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We have compared different time profiles for the trajectory of the centre of a quadrupole magnetic
trap designed for the transport of cold sodium atoms. Our experimental observations show that
a smooth profile characterized by an analytical expression involving the error function minimizes
the transport duration while limiting atom losses and heating of the trapped gas: moving the gas
over nearly 31 cm requires only about 600 ms. Using numerical calculations of single atom classical
trajectories within the trap, we show that this observation can be qualitatively interpreted as a
trade-off between two types of losses: finite depth of the confinement and Majorana spin flips.

I. INTRODUCTION

The transport of cold atoms over macroscopic dis-
tances is now a well established technique that allows
one to spatially isolate two stages in the production of
degenerate quantum gases [1]; typically a cold sample
is prepared in a magneto-optical trap (MOT) in a first
vacuum chamber, and conveyed to a second one with a
lower background pressure for a final evaporation stage.
This, for instance, gives the opportunity to improve op-
tical and mechanical access where the atoms are manip-
ulated and observed. This can also allow for an increase
of the repetition rate of the experiments, with the MOT
being loaded while the final part of the experimental se-
quence is performed.

Various implementations have been explored involving
either magnetic or optical fields: a chip magnetic con-
veyor belt [2, 3], time-varying currents in an assembly of
anti-Helmholtz coils [1, 4], optical tweezers [5, 6], a single
pair of anti-Helmholtz coils on a translation stage [7, 8],
a train of Ioffe-Pritchard traps [9] or a unidimensionnal
optical lattice [10, 11]. Recently, optimal control has
been applied in harmonic [12] and anharmonic poten-
tials [13, 14]. These works allow for the design of fast
transport trajectories going far beyond the adiabaticity
criterion. In linear traps, the possibility of Majorana spin
flips [15] prohibits the existence of adiabatic trajectories
which motivates other approaches.

The main objective of this paper is to compare different
time profiles for the trajectory of a quadrupole magnetic
trap centre and attempt to identify the main factors ex-
plaining their performance. In section II, we recall the
basic principles of magnetically trapping cold atoms in
a quadrupole magnetic trap and give details on the ex-
perimental design we have used to transport cold atomic
gases. In section III we investigate different time profiles
for the trap centre motion and present our experimen-
tal observations. In order to understand our results, we
have performed simulations of classical trajectories of the
atoms within the moving quadrupole trap. Comparing
different time profiles, we propose a qualitative explana-
tion of our experimental results in section IV. Finally,
section V gives concluding remarks.

II. EXPERIMENTAL IMPLEMENTATION

A. Basic principles

A straightforward realization of a quadrupole trap can
be experimentally obtained with two identical coils in
an anti-Helmholtz configuration: in practice this corre-
sponds to two coils separated along their common axis
of revolution by a distance comparable to their radii and
carrying the same current, I, flowing in opposite direc-
tions. At the symmetry centre of the assembly, O, the
produced magnetic field B vanishes and can be approx-
imated close to this position by a quadrupole field. As-
suming z is the axis of revolution of the assembly, it reads

B(x, y, z) '

−b′x−b′y
2b′z

 (1)

where b′ is the modulus of the magnetic field gradient in
the x-y plane. The latter depends on the exact geometry
of the coils and is proportional to I [16]. In the following,
we keep for simplicity the notation B to refer to the total
magnetic field induced by a given coil configuration.

A set of two pairs of anti-Helmholtz coils with z-axis
of revolution separated along the y-axis by a distance
comparable to their radii also produces a quadrupole field
at a position (0, y0, 0) entirely determined by the ratio
of the currents flowing in each pair of coils. Close to
(0, y0, 0), the resulting magnetic field B reads

B(x, y, z) ' 2b′


− α

1 + α
x

− 1

1 + α
(y − y0)

z

 (2)

where α is defined as the ratio of magnetic gradients
along the x- and y-axis and b′ is half the modulus of
the magnetic field gradient along z. The expression in
Eq. (2) takes into account the fact that ∇ · B = 0 as
well as the different symmetries of this particular current
distribution.

An atom with magnetic moment µ interacts with the
magnetic field leading to a coupling V . For 23Na atoms
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in their ground state 32S1/2 as long as V remains small
compared to the hyperfine splittings, one can write

V (x, y, z) = gFmFµB |B(x, y, z)| (3)

where gF is the Landé factor in the ground state F , µB
the Bohr magneton and mF the atomic spin projection
onto the local direction of the magnetic field. As soon
as gFmF > 0, V presents a minimum where atoms can
be confined. In the following, we neglect gravity since
the magnetic gradients b′ considered here are sufficiently
large and assume mF = −1 since we consider 23Na atoms
trapped in the |F = 1,mF = −1〉 Zeeman substate. In
this case gF = −1/2.

A minimum of three free parameters are necessary to
control independently the values of y0, α and b′. With
two sets of anti-Helmholtz coils, only two currents can
be freely and independently tuned. Therefore, it is not
possible to move the quadrupole trap along the (Oy) axis
while keeping both α and b′ constant [1]. Adding a third
pair of anti-Helmholtz coils along the (Oy) axis offers an
additional degree of freedom which lifts this constraint
while keeping the same shape for the magnetic field, B,
as in Eq. (2).

Overall, the experimental design of a magnetic trans-
port of cold atoms in a quadrupole trap relying on static
anti-Helmholtz coils requires a minimum of three inde-
pendent current supplies. In practice, additional experi-
mental constraints may limit the control over the trap pa-
rameters y0, α and b′. For instance, our current supplies
are not bipolar, so the range of accessible values for α is
restricted to values typically larger than 1.5. We expect
that better results can be obtained with bipolar current
supplies which would allow to keep α = 1 throughout the
magnetic transport. Moreover, switching smoothly from
one set of three pairs of anti-Helmholtz coils to the next
requires going through a configuration where only two
current supplies out of three deliver a non-zero current.
In turn, at these switching positions, only α or b′ but not
both can be freely set.

B. Experimental design

The design of our magnetic transport is generally in-
spired by [1] while its specific implementation is close
to [4]. It relies on 15 pairs of anti-Helmholtz coils and an
additional so-called push coil (see Fig. 1). It allows for
transport of atoms along two stages of orthogonal direc-
tions and of length L1 = 30.7 cm and L2 = 34.4 cm
respectively. The atoms are initially confined into a
magneto-optical trap (MOT) [17] before being trans-
ferred into a quadrupole magnetic trap involving only
the MOT coils. During the process, b′ is ramped up
to 65 G/cm and the atoms eventually occupying the
|F = 1,mF = −1〉 Zeeman substate are trapped. At
the end of the magnetic transport, the atoms are ready
to be transferred onto an atom chip.

Push

MOT chamber

Atom chip chamber

C13

C1
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C5

C7

C6

C4
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C10
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C12
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FIG. 1. Overview of the magnetic transport design which
connects the MOT chamber to the atom chip chamber. It
consists in 15 pairs of anti-Helmholtz coils: MOT, C1 to C13

and MT. An additional push coil is used to produce a mag-
netic gradient which allows us control of the geometry of the
quadrupole magnetic trap at the beginning of the transport.

Determining the value of the currents passing through
the different coils along the first stage of the magnetic
transport requires setting the dependence of α and b′

on y0. We have chosen to keep b′ = 65 G/cm constant
throughout the magnetic transport. The value of α is
equal to one at the beginning and at the end of the first
stage, where a single pair of anti-Helmholtz coils is used
and the atomic cloud is at rest. As mentioned in the
previous section, since we rely on only three non-bipolar
current supplies, the value of α is also constrained at
each switching position between different sets of three
pairs of anti-Helmholtz coils. We explain in Appendix B
how to determine these positions. The value of α is lin-
early interpolated between these spots apart from the
last part of the first stage where only two pairs of anti-
Helmholtz coils are then available (C6 and C7) and there-
fore α evolves freely. This is also the case at the beginning
(C7 and C8) and end (C13 and MT) of the second stage.

Relying on the analytical formula of the magnetic field
induced by a single current loop [16] and neglecting the
helicity of the coils, it is possible to find an analytical for-
mula for |B(x, y, z)| in Eq. (3) which takes into account
the geometry of each coil and includes their respective
number of windings. At each position y0 we then com-
pare this potential to the approximate one arising from
Eq. (2). Fixing α and b′, we fit the current in the dif-
ferent coils so that these two potentials overlap in the
best possible way. The results are shown in Fig. 2. The
relative accuracy of the fit on y0, α and b′ after this pro-
cedure is better than 0.1%. Additional technical details
are given in Appendix B. The same method is used for
the second stage of the magnetic transport.
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FIG. 2. (a) Currents in the different coils along the first stage of the magnetic transport. Each color corresponds to one of
the current supplies. (b) Fitted value of the horizontal trap anisotropy ratio, α, along the first stage of the magnetic transport
(black line). The red dashed line shows the fit target for α (see Appendix B for details). In (a) and (b), the black dotted
vertical lines indicate the switching positions between two consecutive sets of three pairs of anti-Helmholtz coils.

III. TIME PROFILES COMPARISON

A. Overview

Controlled displacement of the magnetic trap requires
defining the dependence of y0 on the time t. In this
section we focus on three different trajectories for the
trap centre: constant velocity, constant acceleration and
an extremely smooth path based on the error function
where all time derivatives of the position of the trap are
continuous. A constant velocity trajectory leads to the
following equations for the position of the trap centre:

y0(t) = 0 t ≤ 0

y0(t) = L1
t

∆t
0 < t < ∆t

y0(t) = L1 t ≥ ∆t (4)

where ∆t is the duration of the one-way magnetic trans-
port from the MOT chamber to C7. In this case the ac-
celeration of the trap centre diverges at t = 0 and t = ∆t
since the velocity is discontinuous. Outside these two
points, the effective potential for the atoms in the co-
moving frame is the same as in the lab frame.

For a constant acceleration trajectory we find:

y0(t) = 0 t ≤ 0

y0(t) = 2L1

(
t

∆t

)2

0 < t ≤ ∆t

2

y0(t) = L1

[
1− 2

(
1− t

∆t

)2
]

∆t

2
< t < ∆t

y0(t) = L1 t ≥ ∆t. (5)

In this case the velocity of the trap centre is continuous
while the acceleration is not. The effective potential for
the atoms in the comoving frame becomes tilted so that
its gradient along the (Oy) axis is ∓2gFmFµBb

′/(1 +

α) + 4mL1/∆t
2 for y < y0(t) and y > y0(t) respectively

with t ∈ [0, ∆t/2]. This is the opposite for t ∈ [∆t/2, ∆t],
which implies an abrupt change in the tilt of the potential
in the middle of the trajectory.

Countless other trajectories are conceivable. A few
extra examples are given in Appendix C. We will focus in
the following on a family of trajectories which give good
results experimentally. It relies on the error function:

y0(t) = 0 t ≤ 0

y0(t) =
L1

2

{
1 + erf

[
−γ
(
t

∆t

)−δ
+ γ

(
1− t

∆t

)−δ]}
0 < t < ∆t

y0(t) = L1 t ≥ ∆t (6)

where δ > 0 and γ = 2−3/2−δ
√

(δ + 1)(δ + 2)/δ ensures
that the jerk of the trap centre at ∆t/2 vanishes. This
allows the acceleration to be close to zero for a large
portion of L1. This trajectory is extremely smooth, with
continuous derivatives at all orders. The potential in the
comoving frame is only tilted at the beginning and the
end of the trajectory.

Figure 3 shows the behaviour of the position (a), ve-
locity (b) and acceleration (c) of the trap centre for dif-
ferent time profiles. Slight changes in the trajectory can
result in large modifications of the acceleration. When
the absolute value of the latter becomes larger than
2gFmFµBb

′/[(1 + α)m], the potential V in the comov-
ing frame tilts enough so that the atoms are not trapped
anymore. This sets a lower limit on ∆t above which the
atoms remain confined throughout the magnetic trans-
port. This is illustrated in Fig. 3(d) for the different
time profiles considered here. For our typical magnetic
gradients and α ' 2 we see that ∆t must be at least
larger than 300 ms for the error function time profile.

It is important to note that experimentally, the band-
width of the current supplies is finite which may filter the
current output profiles and affect the magnetic transport



4

(b)

t/∆t

∆
t

L
1

d
y
0

d
t

(a)

t/∆t

y
0
/
L

1

(c)

t/∆t

∆
t2

L
1

d
2
y
0

d
t2

(d)

∆t [ms]

∆
t2

L
1

2
g F

m
F
µ
B
b′

(1
+

α
)m

0 100 200 300 400 5000 0.5 1

0 0.5 1 0 0.5 1

0

10

20

30

40

-20

-10

0

10

20

0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

FIG. 3. (a) Behaviour of y0 in units of L1 for different time profiles: constant velocity (blue solid line), constant acceleration
(red solid line), error function shape (green lines): δ = 0.02 (solid), δ = 0.1 (dashed) and δ = 0.5 (dashed-dotted). (b) Same
as (a) for the velocity of the trap centre expressed in units of L1/∆t. (c) Same as (a) for the acceleration of the trap centre
expressed in units of L1/∆t

2. (d) Absolute value of the acceleration corresponding to the slope of the potential V in units of
L1/∆t

2: b′ = 65 G/cm and α = 1.937 (black solid line) and α = 1 (black dashed line). The vertical black segments indicate the
range of slopes covered during a trajectory for some particular values of ∆t. The three horizontal green lines correspond to the
maximal absolute value of the acceleration in units of L1/∆t

2 of the error function time profiles: δ = 0.02 (solid line), δ = 0.1
(dashed line) and δ = 0.5 (dashed-dotted line). The horizontal red line is the same for the constant acceleration profile. As
soon as the acceleration corresponding to the slope of the potential V lies below one of the horizontal lines, the atoms become
untrapped. As an example, the grey shaded area indicates the range of slopes leading to untrapped atoms for the error function
time profile with δ = 0.02.

sequence. We have checked that this effect is negligible
in the different situations we have studied.

B. Experimental results

We have experimentally compared the number of
atoms remaining in the magnetic trap after a round trip
along the first stage of the magnetic transport for dif-
ferent time profiles and different ∆t. The time profile is
just reversed on the way back without any waiting time
at the end. In order to account for the losses due to
the finite lifetime of the atoms in the trap (about 15 s),
we have normalized the results by the number of atoms
remaining in the magnetic trap after the same total du-
ration, 2∆t, but without moving; this leads to the ratio
rN . Fig. 4(a) shows that the error function time pro-
file allows us to keep a maximum of about 75% of the
atoms after the round trip and for shorter ∆t than any
other time profile. The worst results are obtained with

constant velocity time profile while constant acceleration
time profile gives intermediate results.

We have also compared the results of the error function
time profile for different δ. The results are shown in
Fig. 4(b). The best results are obtained for the lowest
value of δ. Note that δ = 0 corresponds to the following
trap centre trajectory

y0(t) = 0 t ≤ 0

y0(t) =
L1

2

{
1− erf

[
log

(√
∆t− t
t

)]}
0 < t < ∆t

y0(t) = L1 t ≥ ∆t. (7)

Smooth trajectories reaching high values for the acceler-
ation of the trap centre for a short time seem hence to be
favoured. This is confirmed by the results of Fig.8(b), de-
scribed in Appendix C. The limit of this strategy comes
from the tilt of the potential in the comoving frame:
above a certain value of the acceleration the atoms be-
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FIG. 4. (a) Ratio rN of the number of atoms remaining in the magnetic trap after a round trip along the first stage of the
magnetic transport for different duration ∆t and different time profiles: constant velocity (blue solid line), constant acceleration
(red solid line) and error function shape with δ = 0 (green solid line). (b) Ratio rN of the number of atoms remaining in the
magnetic trap after a round trip along the first stage of the magnetic transport for the error function time profile with different
values of δ and different ∆t: 500 ms (green solid line), 750 ms (olive solid line) and 1000 ms (light green solid line). (c),(d)
Same as (a),(b) for the temperature ratio rT .

come anti-trapped resulting in large atom losses.

In order to estimate the heating of the gas due to the
magnetic transport, we have measured the temperature
T of the cloud with a time-of-flight expansion. Relying
on a model described in Appendix E, we are able to ex-
tract T from single shot data. We then normalize the
results with the temperature of a gas at rest in the trap
for the same total duration 2∆t. This leads to the ra-
tio rT presented in Fig. 4(c). Heating is observed for
the shortest durations where rN starts to decrease sig-
nificantly. The error function time profile gives the best
results in particular for the shortest durations. Note that
our clouds are not at thermal equilibrium right after the
loading of the magnetic trap. Since the collision rate in
the trap is low (see Appendix D) the gas barely reaches
thermal equilibrium even for the longest transport dura-
tions. Because of this, the temperature we extract from
our data is strictly speaking an effective temperature and
can be different along the horizontal and vertical direc-
tion. Nevertheless, our estimation of rT should still be
accurate. Throughout the paper, rT is estimated from
temperature fits along the horizontal direction.

IV. CLASSICAL SIMULATIONS

Two loss sources can be considered in order to explain
our observations: first, losses due to the finite depth of
the magnetic trap. Second, Majorana losses due to the
fact that the atomic spins cannot adiabatically follow the
changes in the magnetic field orientation [15]. In this
section we simulate classical trajectories of the atoms in
the moving trap in order to compare different loss types
for the different time profiles.

Considering each atom as a classical point-like particle,
the equation of motion for each atom reads

m
d2ra
dt2

= −∇V (y0(t), t) (8)

where ra(t) = (xa(t), ya(t), za(t)) is the position of an
atom at time t and the potential V is fully determined
by the three parameters b′, α(y0) and y0(t) as in Eq. (3)
with the approximate |B(x, y, z)| from Eq. (2). In prin-
ciple, we could have relied on the analytical formula for
V taking into account the exact geometry of the different
coils but this significantly slows down the numerical cal-
culation and would have required several weeks of com-
putation on a single computer. Moreover we don’t expect
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FIG. 5. (a) Ratio rN of the number of atoms remaining in the magnetic trap after a simulated round trip along the first stage
of the magnetic transport for different duration ∆t and different time profiles: constant velocity (blue solid line), constant
acceleration (red solid line) and error function shape with δ = 0 (green solid line). The dashed lines show the same ratio but
considering only finite trap depth losses. The dotted lines only take into account losses associated with Majorana spin flips.
(b) Temperature ratio rT estimated from the simulated velocity distribution. The color code is the same than in (a).

that this would significantly change our conclusions. In
the following, b′ = 65 G/cm and α(y0) follows the profile
depicted in Fig. 2(b) as in the experiment. The trap cen-
tre trajectory, y0(t), follows a time profile with either a
constant velocity, Eq. (4), a constant acceleration, Eq. (5)
or an error function with δ = 0, Eq. (7). As a reference,
we have also computed atomic trajectories in a static po-
tential V with parameters b′ = 65 G/cm, α(0) = 1 and
y0(t) = 0.

With our typical atom number and temperature, the
collision rate of the atoms in the trap is smaller than 1 s−1

(see Appendix D). To keep the treatment as simple as
possible, in the following we do not take into account
interatomic interactions. Despite this choice, we expect
our main conclusions to remain qualitatively valid thanks
to the low collision rate experienced by the atoms.

In order to estimate the phase-space density of the gas
throughout a roundtrip along the first stage of the mag-
netic transport, we have simulated 1000 different atomic
trajectories indexed by a parameter i, with initial posi-
tions ria(t) = (xia(0), yia(0), zia(0)) randomly picked in or-
der to reproduce a system initially at thermal equilibrium
at temperature T = 100 µK in the static trap V with pa-
rameters b′ = 65 G/cm, α(0) = 1 and y0(0) = 0 (see
Appendix F). This allows us to introduce a length scale
r0 = kBT/(gFmFµBb

′), with kB the Boltzmann con-

stant, and a velocity scale v0 =
√
kBT/m. The length r0

is related to the size of the atomic cloud at rest while the
velocity v0 is simply the rms velocity along each direction
of space.

In order to estimate finite depth losses in the trap
associated to each time profile, we have computed for
each trajectory i the maximal distance to the trap cen-
tre r̄imax = max

t

√
xia(t)2 + ȳia(t)2 + zia(t)2 where ȳia(t) =

yia(t) − y0(t). In our simulations, the potential is ideal-
ized and the trap depth is infinite. The atoms are never
lost. This is not the case in the experimental realization

of V , where the radius of the magnetic coils fixes an up-
per limit to the maximal distance to the trap centre (see
Fig. 6(b)). To reproduce this effect, we fix an upper limit
r̄max for the maximal distance to the trap centre above
which the simulated atom is considered lost.

Estimating losses associated to Majorana spin flips re-
quires the comparison of two frequencies: the rate asso-
ciated with changes in the orientation of the magnetic

field νiB(t) =

∥∥∥∥ ddt
{

B[ria(t), t]

‖B[ria(t), t]‖

}∥∥∥∥ and the Larmor fre-

quency νiL(t) = gFmFµB
∥∥B[ria(t), t]

∥∥ /h. We define the

ratio riMaj = max
t
νiB(t)/νiL(t). As soon as riMaj gets close

to 1, the probability of spin flip is high. As for the dis-
tance to the trap centre, we set an upper limit rmax

Maj for
this ratio. Majorana losses and finite trap depth losses
can be treated independently since they correspond in
principle to different types of atoms: Majorana spin flips
happen mostly with slow atoms spending too much time
in the low magnetic field regions while finite trap depth
losses arise from hot atoms reaching the upper limit of
the trapping potential.

Relying on the limits r̄max and rmax
Maj , we calculate the

ratio rN corresponding to the ratio of simulated atoms
remaining in the trap after a round trip along the first
stage of the magnetic transport for different duration ∆t
and different time profiles. All the obtained ratios are
normalized by the ones obtained from simulations in a
static trap for the same duration. The results are shown
in Fig. 5(a) for r̄max = 10r0 and rmax

Maj = 0.4. These two
values have been set in order to reproduce in the best pos-
sible way the experimental results presented in Fig. 4(a).
We see that our simulations qualitatively reproduce the
experimental results of Fig. 4(a) even if they fail to ex-
plain the better performance of the error function time
profile at short duration ∆t. We see that finite trap
depth losses are dominant for short ∆t whereas losses
associated with Majorana spin flips contribute more for
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long duration of the magnetic transport. We also remark
that a constant acceleration trajectory minimizes finite
trap depth losses but presents a slightly larger Majorana
spin flip rate compared to the error function time profile.
Setting an upper limit to the ratio riMaj is probably too
crude and a more precise treatment of Majorana losses
might potentially lead to a better reproduction of the
experimental results for short durations.

In order to estimate the heating induced by the differ-
ent time profiles we have calculated the velocity distri-
bution of the simulated atoms after a round trip. This
allows us to estimate the kinetic energy of the atomic
distribution that we normalize by the one obtained from
the simulations in the static trap for the same duration
to obtain the ratio rT . In this analysis, we only consider
the simulated atoms that remain in the trap after a round
trip taking into account the limits r̄max and rmax

Maj . The

results are shown in Fig. 5(b). It roughly agrees with our
experimental results presented in Fig. 4(c): the constant
velocity time profile leads to significantly larger temper-
atures compared to the other two trajectories. At short
duration of the magnetic transport we do not observe
heating in the simulations for the constant acceleration
and error function time profiles. This might come from
the fact that we do not take into account any collision
in the simulation. Even if the collision rate is weak, it
tends to redistribute the energy acquired during the ac-
celeration phases among the atoms.

Overall, these simulations tend to indicate that the er-
ror function time profile realizes a trade-off between the
two sources of losses we have taken into account. This
is in qualitative agreement with our experimental results
and is probably sufficient to explain why the error func-
tion time profile leads to the best magnetic transport
efficiency even if our simple classical simulations fail to
reproduce this point. A more careful analysis taking into
account the collisions and the exact behaviour of Majo-
rana spin flips would be required to fully check this point.

V. CONCLUSION

Comparing different time profiles, we have identified
an efficient trajectory for the centre of a quadrupole trap
designed for the transport of cold sodium 23Na atoms. It
relies on a smooth profile parametrized by the error func-
tion. Relying on classical simulations of individual tra-
jectories of the atoms during the transport, we have been
able to qualitatively investigate our experimental results:
two main loss sources - finite depth of the trap and Ma-
jorarana spin flips - limit the efficiency of the magnetic
transport for the shortest durations. Constant velocity
trajectories tend to minimize the amount of Majorana
spin flips while constant acceleration ones optimize the
finite trap depth losses. Faster magnetic transport also
tends to minimize Majorana losses while finite trap depth
becomes a bigger limitation for all time profiles. The er-
ror function trajectory corresponds to a trade-off between

these two types of losses with a sharp but finite acceler-
ation at the beginning and the end of the transport and
an almost constant velocity in between. Overall, we are
able to transport on the order of 70% of the atoms over a
roundtrip along the first stage of the magnetic transport
(nearly 30 cm) in about 2×600 ms with limited heating of
the gas. We have also tested that the same results could
be obtained along the beginning of the second stage of
the magnetic transport.

While this work does not answer the question of what
is theoretically the optimal trajectory to transport cold
atoms in a quadrupole trap over large distances, it gives
good hints of the direction where to look for. We hope
this will contribute to stimulate theoretical works rely-
ing on optimal control to determine the best transport
trajectories in linear traps (see [18, 19] and references
therein).

Appendix A: Experimental details

The different coils are made of flat copper wires of
rectangular cross section 1×2.5 mm2. They are insulated
with a thin Kapton R© layer. The MOT and Cl coils,
l ∈ [1, 12], are made of 2 layers of 22 windings with outer
and inner diameters of 72 mm and 26.6 mm respectively.
Each C13 coil is made of 5 Cl coils soldered on top of
each other. Each magnetic trap coil (MT) is made of 2
coils soldered on top of each other with 2 layers of 27
windings with an inner diameter of 124 mm. The push
coil is conical and made of 16 layers with windings from
2 to 16 and an inner diameter of 38 mm. Except for
the latter, all the coils are mounted in a water-cooled
aluminium frame.

Three current supplies (one SM 15-100 and two SM
60-100 models from DELTA ELECTRONIKA) are used
to deliver the currents in the different coils. An elec-
tronic box relying on MOSFETs allows to quickly switch
from one pair of coils to another one. The open/close
sequences can be read from a rewritable component of
the box, or they can be delivered as digital signals by an
ADwin-Pro II system with a clock period of 4 µs. The
latter also provides the analog signals setting the output
current of the different supplies at all time steps.

Appendix B: Determination of the currents

In order to determine the positions where we switch
from one set of three pairs of anti-Helmholtz coils to the
next, we first considered a situation where we only use
two pairs of anti-Helmholtz coils to move the atoms. Fix-
ing b′ = 65 G/cm, we fit the currents of the two pairs of
anti-Helmholtz coils which lie on both sides of y0. This
has the advantage of leading to positive current solutions
only. If y0 corresponds to the position of the symmetry
axis of a given pair, the current in the other pair has to
be zero and α(y0) = 1. As shown in Fig. 6(a), between
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FIG. 6. (a) Dependence of α on the centre position of the magnetic quadrupole trap, y0, when only two consecutive pairs of
anti-Helmholtz coils are used. The vertical dotted lines indicate the switching positions from one set of three pairs of anti-
Helmholtz coils to the next (see text). The red dashed lines connect the maxima of α. (b) Cut in the magnetic quadrupole
potential along the y axis around y0 = L1/2. The red dashed line corresponds to V of Eq. 3 taking the approximate |B(x, y, z)|
from Eq. 2 with b′ = 65 G/cm and α(y0) = 1.87. The black line corresponds to the analytical formula of V which takes into
account the details of the geometry of each coil. The current flowing in the coils have been adjusted so that the black lines
optimally fit the red dashed line within the light grey area (see text).

two of these spots, α reaches a maximum: α = 1.87 for
the second to the fifth maximum, and α = 1.937 for the
sixth and seventh. The difference between these two val-
ues comes from the fact that the distance between the
coils and the magnetic transport axis is slightly larger
for the last three pairs of anti-Helmholtz coils of the as-
sembly. These positions of maximal α are the ones we
use in our design to switch from one set of three pairs
of anti-Helmholtz coils to the next due to the fact that
adding a third pair of anti-Helmholtz coils to adjust the
shape of the quadrupole trap V can only lead to an in-
crease of α if we restrict ourselves to positive currents.
This is actually the opposite with the push coil for which
the current direction is set so that positive currents in
the push coil lead to lower values of α. This is why the
first switching position in Fig. 6(a) is set where α = 1.87,
as in the next ones, and not to the maximum value of α
reached with these two pairs of anti-Helmholtz coils.

In order to adjust the shape of the quadrupole trap V
throughout the magnetic transport, we fit the analytical
formula for V discussed in section II to the approximate
profile given by Eq. 3 with b′ = 65 G/cm and α(y0) fol-
lowing the red dashed profile in Fig. 2(b). More precisely
we compute V (x, y0, 0), V (0, y0 + y, 0) and V (0, y0, z)
for x, y, z ∈ [-5 mm, 5 mm] with a spatial grid of 101
points along each direction and rely on a least square al-
gorithm to minimize the distance between the potential
obtained by the analytical formula and the one deduced
from Eq. 3. The currents in the three supplies are the
only free parameters here. For the last few centimetres
of the transport, only two current supplies are used and
only the profile of V along the (Oz) axis is used. A typ-
ical result is illustrated in Fig. 6(b).

Appendix C: Other examples of trajectories

We have tested a few additional trajectories in order to
complete our experimental observations presented in sec-
tion III B. Their respective behaviour is shown in Fig. 7.
The first time profile realizes a sinusoidal profile for the
acceleration:

y0(t) = 0 t ≤ 0

y0(t) = L1

[
t

∆t
− 1

2π
sin

(
2π

t

∆t

)]
0 < t < ∆t

y0(t) = L1 t ≥ ∆t. (C1)

Such trajectory allows us to check whether the abrupt
change in the acceleration in the constant acceleration
time profile is critical or not. Fig. 8(a) actually shows
that the answer is negative since it is hard to distinguish
the performances of the two time profiles.

We have also tested a time profile very similar to Eq. 7
but replacing the error function by a hyperbolic tangent:

y0(t) = 0 t ≤ 0

y0(t) =
L1

2

{
1 + tanh

[
−γ
(
t

∆t

)−δ
+ γ

(
1− t

∆t

)−δ]}
0 < t < ∆t

y0(t) = L1 t ≥ ∆t. (C2)

Such trajectory converges toward a constant velocity
time profile when δ tends to zero. In Fig. 8(b), we observe
an optimum around δ ' 0.2 for short values of ∆t. This
is in agreement with Fig. 7(d), where we qualitatively
see that for δ > 0.2 the duration ∆t must be larger than
500 ms so that the atoms remain trapped throughout the
transport.
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FIG. 7. (a) Behaviour of y0 in units of L1 for different time profiles: sinusoidal acceleration (red solid line), hyperbolic tangent
function shape (green lines): δ = 0.2 (solid), δ = 0.3 (dashed) and δ = 0.9 (dashed-dotted). (b) Same as (a) for the velocity
of the trap centre in units of L1/∆t. (c) Same as (a) for the acceleration of the trap centre expressed in units of L1/∆t

2.
(d) Absolute value of the acceleration corresponding to the slope of the potential V in units of L1/∆t

2: b′ = 65 G/cm and
α = 1.937 (black solid line) and α = 1 (black dashed line). The vertical black segments indicate the range of slopes covered
during a trajectory for some particular values of ∆t. The three horizontal green lines correspond to the maximal absolute value
of the acceleration in unit of L1/∆t

2 of the hyperbolic tangent function shape time profiles: δ = 0.2 (solid line), δ = 0.3 (dashed
line) and δ = 0.9 (dashed-dotted line). The horizontal red line is the same quantity for the sinusoidal acceleration profile. As
soon as the acceleration corresponding to the slope of the potential V lies below one of the horizontal line, the atoms become
untrapped. As an example, the grey shaded area indicates the range of slopes leading to untrapped atoms for the hyperbolic
tangent function time profile with δ = 0.2.

Appendix D: Collision rate

The collision rate γc can be defined as [20]

γc = 〈n〉 〈vr〉σ (D1)

where 〈n〉 is the mean density in the trap V , 〈vr〉 the aver-
age relative collision velocity and σ = 8πa2 the scattering
cross-section with a the scattering length. The scattering
length for sodium atoms in the |F = 1,mF = −1〉 Zee-
man substate is a = 2.75 nm [21]. For a cloud at thermal
equilibrium in the trap V with α = 1, one finds

〈n〉 =
N

32πr30
〈vr〉 =

4√
π
v0 (D2)

where N is the total atom number in the trap.
We show in Fig. 9 how γc depends on N . For our

typical atom number and temperature, γc <∼ 1 s−1. This
is in good qualitative agreement with our experimental
observations of the thermalization time of our gas after

loading into the magnetic quadrupole trap which is on
the order of a few seconds, where ∼ 3γ−1c is expected
from numerical simulations [20].

Appendix E: Thermometry

We estimate the temperature of the trapped gas by
relying on a fit of the density profile of the atoms after a
time of flight ttof . If we assume the atoms to be initially
at thermal equilibrium at a temperature T , the density in
the quadrupole trap n is proportional to exp [−V/(kBT )].
More precisely, assuming α = 1, we have

n(x, y, z) =
N

4πr30
exp

[
−
√
x2 + y2 + 4z2

r0

]
. (E1)
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FIG. 8. (a) Ratio rN of the number of atoms remaining in the magnetic trap after a round trip along the first stage of the
magnetic transport for different duration, ∆t, and different time profiles: sinusoidal acceleration (red solid line), constant
acceleration (grey solid line) and hyperbolic tangent function shape with δ = 0.3 (green solid line). (b) Ratio rN of the number
of atoms remaining in the magnetic trap after a round trip along the first stage of the magnetic transport for the hyperbolic
tangent function time profile with different values of δ and different ∆t: 500 ms (green solid line), 750 ms (olive solid line) and
1000 ms (light green solid line). (c),(d) Same as (a),(b) for the temperature ratio rT .
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FIG. 9. Collision rate γc in the quadrupole magnetic trap V
with parameters b′ = 65 G/cm and α = 1 for different atom
number N and for a temperature T = 50 µK (black solid
line), T = 100 µK (blue dashed line) and T = 200 µK (red
dashed-dotted line).

The velocity of the atoms v simply follows a Maxwell-
Boltzmann distribution

p(v) =
1(√

2πv0
)3 exp

(
− v2

2v20

)
. (E2)

Neglecting interatomic collisions during the expansion of
the gas, the density distribution after a time of flight ttof
stems from the free expansion of the atoms

n(r; ttof) =
1

t3tof

∫
du n(u)p

(
r− u

ttof

)
. (E3)

While Eq. E3 does not simplify into a simple analytical
expression, integrating n(r; ttof) along the y and z axis
leads to
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nyz(x; ttof) =
βtN

2
√

2πr0
exp

(
− x2

2β2
t r

2
0

)
+

N

8r0
exp

(
β2
t

2

)[
exp

(
− x
r0

)(
1 +

x

r0
− β2

t

)
erfc

(
βt√

2
− x√

2βtr0

)
+ exp

(
x

r0

)(
1− x

r0
− β2

t

)
erfc

(
βt√

2
+

x√
2βtr0

)]
(E4)

where βt = v0ttof/r0 and erfc is the complementary error
function. Integrating n(r; ttof) along the x and y axis
leads to an expression for nxy similar to Eq. E4 but where
x has to be replaced by z, r0 by r0/2 and βt by 2βt. For
long times of flight such as βt � 1, nxy and nyz both
converge toward a simple Gaussian function with RMS
width βtr0 = v0ttof.

To experimentally measure the temperature of our
atomic clouds, we switch off the magnetic trap and let
the atoms expand for a few milliseconds. Relying on
absorption imaging along the y axis we obtain the inte-
grated density profile

∫
dy n(r; ttof). Integrating numer-

ically along either the x and z axis we can then fit the
resulting profile with the analytical expression of nxy or
nyz. This then gives us a measurement of the tempera-
ture of the cloud T in a single shot.

Appendix F: Numerical calculations

Single trajectories from Eq. 8 are solved with
Matlab R© relying on the ode45 solver which is based on

the Dormand-Prince method. The relative tolerance for
the calculation is set to 10−6.
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