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Abstract—In this paper, we study positioning systems using
Vehicular Ad Hoc Networks (VANETs) to predict the position
of vehicles. We use the reception power of the packets received
by the Road Side Units (RSUs) and sent by the vehicles on
the roads. In fact, the reception power is strongly influenced
by the distance between a vehicle and a RSU. To predict the
position of vehicles in this context, we adopt the machine-
learning methodology. As a pre-requisite, the vehicles know their
positions and the vehicles send their positions in the packets.
The positioning system can thus perform a training sequence and
build a model. The system is then able to handle a prediction
request. In this request, a vehicle without external positioning
will request its position from the neighboring RSUs. The RSUs
which receive this request message from the vehicle will know
the power at which the message was received and will study
the positioning request using the training set. In this study, we
use and compare three widely recognized techniques : K Nearest
Neighbors (KNN), Support Vector Machine (SVM) and Random
Forest. We study these techniques in various configurations and
discuss their respective advantages and drawbacks. Our results
show that these three techniques provide very good results in
terms of position predictions when the error on the transmission
power is small.

I. INTRODUCTION

Vehicular Ad Hoc NETworks (VANETs) use Wireless Access
in Vehicular Environments (WAVE) [1] to exchange data be-
tween the vehicles themselves and the vehicles and the infras-
tructure. For the access, WAVE is based on the IEEE802.11p
access protocol to provide communication between vehicles
(V2V), and between vehicles and roadside infrastructure (V2I)
in new Intelligent Transportation Systems (ITS).

One of the prominent applications of VANETs communication
concerns safety applications; these applications rely on the
periodic transmission of packets. There are two main types of
applications: Car Awareness Messages (CAMs) [2] and Decen-
tralized Environmental Notification Messages (DENMs) [3].
CAMs are used to periodically send information about the
vehicles’ velocities and positions, while DENMs are sent when
a hazardous event occurs on the road. Another use of VANETs
communication concerns the transmission of information or
advertising to the vehicles. Information sent to the vehicle’s
driver can concern the status of the traffic, whereas data sent

to the passengers can concern advertising or entertainment,
often infotainment.
Another possible application of VANETs is to use them as a
positioning system. The safety messages that are periodically
broadcasted by the vehicles allow one to build huge data bases
with positioning information since in most cases the vehicles
know their positions as they are equipped with a Global Posi-
tioning System (GPS). Moreover, there is a strong correlation
between the position of a vehicle and the signal strength of the
messages it exchanges with the roadside units. Therefore when
a vehicle can not rely on its GPS to give its position, it can
ask the roadside units in its vicinity for an estimation based on
the power with which they receive its messages. For instance,
we can assume that even though a vehicle does not have any
information from its GPS concerning its speed and position, it
continues to send its CAMs carrying no (or very little) position
information. These messages can be used by the roadside
units to establish the vehicle’s position. An approach with
machine-learning techniques such as: K Nearest Neighbors
(KNN), Support Vector Machine (SVM) and Random Forest
is thus possible. The aim of this paper is to adapt these three
techniques to the positioning in VANETs with roadside units
and to study and compare their performances to predict the
position of a vehicle on a road when it is within reach of
three roadside units. We consider different configurations and
compute the prediction error in different situations.
Here, the contributions are as follows:

• We use the reception power to predict a vehicle’s position.
• We propose and adapt three learning techniques to the

positioning of vehicles : K Nearest Neighbors (KNN),
Random Forest and Support Vector Machine (SVM).

• A simple simulation tool is developed to produce data
with the positions of vehicles and the different power
of messages sent by vehicles and received at the base
stations.

• We analyze and compare the performance of k Nearest
Neighbors (KNN), Random Forest and Support Vector
Machine (SVM) with the given dataset.

The remainder of this paper is organized as follows: Section II
reviews related work; Section III describes the three machine-



learning techniques: K Nearest Neighbor (KNN), Support
Vector Machine (SVM) and Random Forest. In Section IV,
the simulation scenario and numerical results are presented.
Different machine learning techniques and their optimizations
are discussed. Three methods and their performances are
compared. Finally, Section V concludes the paper.

II. RELATED WORK

In the field of outdoor positioning systems, we mainly find the
following techniques:

• Time-Of-Arrival (TOA)-based techniques. They are based
on the measurements of the distance between base station
and the receiver of a signal and a triangulation allows
the position to be computed. These measurements are
not acceptable for VANETs, as the precision required for
these measurements are not achievable. These techniques
also require a perfect synchronization between the clocks
of the base stations and the receivers. This implies the
use of atomic clocks, which are very expensive. TOA is
precisely the basis of GPS and other similar positioning
systems.

• Techniques based on the round trip delay [4]. The receiver
sends a small packet to the base station and waits for a
reply. The time elapsed is proportional to the distance
between the base station and the receiver. By simple
triangulation the receiver can compute its position if it can
receive three round trip delays from three different base
stations. To obtain a precise estimation of the location, the
distance between the receiver and the base station must be
large. However, like TOA schemes, techniques based on
round trip delay require very accurate delay evaluation,
which is very difficult if dedicated transmission modems
are not used. Thus this technique is generally not suit-
able for VANETs which use off-the-shelf IEEE 802.11p
communication units.

• Signal-strength-based techniques. The receiver computes
an estimate of its location based on the received signal
strength from several wireless access points. In this case,
the access points must be carefully positioned to cover
the roads. Reported results based on this technique show
poor accuracy [5], [6].

The GPS or other positioning systems are the prominent
positioning techniques in vehicular networks [4]. But GPS has
three main drawbacks: limited accuracy, incomplete coverage
and security problems. It has a limited accuracy that is almost
20 meters. This is really unsuitable for most VANET appli-
cations, e.g., lane tracking, collision avoidance, autonomous
driving, etc. According to GPS device vendors, the best
announced accuracy is plus/minus 5 meters. Moreover, this
accuracy is claimed to be reached for only 95% of the cases
and for the other 5%, the accuracy may be greatly less. Thus
relying on GPS is unacceptable in the critical applications
requiring an accurate positioning system. GPS also has an
incomplete coverage. The ideal situation is when the GPS
signal can be received in vehicles from four different satellites

and this is very unlikely to occur everywhere, even if the
obvious case of tunnels is left out. GPS simulators (devices
generating GPS signals) can create fake signals, these signals
are generally sent with a high power. The GPS receiver usually
considers the strongest signal and thus locks on the fake signal.
Thus, any jammer equipped by this kind of GPS simulator can
completely distort the evaluation of the vehicles’ positions.
Numerous papers concerning positioning with GPS use an
enhancement referred to as the Differential GPS (DGPS). This
technique relies on installing ground stations whose locations
are precisely known and which assist the location process.
However, DGPS and similar techniques do not work in tunnels,
underground, and in highly dense built-up areas, because the
signal cannot be received or only received very weakly. The
technique presented in [7] does not use any radio ranging
scheme. Rather, a Cooperative Positioning (CP) method is
presented to improve the relative positioning between two
vehicles within a VANET, by fusing from different sources.
The proposed method which fuses the available low-level
GPS data does not depend on any radio ranging technique.
The performance of this scheme is studied by analytical and
experimental results. Although the principles of the proposed
method are similar to those of differential solutions such as
differential GPS (DGPS), the authors claim that their technique
outperforms DGPS by about 37% and 45% in accuracy and
precision of relative positioning, respectively.
There exist several other studies that focus on VANET [8-15].

Most of them use the Received Signal Strength and provide a
framework for using the GPS. However, the lack of accuracy
in the results obtained makes the methods unsuitable for some
VANET applications.

III. THE MACHINE LEARNING SCHEMES

We use three widely accepted machine learning techniques:
K Nearest Neighbors (KNN ), Random Forest and Support
Vector Machine (SVM). These three techniques and their
adaptation to perform positioning in VANETs are recalled
below.
In machine-learning schemes, we have a vector Xj =
{x1j , . . . , xnj } of observations and these observations of Xj

are linked to the variables Yj . The problem is to infer Yj
knowing the vector Xj . In general (but not always) we have to
train the algorithm. The algorithm must in this case work on a
given number of observations {Yj , Xj}16j6K to build a model
which will be used to perform the predictions. Building this
model is equivalent to computing a function Ŷ = f(X). Then,
given an observation Xi the model can compute Ŷi = f(Xi).
When Yi is known we can compute the prediction error
εi = Yi − Ŷi = Yi − f(Xi).
With the same situation, machine learning can perform classifi-
cation; in this case X belongs to a class Yl for l ∈ {1, . . . , p} 1.
When we have an observation Xi, the prediction algorithm will
have to predict the most probable class given the observation

1We can observe that regression and classification problems are very close.



Xi. In this paper, the issue is a positioning problem, and thus
it comes down to a regression problem.

A. k Nearest Neighbors (KNN)

K Nearest Neighbors (KNN) is one of the simplest machine
learning algorithms which was first described, to the best of
our knowledge, in [8]. As previously stated, we have a given
number of observations {Yj , Xj}16j6K where Xj is usually
a vector and Y is a real number.
Assuming that we have an observation Xi, we want to predict
Y . The KNN algorithm must select the k nearest observations
of Xi in {Yj , Xj}16j6K .
Let i1, . . . , ik be the k values which provide the k minimum
values of the function

g(j) = d(Xj −Xi).

In other words i1, . . . , ik are the indexes of the k minimum
values of g(j) = d(Xj −Xi). These minimum values can be
equal if there are multiple values of Xj at the same distance
from Xi.
We have at least the three possibilities for the distance, the
most often used being the Euclidean distance.

d(Xj −Xi) =

√√√√ n∑
l=1

(xjl − xil)2 Euclidean

d(Xj −Xi) =

n∑
l=1

|xjl − x
i
l| Manhattan

d(Xj −Xi) =
( n∑
l=1

|xjl − x
i
l|q
)1/q

Minkowski

The value predicted for Yi will be the mean value of the k
values Yj for the k nearest neighbors of xi.

Ŷi =
1

k

k∑
1

Yik

B. Random Forest

We still have a given number of observations {Yj , Xj}16j6K
where X is usually a vector and Y is real number. The first
step in random forest is to create a tree. Using the observa-
tions {Yj , Xj}16j6K we build different sets using different
splitting criteria which operate on the vectors {Xj}16j6K .
Each criterion allows the initial subset to be divided into two
subsets. For instance, in Figure III.1 the criterion Xj < A
provides the first splitting of the observations. The following
two criteria complete the selection tree which ends with four
final leaf nodes.
Suppose now that we have a vector Xi and that we want
to predict Ŷi. We will use the previous selection tree and
determine in which final node the vector Xi is classified. Let
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Fig. III.1. Regression tree .

us assume that Xi is classified in node 3 as are Xi1 , . . . , Xik .
In that case, the prediction of Ŷi will simply be:

Ŷi =
1

k

k∑
j=1

Yik

The idea of Random Forest is to correct the error obtained in
one selection tree by using the predictions of many indepen-
dent trees and by using the average value predicted by all these
trees. This technique first introduced in [9] is called Random
Forest.

C. The Support Vector Machine regression technique

Generally the positions yi and the related values xi are known
(thus we know (yi, xi)16i6N ) and we have to predict the
positions using other values: (x′i)16i6N . We assume that

yi = wTφ(xi) + b (III.1)

where w and b are two unknown vectors and φ(x) an unknown
function of a vector x.
To solve these equations, we introduce the following convex
optimization problem:

minimize
1

2
||w||2

subject to − ε 6 wTφ(xi) + b 6 ε. (III.2)

This problem assumes that the function given in III.1 can
approximate the set of points that is given i.e (yi, xi)16i6N
with an accuracy of ε. Sometimes this is not possible and some
errors must be accepted. In that case, slack variables which
allow us to cope with impossible constraints, are introduced.



This relaxation procedure uses a cost function. The convex
problem then becomes :

minimize
1

2
||w||2 + C

N∑
i=1

(ξi + ξ∗i )

subject to − ε− ξ∗i 6 wTφ(xi) + b 6 ε+ ξi with ξ∗i , ξi > 0
(III.3)

This problem can be solved by using Lagrange multipliers.
The problem becomes:

L : =
1

2
||w||2 + C

N∑
i=1

(ξi + ξ∗i )−
N∑
i=1

(νiξi + ν∗i ξ
∗
i )

−
N∑
i=1

αi(ε+ ξi − y1 + wTφ(xi) + b)

−
N∑
i=1

α∗i (ε+ ξ∗i + y1 − wTφ(xi)− b)

where L is the Lagrangian and νi, ν∗i , ξ
∗
i , ξ
∗
i are the Lagrangian

multipliers which are thus positive i.e νi, ν∗i , ξ
∗
i , ξ
∗
i > 0

We know that the minimum of L is attained when the partial
derivatives are zero, thus:

∂L/∂b =

N∑
i=1

(αi − α∗i ) = 0

∂L/∂w = w −
N∑
i=1

(αi − α∗i )φ(xi) = 0

∂L/∂ξ
(∗)
i = C − α(∗)

i − ν
(∗)
i = 0

The substitution of these equations in the Lagrangian leads
to the following problem:

maximize − 1

2

N∑
i,j=1

(αi − α∗i )(αj − α∗j )φ(xi)Tφ(xj)

− ε

N∑
i=1

(αi + α∗i ) +

N∑
i=1

yi(αi − α∗i )

subject to

N∑
i,j=1

(αi − α∗i ) = 0 and αi, α∗i ∈ [0, C].

Thus it comes:

w =

N∑
i=1

(αi − α∗i )φ(xi)

and

f(x) =

N∑
i=1

(αi − α∗i )φ(xi)Tφ(x) + b

This formula is called the Support Vector expansion. The
complexity of the function representation only depends on the
dimensionality of the input space.
The following of the analysis uses the Karush-Kuhn-Tucker
(KKT) conditions. These conditions imply that at the solution
the product between the constraints and the dual variable must
vanish. In other words, we have

αi(ε+ ξi − yi + wTφ(xi) + b) = 0 (III.4)
α∗i (ε+ ξ∗i + yi − wTφ(xi)− b) = 0

and

(C − αi)ξi = 0

(C − α∗i )ξ∗i = 0

We can deduce that only the samples which do not satisfy the
constraint of III.3 have α

(∗)
i = C. Moreover, since the two

values of the right part of III.5 can not be simultaneously 0
then we have αiα

∗
i = 0. Thus after some observations we

have :

max(−ε+ y1 − wTφ(xi)|αi < C or α∗i > 0) 6 b 6

min(−ε+ y1 − wTφ(xi)|αi < C or α∗i > 0)

This part is adapted from [?] a tutorial by Smola.

IV. NUMERICAL RESULTS

A straight road of length 600 m is considered to obtain the
numerical results. The position on the road is given by x ∈
[0, 600]. We assume that we have three roadside units located
at x = 0m, x = 305m and x = 600m.
We assume that the signal strength received by the vehicles
depends on the distance between the vehicles and the road
side units. We consider that there are no obstacles on the road
to hinder free propagation. Thus the power received is

P =
P0

rβ
with β ∈ [2, 4]

We measure the power received in dB thus

P dB = 10
log(P )

log(10)
.

Moreover, errors in the measurements are taken into account;
we assume a Gaussian noise of zero mean and with a variance
0.05. This can also be interpreted by a log-normal fading
which would affect the reception.
The data base is obtained by 20 different measurements at
each location of the vehicle, the locations being 15 meters



apart. Thus the data consist of 780 sets with three different
powers, each of them corresponding to the power received by
the three roadside units.
Even if it were possible to do otherwise, for the sake of
simplicity we assume that the vehicles send beacons which
are received by the three roadside units. The RSUs fuse these
data and perform the machine-learning process. The location
of the vehicles established can then be sent to them by one of
the RSUs.

A. KNN algorithm

For the KNN algorithm, we use the data set directly derived
from the power measurements in dB; we do not perform
any data processing before using the KNN algorithm. The
position error for the KNN algorithm is shown in Figure IV.1;
we have set k = 10 which seems to be optimal with the data
set we have. The code of KNN is found in the R software [10]
and in its KNN library. We use the Euclidean distance. The
approximation is usually very good with an error of around
5m except at the middle of the road where the error can
reach 30m. This is probably because the algorithm confuses
a location before the roadside unit in the center of the road
with a location after this roadside unit. We observe that the
filtering of the measures has a great impact on the quality of
the prediction: on average the error is divided by 2. We note
however that near the middle roadside unit, the filtering makes
little difference. It can be observed that the filtering we have
done (averaging over 20 measurements) is very efficient since
it is even better than when no error on the measurements is
assumed.
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Fig. IV.1. Position errors versus position x ∈ [0, 600] on the roads with the
k nearest neighbors technique.

B. Random Forest algorithm

For the Random Forest algorithm, we use the data set directly
derived from the power measurements in dB; we do not
process the data before using the algorithm. The position error
for the Random Forest algorithm is shown in Figure IV.2.
We observe that the Random Forest algorithm offers a good

estimation of the location of the vehicle, the prediction being
better when we are not at the beginning or at the end of the
road where the error tends to increase. As for KNN , filtering
the measures improves the prediction but the improvement is
less noteworthy, the mean progression in the average error is
only 6%. The Random Forest algorithm seems to be able to
operate well even with noisy measurements.
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Fig. IV.2. Position errors versus position x ∈ [0, 600] on the roads with the
Random Forest technique.

C. Support Vector Machine algorithm

The libsvm library [11] is used. For the Support Vector
Machine algorithm, the data set (powers in dB) is not di-
rectly processed. A linear transformation of these powers is
performed so that the minimum power becomes 0 and the
maximum power 1. The following values for the parameters
are used: C = 10, ε = 10−6 and an exponential kernel. This
means that we have to significantly increase the penalization of
not respecting the bounds for the estimation since the default
value for C is 1.

Figure IV.3 shows that the error can be large (up to 80m)
when the power received is not filtered . The errors are very
significantly decreased when the powers are filtered (at most
20m). The error is minimum in the center of the road and
near to the beginning (at x = 50m) and to the end of the road
(at x = 500m). We note that there is no significant difference
when there is no error on the measurements and when the
errors are filtered.
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Fig. IV.3. Position errors versus position x ∈ [0, 600] on the roads with the
support vector technique.

D. Results with more fading

In the following, the results of our three algorithms when the
power received is more affected by the fading are presented.
A Rayleigh fading (of rate 1) is assumed which means that
there is no prominent direct path between the vehicle and the
roadside units. The power received consists in the random
combination of many independent paths. In these conditions,
the predictions without filtering the measurement lead to really
poor results. Thus they are not included in our presentation.

We observe that the predictions are much less precise than with
log-normal fading. Here the predictions are mostly within the
interval [−50m, 50m], unlike before, most of the predictions
were within the interval [−20m, 20m],

We note that for KNN and Random Forest the predic-
tions are more accurate when the vehicle is in the intervals
[100m, 200m] and [400m, 500m], in other words centrally
located between two RSUs.
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Random Forest technique.
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Fig. IV.6. Position errors versus position x ∈ [0, 600] on the roads with the
support vector technique.

E. Comparison : KNN , Random Forest and Support Vector
Machine

1) Direct link and log-normal fading: The comparison be-
tween KNN , Random Forest and Support Vector Machine is
carried out on the average prediction error and is reported
in Table I. We first consider the performance when the
measurements are filtered. We note that KNN is the most
accurate algorithm with an average error of 5.37m before
Random Forest with an average error of 7.49m and SVM
with and an error of 9.68m. The results are very similar when
we do not consider any measurement errors, in particular the
ranking between our three schemes remains the same.
When the errors are not filtered, the ranking is different.
Random Forest comes first with an average error of 8.05m
then KNN (average error 10.66m) and finally SVM (average
error 24.67m).
2) No prominent path and Rayleigh fading (no direct path
Rayleigh fading): The comparison between the three tech-
niques is given in Table II. In contrast to the results we



TABLE I
MEAN ERROR VERSUS PREDICTION TECHNIQUES (DIRECT PATH

PROPAGATION)

Predicton Error (in meters) KNN RF SVM
Power: Exact measurement 5.93 6.62 10.50

Power: Measurement with error 10.66 8.05 24.67
Power: Measurement with error filtered 5.37 7.49 9.68

have obtained with log-normal fading we observe that with
Rayleigh fading, it is the Support Vector Machine technique
that provides the best average error with a mean accuracy
of 16.17m. In second position we have the Random Forest
technique with an average position error of 27.91m and in
third position the KNN technique with 31.07m.

TABLE II
MEAN ERROR VERSUS PREDICTION TECHNIQUES (NO DIRECT PATH

PROPAGATION)

Predicton Error (in meters) KNN RF SVM
Measurement with error filtered 31.07 27.91 16.17

V. CONCLUSION

In this paper, we present three machine-learning techniques
to predict the position of a vehicle using the reception power
of packets sent to fixed nodes whose positions are precisely
known.
We have studied the KNN technique, the Random Forest
technique and the Support Vector Machine technique. The
simplest method is the KNN technique; in the data set the
scheme selects the k closest samples of the actual measure-
ment. In the Random Forest, we use a classification tree to
generate different classes according to a random classification
tree. The location in each class is supposed to be the average
location of the points in this class. The tree is then used in
prediction; the location predicted being that of the training
samples at the same leaf of the random trees. The Support
Vector Machine is an approximation technique which usually
uses kernels as base functions. The main goal is to maintain the
sample and its approximation with a bounded error as much
as possible. In general, the base functions are exponential
functions.
The numerical experiments presented in this paper demon-
strate that a precise prediction can only be obtained when there
is a main direct path of propagation. In contrast, with Rayleigh
fading, the accuracy obtained is much less striking. We also
observe the great importance of filtering the measurements.
Except for Random Forest, the average prediction error is
divided by more than two when the filtering is used. With
Rayleigh fading, the filtering is mandatory to obtain acceptable
results.
With a main direct path (and thus log-normal fading) we
observe that the KNN technique offers the best prediction in
terms of mean error, closely followed by the Random Forest
technique and somewhat further by the SVM scheme. We

observe the same ranking when we do not consider any power
measurement errors. Random Forest is very robust against
measurement errors. The mean prediction error (8.05m) is
only improved by 6% when filtering is used. With Rayleigh
fading, SVM is by far superior to Random Forest and KNN. As
a future work, we plan to extend our study to neural network
techniques.
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