Improving the accuracy of the tracked moments has considerably improved the reconstruction quality

without reaching the same performance as with the analytical solution (figure 7). This shows that, if the

ME based method is coupled with QMOM, one has to compute the moments with a high accuracy. For the

reconstruction purpose, it is wise to track some additional moments in order to improve the accuracy of the295

set of moments that will be used.

To avoid the use of the PD algorithm for computing the weights (wi) and the abscissas (Li) all along the

process which may introduce a subsequent error for the computed moments, the Direct Quadrature Method

of Moments (DQMOM) presents an alternative (Marchisio & Fox, 2005). In this method, the PD algorithm

is only called once, for initializing the quadrature nodes.300
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Figure 10: Comparison of the error induced by QMOM for the six first moments when using a three nodes quadrature (blue

line) and a four nodes quadrature (red line)

Figure 11: Comparison between the target CLDs (continuous line) and their reconstructions (dashed line) using the ME based

technique with a sequence of six moments computed via QMOM with a four nodes quadrature

This method has been investigated and comparative results as with QMOM are obtained. The error on

computing the initial (Li, wi) is transported throughout the process time. In addition, it has been shown

that more accurate and robuste algorithms can be used instead of the PD algorithm for computing the nodes

(John & Thein, 2012). The use of the Wheeler algorithm (called also LQMDA for Long Quotient-Modified
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Time
Mean absolute error

QMOM-ME: M=3 QMOM-ME: M=4

t0 0.0000 0.0000

t1 0.0027 0.0010

t2 0.0037 0.0007

t3 0.0054 0.0019

t4 0.0080 0.0031

Table 4: Reconstruction accuracy using the ME based technique with six moments: comparison between the use of the moments

computed with a three nodes quadrature and those obtained with a four nodes quadrature

Difference Algorithm or Chebyshev algorithm) (Wheeler, 1974), recommended for computing optimal weights305

and abscissas (Yuan et al., 2012; John & Thein, 2012), leads to the same results as those shown before. So in

the case studied here, combining DQMOM with the Wheeler algorithm does not seem to improve the accuracy

of the reconstruction. The advantage of this algorithm is to avoid the limitation of the PD algorithm when

near-singular matrix arise.

5. Conclusion310

The reconstruction of a full PDF knowing only a finite/small number of its moments is of critical impor-

tance especially for particulate systems where information on the PDF shape is needed for process follow-up.

Different reconstruction methods are available in literature but none of them is able to recover all the possible

PDF shapes perfectly.

In this contribution, three different methods are investigated and their results confronted firstly against an315

analytical solution in the specific case of depolymerization process. The BKDF based method approximates

the target PDFs by a finite sum of elementary Beta Kernel Density Functions and gives relative accurate

results but requires a high number of moments for complex PDF shapes. The spline based method is highly

dependent on the tolerance parameters. Finetuning of these parameters affects the rate of convergence of

the algorithm and the final reconstructed PDF and depends on each single target PDF. Furthermore, the320

transition at the boundaries of the reconstruction interval has to be assumed which is not reachable when no

information about the shape of the target PDF is available. As consequence, this method is not adapted for

process monitoring when the distribution is needed at different time steps. The ME based method gives the

best results and reconstructs the analytical target PDFs with high accuracy using only a set of six moments.

The method converges within a few iterations which makes it relevant to be coupled with the PBE resolution325

methods. This has been investigated in the second part.

Once the Quadrature Method of Moments accounting for breakage processes is validated against the

analytical solution, the computed moments are used as inputs for the reconstruction method. The results
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show that the ME based technique is highly dependent on the moments accuracy. When a three nodes

quadrature is used for tracking the abscissas and the weights via the PD algorithm, the sets of associated330

moments lead to unsatisfactory reconstructions. Increasing the number of nodes improves significantly the

moments accuracy and by the way the quality of the reconstruction. No doubt that the issue is common to

all reconstruction methods: accurate values of the moments are required.

In summary, the ME based method is preferred than the BKDF and spline based methods because it

requires a smaller number of moments and offers the best computational cost/reconstruction accuracy. The335

cases where a frequent reconstruction is needed along with the PBE resolution, the moments have to be

computed accurately to acheive a good reconstruction quality using the ME based method. This is the main

drawback when dealing with experimental moments. Further confrontation especially when different processes

are coupled (e.g. breakage, aggregation, growth) is needed for assessing the relevance of this method.
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Appendix A: Description of the reconstruction techniques

Appendix A.1: Kernel Density Function-based method

The Beta PDF is given, in its normalized form with κ and λ as parameters, by:345

g(x;κ, λ) =
Γ(κ+ λ)

Γ(κ)Γ(λ)
xκ−1 (1− x)

λ−1
, κ, λ > 0 (A.1)

where Γ is the Gamma function. The Beta kernel is then defined by :

K(x;x∗, h) = g(x;κ, λ) (A.2)

The Beta KDF parameters (x∗ and h) are related to the Beta PDF parameters (κ and λ) (see Appendix

A (Athanassoulis & Gavriliadis, 2002)).

The moments of the Beta kernel can be analytically calculated thanks to the equation A.3 :

Bn(x∗) = Bn(κ, λ) =

∫ 1

0

xng(x;κ, λ)dx =
Γ(κ+ λ)Γ(κ+ n)

Γ(κ)Γ(κ+ λ+ n)
(A.3)

By substituting equation A.3 in 2, one obtains the moments µ∗n of the reconstructed distribution :350

µ∗n =

I∑
i=1

Bn,ipi, n = 0, 1, . . . N1 (A.4)
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For determining the unknown coefficients pi, the finite-moment problem is reformulated as a constrained

optimization problem (equation A.5 ):

‖µn − µ∗n‖L2 = min,

(
pi ≥ 0,

I∑
i=1

pi = 1

)
(A.5)

Equation A.5 can be solved numerically using a Nonnegative Least Square algorithm (NNLS). For im-

proving the efficiency of this method and reducing the number of moments required for the reconstruction,

different optimization techniques are available in literature such as the use, in addition of the given moments,355

of the shifted moments as described in the original work by (Gavriliadis & Athanassoulis, 2003).

The shifted moments of f(x) are defined by:

µ̃n =

∫ 1

0

(x− x̄)
k
f(x)dx, n = 1, 2 . . . N2 ≤ N1, x̄ ∈ [0, 1] (A.6)

Since, in the finite-moment problem, f(x) is the target, the shifted moments µ̃n are derived from the

integer moments µn as follows:

µ̃n =

n∑
k=0

(−1)k

 n

k

 x̄kµn−k, n = 1, 2 . . . N1 ≤ N (A.7)

The shifted moments of the Beta KDF are calculated by:360

B̃n =

∫ 1

0

(x− x̄)
n
K(x;xi, h)dx (A.8)

Thus, the shifted moments µ̃∗n of the reconstructed PDF are expressed as:

µ̃∗n =

I∑
i=0

B̃nipi, n = 1, 2 . . . N1 ≤ N (A.9)

The minimization problem (equation A.5) is reformulated as :

∥∥∥∥∥∥
 µn

µ̃n

−
 Bn

B̃n

 pI

∥∥∥∥∥∥
L2

= min,

(
pi ≥ 0,

I∑
i=1

pi = 1

)
(A.10)

This new constraint minimization problem is numerically solved using NNLS or LSQLIN (Matlab sub-

routines).

The algorithm of this method can be reduced to the following steps:365

1. Define the reconstruction interval [a,b]

2. Transform the moments to the normalized interval [0,1]

3. Compute the shifted moments from the set of integer moments

4. Fix the number I of KDFs and the bandwidth parameter h

5. Compute the coefficients Bn,i and B̃n,i370

6. Determine pi by solving the constraint minimization problem (equation A.10)
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Appendix A.2: Spline-based method

In order to optimize the reconstruction support and thus increase the accuracy of the spline-based method,

the values of the reconstructed PDF f (k)(x) are checked at the boundaries of the support [x
(k)
1 , x

(k)
n+1] (i.e. in

the subintervals [x
(k)
1 , x

(k)
2 ] and [x

(k)
n , x

(k)
n+1]). For this, these two subintervals are divided into 10 equidistant375

small subintervalls, the values of f (k)(x) at the nodes of these small subintervals are checked if they are

sufficiently small against the maximal value of f (k) in order to reduce eventually the size of the reconstruction

support. This test is given for the right boundary as (John et al., 2007):

 10∑
j=1

[(
f (k)(xnj)

)2]
+
(
f (k)(x

(k)
n+1)

)21/2

≤ tolredf (k)max (A.11)

If equation A.11 is satisfied, the reconstruction support is reduced by setting x
(k+1)
n+1 = (x

(k)
n + x

(k)
n+1)/2,

otherwise the boundary remains unchanged. For the new interval [x
(k+1)
1 , x

(k+1)
n+1 ], the nodes are redistributed380

equidistantly.

It is further checked that any value of f (k)(x) at the nodes xi(i = 1, . . . , n + 1) and at the midpoints of

the subintervals are greater than a given tolerance tolneg (equation A.12). This test is implemented to ensure

the positivity of the PDFs.

fmin,max := min
j=1,...,k

f (j)max,
f (j)(xi)

fmin,max
≥ tolneg,

f (j)(xi6)

fmin,max
≥ tolneg (A.12)

with tolneg ≤ 0. The problem of the ill-conditioning of the linear system of equations is treated by385

regulizing the system. This is achieved by neglecting small singular values according to a given tolerance

tolsing using a pseudo inverse routine of Matlab.

Note that in John et al. (2007), an equidistant grid is used for the distribution of the nodes xi. This

is not adapted for non-smooth and/or multimodal distributions. In the adaptive algorithm by (De Souza

et al., 2010), this problem is solved by introducing a non-equidistant grid where the nodes are repositionned390

appropriately in order to capture accurately the PDF’s critical domains.

This method is extensively described by John et al. (2007). The support of the target PDF [a, b] is

subdivided into n subintervals such as a = x1 < x2 < · · · < xn+1 = b. In each subinterval [xi, xi+1], the

target PDF is approximated by a piecewise polynomial s(l)(x) of degree l. The system of equations is detailed

for cubic splines (l = 3). The unknowns are the four coefficients of the n splines. A smooth transition at the395

boundaries of the interval is assumed meaning that the PDF, its first and second derivatives are null at the

boundaries, this gives 2× 3 equations. The continuity of the splines, their first and second derivatives at the

nodes provides 3(n− 1) equations. The remaining (n− 3) equations are supplemented by the moments. This

leads to solve a 4n× 4n ill-conditioned linear system.

Since the set of the known moments limits the number of splines, one has to compute the reconstruction400

in the optimal support of f(x) thus, the reconstruction is computed iteratively starting from an initial

reconstruction f (0)(x) in an initial interval [x
(0)
1 , x

(0)
n+1].
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In order to optimize the reconstruction support and thus increase the accuracy of the method, the values

of the reconstructed PDF f (k)(x) are checked at the boundaries of the support [x
(k)
1 , x

(k)
n+1] (i.e. in the

subintervals [x
(k)
1 , x

(k)
2 ] and [x

(k)
n , x

(k)
n+1]). For this, these two subintervals are divided into 10 equidistant small405

subintervalls, the values of f (k)(x) at the nodes of these small subintervals are checked if they are sufficiently

small against the maximal value of f (k) in order to reduce eventually the size of the reconstruction support.

This test is given for the right boundary as (John et al., 2007):

 10∑
j=1

[(
f (k)(xnj)

)2]
+
(
f (k)(x

(k)
n+1)

)21/2

≤ tolredf (k)max (A.13)

If equation A.13 is satisfied, the reconstruction support is reduced by setting x
(k+1)
n+1 = (x

(k)
n + x

(k)
n+1)/2,

otherwise the boundary remains unchanged. For the new interval [x
(k+1)
1 , x

(k+1)
n+1 ], the nodes are redistributed410

equidistantly.

It is further checked that any value of f (k)(x) at the nodes xi(i = 1, . . . , n + 1) and at the midpoints of

the subintervals are greater than a given tolerance tolneg (equation A.14). This test is implemented to ensure

the positivity of the PDFs.

fmin,max := min
j=1,...,k

f (j)max,
f (j)(xi)

fmin,max
≥ tolneg,

f (j)(xi6)

fmin,max
≥ tolneg (A.14)

with tolneg ≤ 0. The problem of the ill-conditioning of the linear system of equations is treated by415

regulizing the system. This is achieved by neglecting small singular values according to a given tolerance

tolsing using a pseudo inverse routine of Matlab.

Note that in John et al. (2007), an equidistant grid is used for the distribution of the nodes xi. This

is not adapted for non-smooth and/or multimodal distributions. In the adaptive algorithm by (De Souza

et al., 2010), this problem is solved by introducing a non-equidistant grid where the nodes are repositionned420

appropriately in order to capture accurately the PDF’s critical domains.

Appendix B: Analytical solution of the PBE in the case of breakage process

We give in this appendix the details for the analytical solution in its explicit form (equation 12).

By substituting equation 11 in 10, we obtain :

n(L, t) =
1

σ
√

2π
e−tL

2

(
e−

1
2 (L−µσ )

2

+ 2t

∫ ∞
L

L′e
− 1

2

(
L′−µ
σ

)2

dL′
)

(B.1)

We note I the integral term and proceed to the change of variable :425

L′ − µ = L̂′ 7−→ L′ = L̂′ + µ 7−→ dL′ = dL̂′ (B.2)
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The integral term is written as:

I =

∫
L̂′e−

1
2σ2

L̂′
2

dL̂′ + µ

∫
e−

1
2σ2

L̂′
2

dL̂′ (B.3)

Recall that :

∫
e−ax

2

dx =

√
π

2
√
a
erf(x

√
a) (B.4)

and

∫
xe−ax

2

dx = − 1

2a
e−ax

2

(B.5)

Thus :

I = σ2e−
1
2 (L−µσ )

2

+ µσ

√
π

2

(
1− erf

(
1√
2

L− µ
σ

))
(B.6)

By substituting equation B.6 in B.1, we obtain the final explicit solution given in equation 12.430
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Nomenclature

a, b Lower and upper bounds of the reconstruction interval

Bn, B̃n Coefficients of the BKDF system of equations

E(k) Global error function

Er(t) Mean absolute error for the reconstruction

f(x) Probability Density Function

fM (x) The reconstructed Probability Density function

g(x, κ, λ) Beta Probability Density Function

h Bandwidth of the BKDF

H[f ] Shannon entropy

I Number of BKDFs used for the reconstruction

k, n moment’s order

K(x, x∗, h) Beta kernel density function

L,L′ Polymer chains length

Li Abscissae of the Gaussian quadrature

m Mean of the normal law

M Number of nodes of the Gaussian quadrature

n(L, t) Length based number density function

N Length of the set of moments

pi Weight coefficient, ∈ [0, 1]

q Length of the discretized interval of reconstruction

t, ti, tf Time, intial time, final time

wi Weights of the Gaussian quadrature

x Variable of the PDF

x̄ Parameter of the shifted moments, ∈ [0, 1]

x∗, xi Centers of the BKDFs

Greek Symbols

α Factor of proportionality for the breakage frequency

β Breakage kernel

γ Breakage frequency

Γ Gamma function

κ, λ Parameters of the Beta Probability Density Function

µ The set of moments

σ Standard deviation for the normal law

ξ Lagrange’s multipliers
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Abreviations435

BKDF Beta Kernel Density Function

CFD Computational Fluid Dynamics

CLD Chain Length Distribution

DP Degree of Polymerization

DQMOM Direct Quadrature Method of Moments

KDF Kernel Density Function

LQDMA Long Quotient-Modified Difference Algorithm

LSQLIN Constrained Linear Least Square

ME Maximum Entropy

MWD Molecular Weight Distribution

NNLS Non-Negative Least Square

PBE Population Balance Equation

PBM Polupation Balance Modelling

PD Product Difference Algorithm

PDF Probability Density Function

QMOM Quadrature Method of Moments
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De Souza, L. G. M., Janiga, G., John, V., & Thévenin, D. (2010). Reconstruction of a distribution from

a finite number of moments with an adaptive spline-based algorithm. Chemical Engineering Science, 65 ,

2741–2750. URL: http://www.sciencedirect.com/science/article/pii/S0009250910000163.460

Dette, H. (1997). The Theory of Canonical Moments with Applications in Statistics, Probability, and Analysis.

John Wiley & Sons.

Diemer, R. B., & Olson, J. H. (2002). A moment methodology for coagulation and breakage problems: Part

2moment models and distribution reconstruction. Chemical Engineering Science, 57 , 2211–2228. URL:

http://www.sciencedirect.com/science/article/pii/S0009250902001124.465

Gavriliadis, P. N., & Athanassoulis, G. A. (2003). Moment data can be analytically completed. Probabilis-

tic Engineering Mechanics, 18 , 329–338. URL: http://www.sciencedirect.com/science/article/pii/

S0266892003000468. doi:10.1016/j.probengmech.2003.07.001.

Gavriliadis, P. N., & Athanassoulis, G. A. (2009). Moment information for probability distributions, with-

out solving the moment problem, II: Main-mass, tails and shape approximation. Journal of computa-470

tional and applied mathematics, 229 , 7–15. URL: http://www.sciencedirect.com/science/article/

pii/S037704270800513X.

Gavriliadis, P. N., & Athanassoulis, G. A. (2012). The truncated Stieltjes moment problem solved by using

kernel density functions. Journal of Computational and Applied Mathematics, 236 , 4193–4213. URL:

http://www.sciencedirect.com/science/article/pii/S0377042712002257.475

Gordon, R. G. (1968). Error Bounds in Equilibrium Statistical Mechanics. Journal of Mathematical

Physics, 9 , 655–663. URL: http://scitation.aip.org/content/aip/journal/jmp/9/5/10.1063/1.

1664624. doi:10.1063/1.1664624.

Hackbusch, W., John, V., Khachatryan, A., & Suciu, C. (2012). A numerical method for the simulation of an

aggregation-driven population balance system. International Journal for Numerical Methods in Fluids, 69 ,480

1646–1660. URL: http://onlinelibrary.wiley.com/doi/10.1002/fld.2656/abstract. doi:10.1002/

fld.2656.

Hulburt, H. M., & Katz, S. (1964). Some problems in particle technology: A statistical mechanical for-

mulation. Chemical Engineering Science, 19 , 555–574. URL: http://www.sciencedirect.com/science/

article/pii/0009250964850478.485

26

http://link.springer.com/article/10.1007/s00162-012-0275-9
http://dx.doi.org/10.1007/s00162-012-0275-9
http://dx.doi.org/10.1007/s00162-012-0275-9
http://dx.doi.org/10.1007/s00162-012-0275-9
http://onlinelibrary.wiley.com/doi/10.1002/mats.200300036/full
http://onlinelibrary.wiley.com/doi/10.1002/mats.200300036/full
http://onlinelibrary.wiley.com/doi/10.1002/mats.200300036/full
http://www.sciencedirect.com/science/article/pii/S0009250910000163
http://www.sciencedirect.com/science/article/pii/S0009250902001124
http://www.sciencedirect.com/science/article/pii/S0266892003000468
http://www.sciencedirect.com/science/article/pii/S0266892003000468
http://www.sciencedirect.com/science/article/pii/S0266892003000468
http://dx.doi.org/10.1016/j.probengmech.2003.07.001
http://www.sciencedirect.com/science/article/pii/S037704270800513X
http://www.sciencedirect.com/science/article/pii/S037704270800513X
http://www.sciencedirect.com/science/article/pii/S037704270800513X
http://www.sciencedirect.com/science/article/pii/S0377042712002257
http://scitation.aip.org/content/aip/journal/jmp/9/5/10.1063/1.1664624
http://scitation.aip.org/content/aip/journal/jmp/9/5/10.1063/1.1664624
http://scitation.aip.org/content/aip/journal/jmp/9/5/10.1063/1.1664624
http://dx.doi.org/10.1063/1.1664624
http://onlinelibrary.wiley.com/doi/10.1002/fld.2656/abstract
http://dx.doi.org/10.1002/fld.2656
http://dx.doi.org/10.1002/fld.2656
http://dx.doi.org/10.1002/fld.2656
http://www.sciencedirect.com/science/article/pii/0009250964850478
http://www.sciencedirect.com/science/article/pii/0009250964850478
http://www.sciencedirect.com/science/article/pii/0009250964850478
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