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DC-Current Induced Domain Wall in a Chiral p-Wave Superconductor
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1Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
2Institute for Solid State Physics, University of Tokyo, Kashiwa, 277-8581, Japan.

We study theoretically the impact of an applied DC-current on a mesoscopic chiral p-wave

superconductor. Performing quasi-classical calculations on a two-dimensional system, with

an external magnetic flux to generate a DC current, we show that the current can trigger a

transition to a state with a domain wall between regions of different chiralities. The system

shows an hysteretic behavior, as different domain wall configurations are possible for a given

current. This domain wall creation mechanism can give new insights on recent experiments

observing anomalous current variations in Sr2RuO4 junctions.

1. Introduction

Chiral superconductors have been attracting interest by their striking features originat-

ing from time-reversal symmetry breaking and finite angular momentum of Cooper pairs.1)

Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, is one of the best-

studied systems.2–4) The chiral superconducting state, which is topologically non-trivial, ex-

hibits topologically-protected chiral edge channels at the surfaces,5, 6) and has potential appli-

cation to quantum computing using Majorana fermions in vortices.7–10)

A number of experiments have been performed to characterize the superconductivity in

Sr2RuO4. The triplet nature of Sr2RuO4 has been observed by the Knight shift measure-

ment,11) while spontaneous time-reversal symmetry breaking has been detected by muon spin

resonance12) and the Kerr effect.13) Edge currents predicted for chiral p-wave pairing sym-

metry, however, have not been observed in scanning SQUID experiments,14, 15) which has

stimulated several theoretical studies proposing other symmetries for boundary-induced16) or

bulk17–19) superconductivity, or considering the multi-band effect on chiral p-wave supercon-

ductivity.20–28)

Josephson junction experiments play an important role to determine pairing symmetry.

SQUID experiments for Sr2RuO4 have observed anomalous dynamical shift of the diffraction

patterns.29, 30) In addition, anomalous current-driven switching has been reported in I-V char-
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We study theoretically the impact of an applied DC-current on a mesoscopic chiral p-wave superconductor. Perform-
ing quasi-classical calculations on a two-dimensional system, with an external magnetic flux to generate a DC current,
we show that the current can trigger a transition to a state with a domain wall between regions of di↵erent chiralities.
The system shows an hysteretic behavior, as di↵erent domain wall configurations are possible for a given current. This
domain wall creation mechanism can give new insights on recent experiments observing anomalous current variations
in Sr2RuO4 junctions.

1. Introduction
Chiral superconductors have been attracting interest by

their striking features originating from time-reversal symme-
try breaking and finite angular momentum of Cooper pairs.1)

Sr2RuO4, which is thought to be a chiral triplet p-wave super-
conductor, is one of the best-studied systems.2–4) The chiral
superconducting state, which is topologically non-trivial, ex-
hibits topologically-protected chiral edge channels at the sur-
faces,5, 6) and has potential application to quantum computing
using Majorana fermions in vortices.7–10)

A number of experiments have been performed to charac-
terize the superconductivity in Sr2RuO4. The triplet nature
of Sr2RuO4 has been observed by the Knight shift measure-
ment,11) while spontaneous time-reversal symmetry breaking
has been detected by muon spin resonance12) and the Kerr ef-
fect.13) Edge currents predicted for chiral p-wave pairing sym-
metry, however, have not been observed in scanning SQUID
experiments,14, 15) which has stimulated several theoretical
studies proposing other symmetries for boundary-induced16)

or bulk17–19) superconductivity, or considering the multi-band
e↵ect on chiral p-wave superconductivity.20–28)

Josephson junction experiments play an important role
to determine pairing symmetry. SQUID experiments for
Sr2RuO4 have observed anomalous dynamical shift of the
di↵raction patterns.29, 30) In addition, anomalous current-
driven switching has been reported in I-V characteristics
of Josephson junctions.31–34) These anomalies have been at-
tributed to domain wall motion, which is compatible with chi-
ral pairing symmetry, and indicate a pathway to novel devices
which control the inertial degree of freedom in superconduct-
ing states. While theoretical studies of domain wall formation
in Sr2RuO4 based on energetic arguments do exist,35) details
on how domain wall motion is driven by applied currents have
not been clarified so far.

The goal of this work is to study the impact of a DC-current
bias on a p-wave superconductor with a finite width (see the
left panel of Fig. 1). We show that above a given threshold, a
DC-current can create a domain wall separating two regions
of di↵erent chiralities. Because of this domain wall creation,
the system shows an hysteretic behavior: for a given DC-
current, it can be in di↵erent states depending on its history.
To keep the calculations as simple as possible, we consider the
system at equilibrium, with the DC current created by the ap-

Fig. 1. (Color online) Left: a schematic view of the system. A slab of p-
wave superconductor, with a width L along the x direction, and very large
dimensions along the y and z direction. By applying an external vector poten-
tial, we induce a total current Jtot along the y direction, and the behavior of
the system is essentially two-dimensional. Right: a typical classical trajectory
along the 2d x-y system, with specular reflection on both sides, which is used
in the semi-classical calculations.

plication of an external vector potential. The results we obtain
are relevant to understand experimental results of I-V curves
measured in current-biased weak link experiments.31–33) Our
goal is to show that in addition to the domain wall motion,
domain wall creation or destruction is also an essential mech-
anism of these systems when a DC-current is applied.

We employ the quasi-classical theory to evaluate the spatial
profile of the pair potentials and of the current.36, 37) By as-
suming that the superconducting gap is much smaller than the
Fermi energy, this method can calculate properties of super-
conductors with arbitrary pairing symmetries, and has been
applied to various phenomena in chiral p-wave superconduc-
tors, such as spontaneous chiral edge channels and domain
walls,5, 6) local densities of states in mesoscale superconduct-
ing islands,38) and paramagnetism.39) In this paper, we follow
the algorithm of Ref. 38.

1

Fig. 1. (Color online) Left: a schematic view of the system. A slab of p-wave superconductor, with a width

L along the x direction, and very large dimensions along the y and z direction. By applying an external vector

potential, we induce a total current Jtot along the y direction, and the behavior of the system is essentially two-

dimensional. Right: a typical classical trajectory along the 2d x-y system, with specular reflection on both sides,

which is used in the semi-classical calculations.

acteristics of Josephson junctions.31–34) These anomalies have been attributed to domain wall

motion, which is compatible with chiral pairing symmetry, and indicate a pathway to novel

devices which control the inertial degree of freedom in superconducting states. While theo-

retical studies of domain wall formation in Sr2RuO4 based on energetic arguments do exist,35)

details on how domain wall motion is driven by applied currents have not been clarified so

far.

The goal of this work is to study the impact of a DC-current bias on a p-wave supercon-

ductor with a finite width (see the left panel of Fig. 1). We show that above a given threshold,

a DC-current can create a domain wall separating two regions of different chiralities. Because

of this domain wall creation, the system shows an hysteretic behavior: for a given DC-current,

it can be in different states depending on its history. To keep the calculations as simple as pos-

sible, we consider the system at equilibrium, with the DC current created by the application

of an external vector potential. The results we obtain are relevant to understand experimental

results of I-V curves measured in current-biased weak link experiments.31–33) Our goal is to

show that in addition to the domain wall motion, domain wall creation or destruction is also

an essential mechanism of these systems when a DC-current is applied.

We employ the quasi-classical theory to evaluate the spatial profile of the pair potentials

and of the current.36, 37) By assuming that the superconducting gap is much smaller than the
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Fermi energy, this method can calculate properties of superconductors with arbitrary pairing

symmetries, and has been applied to various phenomena in chiral p-wave superconductors,

such as spontaneous chiral edge channels and domain walls,5, 6) local densities of states in

mesoscale superconducting islands,38) and paramagnetism.39) In this paper, we follow the

algorithm of Ref. 38.

This paper is organized as follows. In Sect. 2, we detail the model (a p-wave chiral super-

conductor strip threaded by an external flux), and give the essential steps of the quasi-classical

theory used to make the calculations. Sect. 3 is devoted to the exposition and to the discussion

of the results. In Sect. 3.1, we show the results that we obtain for the pair potential compo-

nents and the current density in the weak screening case. These results serve as a model to

understand the results for the strong screening case, given in Sect. 3.2, which are more com-

plex but also directly relevant for experiments. In Sect. 3.3 that we discuss their relevance to

existing experimental works. Finally, Sect. 4 contains the conclusions and the perspectives of

this work, and Appendix contains details about the numerical calculations.

2. Method

2.1 Model

We consider a p-wave superconductor in the shape of slab with a finite width L (along

which we place the x axis), and with very large dimensions along the y and z directions (much

larger than any significant length in the system), see Fig. 1. As we will study the impact of an

applied current along the y axis, the system is invariant by translation along the z direction,

and we can simply perform 2d calculations in the x-y plane.

To apply the current, we consider that on a large scale the system forms a loop (with a

radius R → ∞ in the y-z plane), and we apply through this loop an external magnetic flux

Φext, which can be described by a potential vector Aext = (0, Ay,ext, 0) in the absence of the

screening current, where Ay,ext = Φext/R is a constant parameter. This external magnetic flux

induces a superconducting current along the y direction, whose properties can be examined

in a thermal equilibrium state. Although the I-V characteristics of real superconducting junc-

tions (or superconducting weak links) are more complex because the system is driven into a

non-equilibrium state for a finite voltage bias, we expect that this simple setup is sufficient to

explain the essence of the domain-wall transition due to an external current, as observed in

the experimental I-V characteristics.31, 31, 33)
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2.2 Quasiclassical Theory

For calculation of the order parameters and the current, we employ the quasi-classical

formalism, using the Eilenberger equation. The principle of the methods can be found in the

literature,5, 38) we give here only the essential steps, stressing the original points of the present

work.

The quasi-classical Green function ĝ(kF , r, ωn) describing the superconductor is defined

as:

ĝ(kF , r, ωn) =


g f

− f̃ −g

 , (1)

where the kF dependence represents the symmetry of the order parameter, r is the coordinate

dependence, ωn = πT (2n + 1) is a Matsubara frequency, and the 2×2 matrix structure is in

the Nambu space. The quasi-classical Green function is normalized as:

ĝ2 = 1̂. (2)

The Eilenberger equation is:

− ivF ·∇ĝ = [ĥ, ĝ], (3)

ĥ =

( iωn−evF ·A(r) −∆(kF, r)

∆(kF , r)∗ −iωn+evF ·A(r)

)
, (4)

where ∆(kF , r) is pairing potential, and A(r) is the vector potential.

A standard method to solve the Eilenberger equation, taking into account the Green func-

tion normalization, is to use the Ricatti parametrization.36) We write ĝ in terms of the Ricatti

amplitudes a and b (we now omit the r, kF and ωn dependence for brevity), with:

ĝ =
−1

1 + ab


1 − ab 2ia

−2ib −(1 − ab)

 , (5)

The amplitudes a and b obey the Ricatti equations:

vF · ∇a = −2(ωn − ievF · A)a − ∆∗a2 + ∆, (6)

vF · ∇b = +2(ωn − ievF · A)b + ∆ b2 − ∆∗, (7)

As the derivate appears only in vF · ∇, the Ricatti equations can be written as 1d equations

along the semi-classical trajectories (given by the direction of vF).

The right panel of Fig. 1 shows a typical classical trajectory: a straight line which is

specularly reflected on both sides of the sample. At the position of the reflection rn, the y

component of the wave-vector kF is conserved, while the x component is reversed at each
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reflection. The Ricatti amplitude then obey the boundary conditions:

a(rn,kF |out) = a(rn,kF |in) (8)

b(rn,kF |out) = b(rn,kF |in) (9)

where kF |in and kF |out are the incoming and outgoing wave-vectors at the reflection point.

Using the translational invariance along the y direction, all quantities can be expressed as

function of x only. At a given point x, a trajectory is fully parametrized by the angle θk

between the wavevector at this point and the x axis.

2.3 Expression of the Physical Quantities

The physical quantities are expressed in terms of the Green function component f , f̃ and

g, which are given in terms of the Ricatti amplitudes in Eq. (5). For superconductors with

p-wave chiral symmetry, the pair potential ∆(kF , r) = ∆x cos(θk) + i∆y sin(θk) is determined

by a self-consistent gap equation


∆x(x)

∆y(x)

 = T Vp

∑

0<ωn<ωC

∫ π

0
dθk


2 cos θk

2 sin θk



×
(

f (θk, ωn, x) + f̃ ∗(θk, ωn, x)
)
, (10)

(
Vp

)−1
= log

(
T
TC

)
+

∑

0<n<ωC/(2πT )

1
n − 1/2

, (11)

where TC is the superconducting transition temperature and ωC is a cutoff energy.5) The cur-

rent density along the y direction is:

Jy(x) = −2evF N(0)T
∑

0<ωn<ωC

∫ π/2

0
dθk sin θk

× Im (g(θk, ωn, x) + g(π − θk, ωn, x)) (12)

where N(0) is the normal density of states per unit volume at the Fermi energy.

The magnetic field and the vector potential are obtained from integration of the current

density using the Maxwell equation as
dBz

dx
(x) = −µJy(x), (13)

dAy

dx
(x) = Bz(x), (14)

under the boundary conditions, Bz(0) = (µ/2)Jtot, Bz(L) = −(µ/2)Jtot and Ay(L/2) = Ay,ext,

where Jtot =
∫ L

0
dxJy(x) is the total current. These boundary conditions are a due to the infinite
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slab geometry: a simple application of the Ampere law shows that the magnetic field outside

the slab is constant, with a value directly proportional to the total current in the sample, and

opposite signs on both sides. Using Eqs. (10)-(14), one can iteratively find a solution of the

problem for a given value of the external vector potential Ay,ext. Starting from an initial guess

for the values of the gaps ∆x(x), ∆y(x) and the current density Jy(x), one computes the value

of the vector potential A = (0, Ay(x)), and then solve the Ricatti equations (Eqs. (6)-(7)) to

obtain new values for ∆x(x), ∆y(x) and Jy(x).

3. Results

In this paper, we always consider a wide superconductor strip (L � ξ0), taking L = 25ξ0,

where ξ0 = ~vF/(π∆0) is the superconducting coherence length (with ∆0 ≡ ∆bulk(T = 0)).

We study two situations. First, in Sect. 3.1, the case of λL = L = 25ξ0 for which the effect

of the screening current is not significant. Here, λL = (µnse2/m)−1/2 is the London penetration

depth, where ns is the density of condensed electrons, and m is the electron mass. Second, we

consider the case of λL = L/10 = 2.5ξ0 in Sect. 3.2, for which the screening effect is so strong

that the magnetic field is almost zero inside the strip except for the edge region. We note

that the latter situation corresponds to the experiments for Sr2RuO4,31, 32) while the former

situation may be realized if one tunes the temperature just below the transition temperature

TC. All the results we show have been obtained using a temperature T = 0.2TC, and a cutoff

frequency ωC = 10TC. Finally, we discuss the relevance of our results to experiments for

Sr2RuO4 in Sect. 3.3.

3.1 Weak Screening Case

The results for λL = L = 25ξ0 are shown in Fig. 2. Because the screening effect is

weak, the external vector potential Ay,ext creates a superconducting current Jy running in the

y direction which is nearly uniform inside the whole width of the strip. This current is pro-

portional to Ay,ext, up to some value where a transition occurs. Above the transition, the cur-

rent decreases rapidly to 0. This is visible on the panel (c) of Fig. 2, which shows the total

current Jtot =
∫ L

0
dxJy(x) as a function of Ay,ext. One can see that the transition occurs for

|Ay,ext| ' 0.8A0 for our choice of parameters, where A0 = ∆0/(evF), with ∆0 ≡ ∆bulk(T = 0).

The shape of the gap components (normalized by ∆0) and of the current density (normal-

ized by evF N(0)TC) below the transition are shown on the panel (a) of Fig. 2, for a value

Ay,ext = 0.45A0. One can see that the induced current is constant in the strip, except near

the edges where the presence of the chiral edge currents, with opposite directions at the two
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Fig. 2. (Color online) Results for the weak screening case (�L = L = 25⇠0). The px- and py-components of the pair potential, �x and �y (normalized by the
bulk zero-temperature gap �0) and the current density Jy (normalized by evF N(0)TC) as a function of x for (a) below the transition, Ay,ext = 0.45A0 and (b)
above the transition, Ay,ext = 1.25A0, where A0 = �0/(evF ). Below the transition, the pair potential components are similar to the zero applied flux case, the
overall shift of the current is due to the applied flux, and the currents due to edge states are opposite on both sides of the sample. On the other hand, above the
transition, the sign of �y is inversed on the right side of the system, with a wide region near the middle where �y is suppressed. The current due to the edge

states are now identical on both sides of the sample. (c) The total current Jtot =
R L

0 dxJy(x) as a function of Ay,ext. The total current is proportional to Ay,ext, up
to a transition value (|Ay,ext | ' 0.8A0) beyond which it decreases in absolute value.
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Fig. 3. (Color online) Results for the strong screening case (�L = L/10 = 2.5⇠0). (a) Total current as a function of the applied Aext,y. The middle (black)
curve corresponds to the solution obtained with the zero-field solution as initial state. The upper (blue) and lower (red) curves show the hysteresis when
performing a sweep from a large negative Ay,ext value and from a large positive values of Ay,ext, respectively. Other panels: Plots of the values of �x, �y and Jy
(normalized as in Fig. 2) as a function of x for the value of Ay,ext where the total current is 0. (b) Non-sweep case, Ay,ext = 0. (c) The case of left to right sweep
(in red, corresponding to the lower (red) curve in panel (a)) and (d) right to left sweep (in blue, corresponding to the lower (blue) curve in panel (a)), showing
the existence of other stable solutions with zero total current: these solutions have a domain wall inside the system. The insets on panels (b), (c) and (d) show
a schematic picture of the edge currents directions (thin arrows) and of the domain wall current direction (thick arrows). The two thin dotted gray curves of
panel c) are plots of �y for values of Ay,ext = �1.0 and 0.5, which show the motion of the domain wall as Ay,ext is varied.

�y and of the current Jy is similar to the low screening case
below the transition, while Fig. 3 (c) and (d) correspond to
Ay,ext ' ⌥0.2A0. The behavior here is qualitatively di↵erent,
and presents similarities with the curves observed above the
transition in the low screening case: the gap �y changes sign
as a function of x when going from one edge of the sample to
the other, and the current Jy is similar at the two edges of the
system. Note that here, because of the strong screening, there
is no region where the �y component is zero. And the current
density Jy also has a marked feature in the region where the

gap �y is changing sign.
These observations can be understood as due to the creation

of a domain wall. The middle (black) curves in Fig. 3 (b) cor-
respond to a system which is a px + ipy state on the whole x
axis, as the components �x and �y are both positive for all x
(see the inset, where the arrows represent schematically the
direction of the edge currents). However, in Fig. 3 (c) and
(d), we see that �y is changing sign for some x value, mean-
ing there is a domain wall between a px + ipy region and a
px � ipy region. This is shown schematically in the insets,

4

Fig. 2. (Color online) Results for the weak screening case (λL = L = 25ξ0). The px- and py-components

of the pair potential, ∆x and ∆y (normalized by the bulk zero-temperature gap ∆0) and the current density Jy

(normalized by evF N(0)TC) as a function of x for (a) below the transition, Ay,ext = 0.45A0 and (b) above the

transition, Ay,ext = 1.25A0, where A0 = ∆0/(evF). Below the transition, the pair potential components are similar

to the zero applied flux case, the overall shift of the current is due to the applied flux, and the currents due to

edge states are opposite on both sides of the sample. On the other hand, above the transition, the sign of ∆y is

inversed on the right side of the system, with a wide region near the middle where ∆y is suppressed. The current

due to the edge states are now identical on both sides of the sample. (c) The total current Jtot =
∫ L

0 dxJy(x) as

a function of Ay,ext. The total current is proportional to Ay,ext, up to a transition value (|Ay,ext| ' 0.8A0) beyond

which it decreases in absolute value.

edges, modifies Jy.5, 6) For Ay,ext = 0.45A0, the induced uniform current has a limited effect on

the gap components ∆x and ∆y, which are close to their values in the case without the applied

flux (Ay,ext = 0); the system remains in a px + ipy state in the middle of the strip, while it has

a py-like character at the two edges as ∆x drops to zero there.

The profile of the gaps drastically changes if Ay,ext is larger than the transition threshold.

The superconducting gaps and the current density above the transition are shown on the panel

(b) of Fig. 2. One can see that the transition has had a dramatic effect on the ∆y component,

which is now negative near the right edge of the system, and close to zero around the center

of the system. On the other hand, the ∆x gap component is not qualitatively changed from

its value below the transition (there is the combination of a slight increase due to decrease of

∆y, because of the competing effect between two components,5) and a global decrease due to

large flux applied). This means that the system is in a px state in the middle of the strip, while

below the transition it was in a px + ipy state. The change of sign of ∆y is reflected on the sign

of the edge currents: the edge currents have now the same signs on both edges of the system,

while they had opposite signs below the transition.

For this low screening case, we found a unique stable solution for each value of Ay,ext. We

obtain the same results if the initial condition is the solution without external flux or if we

perform a sweep and use as initial condition the solution obtained for a slightly different ap-
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plied flux. Therefore, there is no hysteresis in the flux-current relation for the weak screening

case.

3.2 Strong Screening Case

J. Phys. Soc. Jpn. FULL PAPERS
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Fig. 2. (Color online) Results for the weak screening case (�L = L = 25⇠0). The px- and py-components of the pair potential, �x and �y (normalized by the
bulk zero-temperature gap �0) and the current density Jy (normalized by evF N(0)TC) as a function of x for (a) below the transition, Ay,ext = 0.45A0 and (b)
above the transition, Ay,ext = 1.25A0, where A0 = �0/(evF ). Below the transition, the pair potential components are similar to the zero applied flux case, the
overall shift of the current is due to the applied flux, and the currents due to edge states are opposite on both sides of the sample. On the other hand, above the
transition, the sign of �y is inversed on the right side of the system, with a wide region near the middle where �y is suppressed. The current due to the edge

states are now identical on both sides of the sample. (c) The total current Jtot =
R L

0 dxJy(x) as a function of Ay,ext. The total current is proportional to Ay,ext, up
to a transition value (|Ay,ext | ' 0.8A0) beyond which it decreases in absolute value.
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Fig. 3. (Color online) Results for the strong screening case (�L = L/10 = 2.5⇠0). (a) Total current as a function of the applied Aext,y. The middle (black)
curve corresponds to the solution obtained with the zero-field solution as initial state. The upper (blue) and lower (red) curves show the hysteresis when
performing a sweep from a large negative Ay,ext value and from a large positive values of Ay,ext, respectively. Other panels: Plots of the values of �x, �y and Jy
(normalized as in Fig. 2) as a function of x for the value of Ay,ext where the total current is 0. (b) Non-sweep case, Ay,ext = 0. (c) The case of left to right sweep
(in red, corresponding to the lower (red) curve in panel (a)) and (d) right to left sweep (in blue, corresponding to the lower (blue) curve in panel (a)), showing
the existence of other stable solutions with zero total current: these solutions have a domain wall inside the system. The insets on panels (b), (c) and (d) show
a schematic picture of the edge currents directions (thin arrows) and of the domain wall current direction (thick arrows). The two thin dotted gray curves of
panel c) are plots of �y for values of Ay,ext = �1.0 and 0.5, which show the motion of the domain wall as Ay,ext is varied.
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respond to a system which is a px + ipy state on the whole x
axis, as the components �x and �y are both positive for all x
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function of the applied Aext,y. The middle (black) curve corresponds to the solution obtained with the zero-field

solution as initial state. The upper (blue) and lower (red) curves show the hysteresis when performing a sweep

from a large negative Ay,ext value and from a large positive values of Ay,ext, respectively. Other panels: Plots of

the values of ∆x, ∆y and Jy (normalized as in Fig. 2) as a function of x for the value of Ay,ext where the total

current is 0. (b) Non-sweep case, Ay,ext = 0. (c) The case of left to right sweep (in red, corresponding to the lower

(red) curve in panel (a)) and (d) right to left sweep (in blue, corresponding to the upper (blue) curve in panel

(a)), showing the existence of other stable solutions with zero total current: these solutions have a domain wall

inside the system. The insets on panels (b), (c) and (d) show a schematic picture of the edge currents directions

(thin arrows) and of the domain wall current direction (thick arrows). The two thin dotted gray curves of panel

c) are plots of ∆y for values of Ay,ext = −1.0 and 0.5, which show the motion of the domain wall as Ay,ext is

varied.

The results for λL = L/10 = 2.5ξ0 are shown in Fig. 3. The panel (a) of Fig. 3 shows the

total current Jtot =
∫ L

0
dxJy(x) as a function of the applied Ay,ext. The middle (black) curve

corresponds to the solution obtained with the zero-field solution as the initial state, indicating

a behavior similar to the one of the low screening case: the total current is proportional to the
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applied flux Ay,ext, up to some value (here approximatively |Ay,ext| = 1.3A0), where there is a

transition. We note that the critical current (the current at the threshold) is now much smaller

than the one for the weak screening case, because the current is localized near the edges due

to screening effect.

However, there exists other stable solutions in contrast to the weak screening case. The

lower (red) and the upper (blue) curves show the results obtained when performing a sweep

from a large negative Ay,ext value and from a large positive values of Ay,ext, respectively. These

two curves have been obtained by starting from an initial state beyond the transition, and then

reducing |Ay,ext| gradually, using the solution at each step as the initial state for the next step.

One can see that three stable solutions with different values of the total current Jtot are realized

in a wide range of Ay,ext. The existence of three stable solutions means, for example, that it

is possible to have the same total current Jtot = 0 with three different values of the applied

flux Ay,ext. This is illustrated in Fig. 3 (b)-(d). Each of the graphs shows plots of ∆x, ∆y and Jy

as a function of x when the total current Jtot = 0. In Fig. 3 (b), the applied flux is Ay,ext = 0,

and the behavior of the gap components ∆x, ∆y and of the current Jy is similar to the low

screening case below the transition, while Fig. 3 (c) and (d) correspond to Ay,ext ' ∓0.2A0.

The behavior here is qualitatively different, and presents similarities with the curves observed

above the transition in the low screening case: the gap ∆y changes sign as a function of x when

going from one edge of the sample to the other, and the current Jy is similar at the two edges

of the system. Note that here, because of the strong screening, there is no region where the ∆y

component is zero. And the current density Jy also has a marked feature in the region where

the gap ∆y is changing sign.

These observations can be understood as due to the creation of a domain wall. The middle

(black) curves in Fig. 3 (b) correspond to a system which is a px + ipy state on the whole x

axis, as the components ∆x and ∆y are both positive for all x (see the inset, where the arrows

represent schematically the direction of the edge currents). However, in Fig. 3 (c) and (d),

we see that ∆y is changing sign for some x value, meaning there is a domain wall between a

px+ipy region and a px−ipy region. This is shown schematically in the insets, with the domain

wall position shown as a dashed line. This domain wall is manifest in the bumps visible in

the current Jy near the change of sign of ∆y. Fig. 3 (c) and (d) correspond to a situation where

a domain wall was created by the transition at high |Ay,ext|, and remain present in the system

when Ay,ext, is slowly varied. The motion of the domain wall is illustrated by the thin dotted

curves of Fig. 3c, which show ∆y for Ay,ext = −1.0 and Ay,ext = 0.5 (while the dashed red one

is for Ay,ext = −0.2): one can see that the domain wall, which correspond to the change of sign
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of Ay,ext, is moving from left to right as Ay,ext is increased.

3.3 Discussion

The present results have been obtained on a simplified model where the system is at

equilibrium, and the DC current is due to an applied flux. However they could shed a new

light on experimental results where current-voltage curves are measured. Indeed, several ex-

periments31–34) have studied anomalous transport and critical current switching in Sr2RuO4

junctions. There, these anomalous switching have been shown to be related to the existence of

chiral superconductivity, and the results have been discussed in terms of domain wall motion

due to an applied DC current. Our results show that, in addition to domain wall motion, an

applied DC current can create a domain wall, and that the system can switch between dif-

ferent configurations with different numbers of domain walls (in our case 0 or 1), and which

have different critical current values. Fig. 3 (b)-(d) show three different configurations which

can exist for the same value of the applied flux, and which correspond to different values

of the critical current. The potential switching between these different states is reminiscent

of the one observed experimentally when varying voltage. A detailed comparison with the

experiments would need to treat the nonequilibrium voltage states driven by the dynamics of

the superconducting phase,40) which is beyond the scope of this work and is left for future

study.

4. Conclusions

In this article, we have computed the response of a two-dimensional p-wave supercon-

ductor strip with a finite width under an external flux. We have performed quasi-classical

calculations, where the Green function is obtained by solving the Eilenberger equation, using

a Ricatti representation. The solution, obtained recursively, gives access to the gap compo-

nents ∆x, ∆y and the current density Jy as a function of the position.

As expected, applying a flux creates a DC current in the superconductor. We observe that

above a given threshold for the applied flux, the system undergoes a transition, accompanied

with the creation of a domain wall separating px + ipy and px − ipy regions. In the experimen-

tally relevant case of strong screening, the system shows hysteresis: to a given value of the

total current correspond several states which have different domain wall configurations.

These results may be of importance for the understanding of experiments measuring

current-voltage characteristics of Sr2RuO4-Ru junctions,31–34) where critical current was

shown to be related to chiral p-wave superconductivity. We think that domain wall creation
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by the applied DC current may be an important ingredient to understand experimental results.

Extensions of this work could include the effect of surface roughness on the edge current,41–45)

the effect of impurities in the superconductor,,46) and more realistic ring geometries.47) A

study based on energetic arguments, in the spirit of Ref. 35, studying the coupling between

domain wall currents and an applied vector potential also offers promising perspectives.
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Appendix: Details of the Numerical Calculations

In numerical calculations, it is convenient to express all the quantities in a dimension-

less form. We normalize the superconducting gaps, ∆x(x) and ∆y(x) by the zero-temperature

bulk value ∆0 ≡ ∆bulk(T = 0), and the length by the zero-temperature coherence length

ξ0 = ~vF/π∆0. We also normalize the vector potential Ay(x), the magnetic field Bz(x) and the

current Jy(x) by ∆0/(evF), Φ0/(2
√

2πξ0λL(T )), and evF N(0)TC, respectively, where Φ0 = h/2e

is the flux quantum, λL(T ) = (µnse2/m)−1/2 is the London penetration depth, ns(T ) is the den-

sity of condensed electrons, and m is the electron mass. Note that Tc is here always the critical

temperature in the absence of applied flux (the variation of Tc with the applied flux being very

small). In terms of dimensionless quantities, the Ricatti equations are written as

da
dx

=
1

π cos θk

(
∆−∆∗a2−2

(
ωn

∆0
+iAy sin θk

)
a
)
. (A·1)

db
dx

=
1

π cos θk

(
−∆∗+∆ b2+2

(
ωn

∆0
+iAy sin θk

)
b
)
. (A·2)

The Maxwell equations, Eqs. (13)-(14), are written in terms of the dimensionless quantities

as
dBz

dx
= − 4

√
2ξ0

π2e−γλL
Jy(x), (A·3)

dAy

dx
=

πξ0

2
√

2λL

Bz(x). (A·4)

When integrating these equations, we impose the boundary conditions, Ay(L/2) = Ay,ext and

Bz(0) =
2
√

2ξ0
π2e−γλL

Jtot, Bz(L) = − 2
√

2ξ0
π2e−γλL

Jtot, where Ay,ext is the external vector potential generated,

and Jtot =
∫ L

0
dxJy(x) is the total current. Then, the magnetic field and the vector potential are
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obtained as

Bz(x) = − 4
√

2ξ0

π2e−γλL

(∫ x

0
dx′ Jy(x′) − 1

2
Jtot

)
, (A·5)

Ay(x) = −
∫ L/2

x
dx′

πξ0

2
√

2λL

Bz(x′) + Ay,ext. (A·6)

The iterative calculation is repeated until the variation of all the quantities between two

successive steps is smaller than a given threshold.
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