
HAL Id: hal-01876249
https://hal.science/hal-01876249

Submitted on 2 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Low-complexity high-rate Reed-Solomon block turbo
Codes

Rong Zhou, Raphaël Le Bidan, Ramesh Pyndiah, André Goalic

To cite this version:
Rong Zhou, Raphaël Le Bidan, Ramesh Pyndiah, André Goalic. Low-complexity high-rate Reed-
Solomon block turbo Codes. IEEE Transactions on Communications, 2007, 55 (9), pp.1656 - 1660.
�10.1109/TCOMM.2007.904365�. �hal-01876249�

https://hal.science/hal-01876249
https://hal.archives-ouvertes.fr


Low-Complexity High-Rate Reed–Solomon Block Turbo Codes
Rong Zhou, Member, IEEE, Raphaël Le Bidan, Member, IEEE, Ramesh Pyndiah, Senior Member, IEEE,

and André Goalic, Member, IEEE

This letter considers high-rate block turbo codes (BTC) obtained by concatenation of two single-error-correcting Reed–Solomon 
(RS) constituent codes. Simulation results show that these codes perform within 1 dB of the theoretical limit for binary 
transmission over additive white Gaussian noise with a low-complexity decoder. A comparison with Bose–Chaudhuri–Hocquenghem 
BTCs of similar code rate reveals that RS BTCs have interesting advantages in terms of memory size and decoder complexity for very-
high-data-rate decoding architectures.

Index Terms—Block turbo codes (BTC), Reed–Solomon codes, product codes.

I. INTRODUCTION

Since their introduction in 1993 [1], turbo codes have 
received widespread interest within the digital commu-
nications community. The original concept of iterative soft-

input soft-output (SISO) decoding of concatenated convolu-

tional codes has been extended to block turbo codes (BTC) [2]

and to low-density parity-check (LDPC) codes [3]. Today, turbo

codes have become a crucial industrial technology for error

correction in digital transmission systems since they offer an

excellent tradeoff between complexity and performance.

This letter focuses on BTCs constructed from Reed–Solomon

(RS) constituent codes. BTCs provide an interesting alterna-

tive to convolutional turbo codes and LDPC codes for appli-

cations requiring high code rates (R > 0.8) and high-data-rate

decoders. BTCs were originally introduced using binary Bose–

Chaudhuri–Hocquenghem (BCH) constituent codes. BCH BTC

is now an efficient and mature technology already in use in

several proprietary satellite transmission systems, and has been

recently adopted as an option in the IEEE 802.16 Standard for

wireless Metropolitan Area Networks (MAN). Innovative archi-

tectures have been proposed that can achieve decoding speeds

of several gigabits per second [4], [5]. An experimental demon-

stration of a forward error correction (FEC) for 10-Gb/s optical
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communication systems based on a BCH BTC has been recently

reported in [6]. However, an important limitation of BCH BTCs

is that very large code lengths (>60 000 bits) are required to

achieve high code rates (R > 0.9). This limitation may conflict

with practical systems constraints. In particular, a large block

length increases the decoding latency and also the memory com-

plexity of a decoder architecture.

The first investigations on RS BTCs were reported in [7],

considering the expurgated RS constituent codes decoded with

the Chase–Pyndiah SISO algorithm. However, the performance

obtained were quite far (>1.6 dB) from the theoretical limit.

Similar results were observed with extended RS constituent

codes. In retrospect, this was due to a limitation in the decoder

complexity. For example, Sweeney showed in 2000 that this

gap could be reduced to less than 1 dB by using the Dorsch

algorithm [8] instead of the Chase algorithm. The Dorsch algo-

rithm (and other variants such as ordered statistics decoding [9])

generates candidate codewords for soft-output computation by

successive reencoding of the most reliable independent bits in

the received word [10]. In this way, each algebraic decoding

attempt is replaced by a low-complexity reencoding operation.

Hence, more candidate codewords can be considered (50 in [8]

versus 17 in [7]), and better performance can be achieved. How-

ever, even though reencoding has little cost, the Dorsch algo-

rithm still involves a sorting step and a Gaussian elimination.

These two functions remain very complex in terms of number

of operations. In addition, they do not lend themselves readily

to parallel processing. Nevertheless, these results confirm the

potential of RS BTCs.

In this letter, we consider the RS BTCs obtained by concatena-

tion of two nonextended nonexpurgated single-error-correcting

(SEC) RS constituent codes. Two constructions for the product

code, i.e., symbol and binary concatenation, are described and

compared. We show that the two constructions can provide near-

optimum performance with a low-complexity Chase–Pyndiah

decoder using only 16 test patterns. A comparison with binary

BCH BTCs of similar code rate reveals that RS BTCs based

on symbol concatenation have interesting practical advantages

in terms of memory size and decoder complexity. Performance

over the binary symmetric channel (BSC) and the binary erasure

channel (BEC) are also investigated.

This letter is organized as follows. The construction of the RS

product code is described in Section II. The corresponding iter-

ative decoding algorithm is developed in Section III. Simulation

results for binary transmission over an additive white Gaussian

noise (AWGN) channel and a comparison with BCH BTCs are

presented in Section IV. Performance of RS BTCs over the BSC

and the BEC are analyzed in Section V. Conclusions follow in

Section VI.
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II. RS PRODUCT CODES

The concept of product codes introduced by Elias in 1954 of-

fers a simple and efficient method to construct powerful codes

from simple constituent codes [11]. Classical product codes

are obtained by serial concatenation of two linear block codes

C1(n1, k1, d1) and C2(n2, k2, d2) over GF(2q ), separated by a

symbol-by-symbol row-column interleaver. Parameters ni , ki ,

and di (i = 1, 2) stand for the length, dimension, and mini-

mum distance of each component code, respectively. The re-

sulting product code P(np , kp , dp) has length np = n1n2, di-

mension kp = k1k2, rate Rp = R1R2, and minimum distance

dp = d1d2. The n1 rows of the product code are codewords of

C1, and the n2 columns are codewords of C2 [12].

We focus here on RS product codes using nonextended and

nonexpurgated (2q − 1, 2q − 3, 3) SEC RS constituent codes

over GF(2q ). The codes have generator polynomial g(x) =
(x − α)(x − α2), where α is a primitive element of GF(2q ).
Each element in GF(2q ) can be represented by q bits us-

ing some basis of GF(2q ) over GF(2). The polynomial basis

{1, α, . . . , αq−1} is the usual choice, although other bases ex-

ist [12]. Hence, two different constructions arise for the RS

product code, depending on whether the concatenation is per-

formed at the symbol level or at the bit level.

As shown in Fig. 1(a), symbol concatenation is obtained by

encoding a k1 × k2 2q -ary information matrix along the first k1

rows, and then along the n2 columns. This yields a n1 × n2

coded matrix with elements in GF(2q ). The binary image of

the symbol product code has length n1n2q bits and dimension

k1k2q bits. The second construction, refered to as binary con-

catenation, is depicted in Fig. 1(b). Starting from a k1q × k2q
binary information matrix, a n1q × n2q binary coded matrix is

obtained by encoding along the first k1q rows, and then along

the n2q columns using the binary image of the RS constituent

codes. The resulting binary product code has length n1n2q
2

bits and dimension k1k2q
2 bits. It is to be noted that these pa-

rameters are q times larger than for symbol concatenation. Both

constructions will be considered and compared in the following.

III. TURBO DECODING OF RS PRODUCT CODES

Given a bit-level observation matrix R in log-likelihood ratio

(LLR) form, iterative “turbo” decoding of product codes is real-

ized by decoding successively the rows and columns of R using

a SISO decoder, and exchanging extrinsic information between

the two decoding processes.

A. SISO Decoding of RS Codes

The RS SISO decoder consists of a soft-input hard-output

(SIHO) decoder combined with a soft-output computation unit.

In this letter, the SISO decoding was performed at the bit level,

independent of the construction (binary or symbol concatena-

tion) of the product code.

The SIHO decoding of a row (or column) of the RS product

code was realized using a modified version of the Chase-2 algo-

rithm [13]. Given a soft-input sequence r = (r1,1, . . . , rn,q ) cor-

responding to a row or column of R, the Chase-2 decoder first

Fig. 1. RS product codes. (a) Based on symbol concatenation over GF(2q ).
(b) Based on binary concatenation.

forms the binary hard-decision sequence y = (y1,1, . . . , yn,q )
from r. The reliability of the decision on the jth bit in the ith RS

symbol is measured by the magnitude |ri,j | of the correspond-

ing soft input. 2s error patterns are generated by considering

all possible combinations of 0 and 1 in the s least reliable bit

positions. These error patterns are added to the hard-decision

sequence y to form candidate sequences. Successive algebraic

decodings of the candidate sequences returns a list containing

at the most 2s distinct candidate codewords. Among them, the

codeword d at minimum Euclidean distance from the observa-

tion r is selected as the final decision. The direct method of

Peterson–Gorenstein–Zierler (PGZ) was used for algebraic de-

coding of the SEC constituent RS codes, since it has very low

complexity in this context compared to other decoding proce-

dures, such as the Berlekamp–Massey shift-register synthesis

approach or the Euclidean algorithm. Specifically, apart from

the syndromes computation, the PGZ algorithm involves only

two divisions in GF(2q ) to obtain the position and the value of

an error [14, Ch. 6]. Also note that the syndromes need not be

fully recomputed at each decoding attempt but can be simply

updated based on the bits that have been flipped by the current

test pattern [15].

Soft-output computation was performed according to the

method described in [2]. For a given bit j in the ith RS sym-

bol, the list of candidate codewords is searched for a competing

codeword c at minimum Euclidean distance from r and such

that ci,j �= di,j . If such a codeword exists, the soft output r′i,j
on this bit is given by

r′i,j =

(

‖r − c‖2 − ‖r − d‖2

4

)

di,j (1)

where ‖ · ‖2 denotes the squared norm of a sequence. Otherwise,

the soft output is computed as

r′i,j = ri,j + βdi,j (2)

where β is a predefined positive constant that increases with

the iterations. We note that a slightly better performance can

be obtained by using a variable β, as suggested in [16]. The

extrinsic information wi,j relative to bit j in symbol i is finally

given by the difference between the soft output r′i,j computed
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Fig. 2. Block diagram of the turbo decoder.

by the SISO decoder and the soft-input sample ri,j

wi,j = r′i,j − ri,j . (3)

B. Iterative Decoding of the Product Code

The block diagram of the turbo decoder at the pth half iteration

is depicted in Fig. 2. A half iteration stands for a row or column

decoding step and one iteration comprises of two half iterations.

The SISO decoder’s input matrix at half iteration p is given by

R(p) = R + α(p)W(p) (4)

where α(p) is a scaling factor used to reduce the influence of

extrinsic information, and W(p) is the extrinsic information ma-

trix delivered by the SISO decoder at the previous half iteration.

Decoding stops when a given maximum number of iterations

has been performed, or when an early-termination condition

(stop criterion) is met.

C. Stop Criterion

A stop criterion improves the convergence of the iterative

decoding process, and reduces the average power consumption

of the decoder by decreasing the average number of iterations

required to decode a block. An efficient stop criterion is readily

derived based on the particular structure of the product code. If

all the rows (resp. columns) after column (resp. row) decoding

at a given half iteration have zero syndromes, then the decoding

algorithm has converged and the decoding process is stopped.

IV. PERFORMANCE OVER AWGN

A. Simulation Results

We have simulated the performance of three RS product

codes based on nonextended nonexpurgated SEC RS codes over

GF(16),GF(32), and GF(64), respectively, using quadrature

phase-shift keying (QPSK) signaling over AWGN. Both the

binary and symbol concatenation have been considered. The

parameters of the codes are summarized in Table I. For each

code, we have computed the corresponding theoretical limit

(TL) given by the sphere-packing bound (SPB) at a target frame

error rate (FER) of 10−3. The SPB provides a lower bound on the

minimum Eb/N0 required to achieve a given FER with a finite

length code [17]. We note that the computation of the bound in-

cludes here a correction term to account for the capacity penalty

resulting from the use of finite binary inputs.

TABLE I

RS PRODUCT CODES PARAMETERS FOR SYMBOL AND BINARY

CONCATENATION, AND CORRESPONDING TL AT A TARGET FER OF 10−3

Fig. 3. Performance of RS BTCs with symbol concatenation and QPSK mod-
ulation over AWGN after eight turbo decoding iterations.

The two concatenation schemes have been simulated for each

code, using 16 and 32 test patterns for the Chase–Pyndiah al-

gorithm, respectively. A maximum of eight iterations with stop

criterion was considered in the turbo decoding process. The

extrinsic information was normalized as described in [7]. The

following values were used for the coefficients α and β:

α = (0.00, 0.10, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45,

0.50, 0.55, 0.60, 0.65, 0.70, 0.90, 1.00, 1.00)

β = (0.20, 0.30, 0.40, 0.50, 0.55, 0.60, 0.65, 0.70,

0.75, 0.80, 0.85, 0.90, 1.00, 1.00, 1.00, 1.00).

The simulation results are shown in Figs. 3 and 4. We first note

that although the considered product codes have a small binary

minimum distance (only nine, as verified by computer search),

no error floor is observed down to a bit-error rate (BER) of 10−6.

It is worth mentioning that eight iterations are indeed required

to obtain near-optimum performance, whereas six iterations are

usually sufficient for BCH BTCs. We also observe that doubling

the number of test patterns yields a minor improvement (≤0.15

dB) for both concatenation schemes. We found that a higher

number of test patterns do not bring additional coding gain. This

suggests that 16 test patterns provide an ideal tradeoff between

complexity and performance in this context.
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Fig. 4. Performanceof RS BTCs with binary concatenation and QPSK mod-
ulation over AWGN after eight turbo decoding iterations.

TABLE II

Eb /N0 GAP BETWEEN THE SIMULATED PERFORMANCE OF RS BTCS AND THE

CORRESPONDING TL AT AN FER OF 10−3

We have measured the gap between the simulated perfor-

mance of the codes and the corresponding TL (given in Table I)

at a target FER of 10−3. The resuls are given in Table II. We

notice that the two concatenation schemes perform within 1 dB

of the TL. However, although they exhibit similar performance,

the two concatenations are not equivalent in terms of complex-

ity. Binary concatenation has a code length q times larger than

symbol concatenation, and also involves q times more SISO

decoding operations per iteration. Hence, symbol concatenation

seems preferable to binary concatenation from the complexity

point of view.

B. Comparison With BCH BTCs

A comparison between RS BTCs based on symbol concate-

nation and binary BCH BTCs of similar code rate has been

conducted for QPSK transmission over AWGN. We have mea-

sured the gap ∆ between the simulated performance of the

codes and the corresponding TL at a target FER of 10−3. This

is a fair comparison since the TL takes the block size into ac-

count. Simulation results for BCH BTCs have been obtained

from [2] and [18]. The gaps are given in Table III. We observe

that although the two solutions provide near-optimum perfor-

mance within 1 dB of the TL, RS BTCs have an information

block size K that is about three times smaller than the corre-

sponding BCH BTCs. A detailed comparison between FPGA

TABLE III

Eb /N0 GAP ∆ BETWEEN SIMULATED PERFORMANCE AND THE

CORRESPONDING TL FOR BCH BTCS AND RS BTCS BASED ON SYMBOL

CONCATENATION AND OF SIMILAR CODE RATE AT AN FER OF 10−3

turbo decoding architectures for the BCH(128, 120)2 and the

RS(31, 29)2 BTCs has been conducted in [19]. This analysis

shows that the smaller block size of RS BTCs yields a consid-

erable reduction of 67% in memory complexity. In addition, the

decoding latency is also reduced. The complexity (in terms of

number of logic elements) of the SISO decoder for the RS code

is only 13% larger in comparison with the BCH code. On the

other hand, RS BTCs based on symbol concatenation involve

less SISO decoding operations since data processing is per-

formed at the symbol level. For example, the BCH(128, 120)2

requires a total of 6 × 2 × 128 = 1536 SISO decodings for a

maximum of six iterations. In constrast, the RS(31, 29)2 needs

a total of 8 × 2 × 31 = 496 SISO decodings for a maximum

of eight iterations. Very-high-data-rate turbo decoding architec-

ture require simultaneous decoding of the rows and columns of

the received matrix [4], [5]. Therefore, RS BTCs compare fa-

vorably in terms of complexity with BCH BTCs in this context

since fewer elementary decodings have to be realized in parallel.

V. PERFORMANCE OVER THE BSC AND THE BEC

We finally consider the performance of high-code-rate RS

BTCs over the BSC and the BEC. These channel models natu-

rally arise in many applications where soft channel outputs may

not be available at the turbo decoder input for economical (data

storage systems) or technological (gigabits per second optical

transmissions) reasons.

The BSC is a discrete channel model with binary inputs and

binary outputs. Transmission over the BSC can be modeled by

a BPSK transmission over an AWGN channel followed by a

binary threshold detector. Depending on the sign of the received

samples, the threshold detector delivers binary decisions +A
and −A to the block turbo decoder. As a result, all soft inputs

are equally reliable at the beginning of the iterative decoding

process. If we now apply two symmetric thresholds at the output

of the AWGN channel, we obtain a binary erasure equivalent

channel model with three outputs: −A, 0, and +A, where 0
denotes a bit erasure. It is to be noted that in contrast to the

classical definition of the BEC, our model takes both errors and

erasures into account.

The performance of RS BTCs based on symbol concatenation

with high-rate SEC component codes have been evaluated by

simulation over these two channel models. Performance curves

are available in [20]. We have measured the Eb/N0 gap between
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TABLE IV

Eb /N0 GAPS ∆ BETWEEN SOFT INPUTS AND QUANTIZED INPUTS FOR RS
BTCS BASED ON SYMBOL CONCATENATION AT A BER OF 10−5

the performance obtained with unquantized soft inputs (AWGN

channel) and the performance obtained with binary (BSC) and

ternary inputs (BEC) at a target BER of 10−5. The corresponding

gaps denoted by ∆BSC and ∆BEC, respectively, are given in

Table IV.

As expected, we observe that for a given code, the perfor-

mance degradation is smaller for ternary inputs than for binary

inputs. We also note that the performance gap decreases as the

code length increases. In particular, the gap is only 1.33 dB for

the RS(63, 61)2 BTC over the BSC. This is much smaller than

the 2–3 dB gap usually observed with classical binary codes. In

addition, the gap reduces to only 0.34 dB over the BEC chan-

nel for the same code. This result is particularly promising and

suggests that long high-rate RS BTCs may represent an attrac-

tive alternative to concatenated RS codes or BCH BTCs for the

next-generation FEC in optical communication systems [21].

VI. CONCLUSION

We have shown that high-rate RS product codes based on

nonextended nonexpurgated SEC constituent codes can achieve

near-optimum performance over the AWGN channel with a low-

complexity SISO decoder. Two concatenations have been de-

scribed and compared. In particular, we have shown that RS

BTCs based on symbol concatenation have interesting advan-

tages in terms of decoder complexity and decoding latency for

very-high-data-rate turbo decoding architectures, compared to

binary BCH BTCs of similar code rate. We have also considered

that multiple-error-correcting RS component codes may yield

even better performance with the advantage of additional ver-

satility in the product code design. However, this will, in turn,

increase the overall complexity of the turbo decoder. Conse-

quently, the search for efficient low-complexity SISO decoders

for RS codes currently remains an important issue for future

work.
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