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ARTICLE

Structural and topological nature of plasticity in
sheared granular materials
Yixin Cao1, Jindong Li1, Binquan Kou1, Chengjie Xia1, Zhifeng Li1, Rongchang Chen2, Honglan Xie2, Tiqiao Xiao2,

Walter Kob 3, Liang Hong1,4, Jie Zhang1,4 & Yujie Wang1,5,6

Upon mechanical loading, granular materials yield and undergo plastic deformation. The

nature of plastic deformation is essential for the development of the macroscopic constitutive

models and the understanding of shear band formation. However, we still do not fully

understand the microscopic nature of plastic deformation in disordered granular materials.

Here we used synchrotron X-ray tomography technique to track the structural evolutions of

three-dimensional granular materials under shear. We establish that highly distorted coplanar

tetrahedra are the structural defects responsible for microscopic plasticity in disordered

granular packings. The elementary plastic events occur through flip events which correspond

to a neighbor switching process among these coplanar tetrahedra (or equivalently as the

rotation motion of 4-ring disclinations). These events are discrete in space and possess

specific orientations with the principal stress direction.
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Granular solids yield and flow upon applied stress1,2. So far,
the flow behaviors of granular materials have mainly been
treated macroscopically based on empirical constitutive

laws3–5. More recent approaches treat granular materials within
the category of amorphous solids and try to identify the micro-
scopic plastic events to derive the macroscopic mechanical
properties6. It is generally believed that microscopic plastic events
in amorphous solids are induced by certain spatially isolated
structural “defects” in the system7, and the macroscopic yielding,
avalanche and shear band formation are induced by their elastic
interactions8. However, the exact nature of these “defects” remain
elusive9 and it has been investigated based on free volume10,
change of local topology11, energy landscape12, shear transfor-
mation zones (STZ)13,14, soft spots as determined by low-energy
soft modes15,16, buckled force chains17, or defects of an amor-
phous order18–21. Experiments on two-dimensional (2D) soap
bubble rafts have identified the elementary plastic event as T1
event which corresponds to two pairs of bubbles switching
neighbors with each other22–24. Confocal microscopy experi-
ments on three-dimensional (3D) colloidal systems have revealed
the elementary plasticity events happening at shear transforma-
tion zones with a core radius around three particle diameters25.
However, the structural basis and topological pathways for these
plasticity events have not been investigated in detail. Scattering
techniques have also been used to probe local defects in granular
systems26.

In the present study, we carry out quasi-static shear experi-
ments on a 3D disordered granular system, and obtain its
structural evolutions by synchrotron X-ray tomography techni-
que (Methods). We find that, similar to T1 event in 2D, the
elementary plastic events in 3D are flip events, which consist of
two pairs of particles switching neighbors with each other at
highly distorted coplanar tetrahedra (structural defects of poly-
tetrahedral order) on Delaunay network. These flip events can
equivalently be described as the rotation motions of 4-ring dis-
clination defects in the system and possess specific orientations
with the principal stress direction. We therefore establish highly
distorted coplanar tetrahedra as dislocation-like structural car-
riers of plasticity in disordered granular packings, and the flipping
processes of them induce plastic deformations.

Results
Shear band formation. Figure 1a is a schematic presentation of
the shear cell used in our experiment27. Particles inside are
monodisperse glass particles (Duke Scientific, d= 200 ± 6 µm).
The samples are prepared with different initial volume fractions ϕ
and thicknesses W (Supplementary Table 1) and are sheared in
the z-direction. More details can be found in the Methods section.
A tomography scan is carried out after each shear step during
which the shear bracket moves up by about 1=3d. Particle tra-
jectories in the imaging window can be traced during the entire
shear process. We define Δriði ¼ x; y; zÞ as the displacement of a
particle after a shear step. During the whole shear process, Δrz is
the dominant one among all three components. Figure 1b shows
Δrz at the beginning of the shear process. The particles with
displacement Δrz>0:008d form a boundary inclined from the
vertical direction. This is mainly due to a net positive Δrx com-
ponent when the system dilates at the beginning of the shear.
Upon further shear, when the volume fraction ϕ reaches a steady
state value, a vertical shear band is formed (Fig. 1c) which can be
easily seen either by the spatial distribution of particles with
Δrz>0:008d (Fig. 1c) or the distribution of Δrzh ix along x-direc-
tion (averaged for all particles located within a 1d-thickness slice
centered at different x, Fig. 1d). From Fig. 1d, we estimate the
shear band width as 20d which is roughly symmetric with respect

to x ¼ 1d. The corresponding strain associated with each shear
step can therefore be calculated as Δγ ¼ Δrzh ix¼1d

10d , where Δrzh ix¼1d
is the mean value of Δrz for particles located around x ¼ 1d after
each shear step. It turns out Δγ ¼ 1:2 ± 0:2% during the whole-
shear process (Supplementary Note 1). The cumulative strain is
calculated by γ ¼ P

Δγ and a total strain γ ¼ 86% is obtained
consisting of 71 shear steps for all three samples measured.
Despite different initial conditions, each sample reaches steady
state forming shear band with similar width and ϕ � 0:59 after a
cumulative critical strain γc � 40% (Fig. 1e). Once steady state is
reached, the shear band is in a flow state where the structure
continuously relaxes (Supplementary Note 2).

Non-affine displacement. Next, we investigated microscopic
plastic deformations by the particles’ non-affine displacements
δriði ¼ x; y; zÞ which we define as Δriði ¼ x; y; zÞ of the particle
minus the corresponding average Δrih iði ¼ x; y; zÞ of all particles
within its radial distance of 2.5d. It is worth noting that our
results are not sensitive to this threshold value or to the particular
way non-affine displacement is calculated14,28 (Supplementary
Note 3). Figure 1f, g shows δrz for particles at the beginning of the
shear and when the system has reached steady state (only parti-
cles having δrzj j>0:008d are shown), respectively. Contrary to Δri
which is dominated by Δrz , δri have similar magnitudes along all
three axes. At the beginning of the shear, there are more particles
which have significant non-affine displacements ( δrzj j>0:008d)
but on average the absolute values are small. In contrast, at the
steady state, δrzj j have large absolute values within the shear band
(Fig. 1g) and small values outside of it, which is consistent with
the general belief that shear band consists of significant plastic
activities1.

Topology change of local structures. To understand the struc-
ture and topology change upon shear, we partitioned the struc-
tural configurations of particles at different shear steps by
Delaunay tessellation20. We use the parameter δ ¼ emax � 1 to
characterize the shape of a tetrahedron, where emax, in units of
mean particle diameter d, is the length of the longest edge of the
tetrahedron. A smaller value of δ suggests that the tetrahedron is
closer to a regular one. Upon shear, both structure and topology
of the system can vary (Supplementary Note 4). Correspondingly,
each tetrahedron can get distorted and eventually destroyed (its
vertices no longer belong to the original tetrahedron) which leads
to a local topology change. We term a tetrahedron unstable when
it is destroyed after a shear step. However, for topological reasons
a single tetrahedron cannot get destroyed on its own. In 2D, the
topology change follows a specific pathway called T1 event which
corresponds to a neighbor switching process23. It also corre-
sponds to the destruction of two Delaunay triangles and the
subsequent formation of two new ones23. In 3D, as shown in
Fig. 2a, the topology change happens through pathways called flip
events: In a 2–2 flip, two neighboring pairs of coplanar unstable
tetrahedra form two new pairs of coplanar tetrahedra by
exchanging their vertices, the 2–2 flip is equivalent to its coun-
terpart T1 event in 2D23; additionally, a pair of unstable coplanar
tetrahedra can also split into three coplanar tetrahedra, or vice
versa, which is denoted as 2–3 (or 3–2) flip. The 2–3 (or 3–2) flip,
despite its topological significance, could be considered to be only
an intermediate step of 2–2 flip in our system, since a consecutive
2–3 and 3–2 flip will yield a 2–2 flip (Fig. 2a) and in reality they
almost always happen successively. This is due to the fact that the
transient structure is mechanically very unstable. In Fig. 2b,
we also analyze the spatial distribution of flip events by showing
the cluster size distribution of unstable tetrahedra in space
(unstable tetrahedra which are face-adjacent to each other
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are considered to belong to one cluster). From the distribution we
can conclude that flip events are spatially localized since the
cluster size is predominantly two (2–3 flip), three (3–2 flip) or
four (2–2 flip), comprising only a single flip event. To analyze the
occurrence probability of flip events, we calculated the flip fre-
quency among all possible couples or triples in which we term
any two coplanar tetrahedra as a couple and three coplanar tet-
rahedra as a triple. In a single shear step, only about 6% of
couples or triples will flip and flips are more frequent in the shear
band regime. Figure 2c shows the locations of the flipped couples
and triples in the x–z plane within a 2d thickness (�1d<y<1d)
after a shear step, overlaid with the corresponding non-affine
displacement field at y ¼ 0 when shear band is formed. The non-
affine displacement field has been smoothed over a distance of
two particle diameters. It is clear that correlation exists between

the flip sites and cores of large non-affine displacement regions29.
Furthermore, we found that the orientational angles of flip events
(Methods) are strongly correlated with the principal stress
direction. Figure 2d shows the angular density distributions of the
orientations of flipped tetrahedral groups with respect to the
horizontal plane (x–y plane). It is clear that unstable couples and
triples have preferred orientations before and after the flips.
Specifically, the couples with an orientation around +45° are
more likely to flip to form −45° couples or +45° triples, while the
−45° triples are more likely to flip to form −45° couples. This is
due to the fact that the particle distance tends to be compressed
along the principal stress direction and expanded in the ortho-
gonal direction which makes tetrahedral groups in specific
orientations more vulnerable to flip instability. Once they flip,
they have orientations which are difficult to flip again. We rule
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Fig. 1 Macroscopic shear band and shear dilatancy. a Schematic of the plane shear cell. A roughly 2 mm-thick, 7 mm-wide granular particle slab was lifted
up by the L-shaped bracket, exerting a shear stress on the bulk rest with a thickness of W. The origin of coordinate system is placed at the boundary
between the slab and the bulk. b, c The absolute z-displacement Δrz of each particle (in units of particle diameter d) after a single shear step at the initial
and the steady states, respectively. Particles with values smaller than 0.008d are not shown. d The average z-displacement profile along x-direction when
the system is at the steady states. Three symbols correspond to three samples with different initial packing fractions ϕ and W. e The average volume
fraction ϕ within the shear band decreases as the strain γ increases, and it reaches steady state with ϕ ¼ 0:590ð5Þ after a critical strain around γ= 40%.
f, g The non-affine z-displacement δrz of each individual particle after a single strain step at the initial and the steady states, respectively. Particles with
absolute values δrzj j smaller than 0.008d are not shown for clarity
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out the possibility that this anisotropy originates from the
structural anisotropy of the system, since the angular distribu-
tions of all possible couples, triples or those formed only by bad
tetrahedra (δ>0:245, see below) are orientationally isotropic
(Fig. 2d).

Correlation between structure and plasticity. We further
investigated how topology change as characterized by flip events,
structure change by tetrahedral shape parameter δ, and plastic
deformation by non-affine displacements δr are related among
each other. We classify tetrahedra into three types based on their
behaviors upon the application of a shear step (Fig. 3a): tetra-
hedra which flip (unstable tetrahedra), tetrahedra with none of
their vertices involved in flip events (stable tetrahedra), and tet-
rahedra with some of their vertices involved in flip events owing
to their spatial proximity to flip events (intermediate tetrahedra).
First, we investigate how non-affine displacements of tetrahedra
depend on their shape δ and flips. We characterize the non-affine
displacements of a tetrahedron by defining its non-affine mobility

μ ¼ 1
4

P4

j¼1
δr2j , i.e., the mean square non-affine displacements of the

four vertices of the tetrahedron. As shown in Fig. 3b, μ is largest
for unstable tetrahedra, smallest for stable tetrahedra, and has
values in between for intermediate tetrahedra, in agreement with
the result of Fig. 2c. It is also interesting to note that μ has only a
very weak dependency on the tetrahedral shape δ for stable tet-
rahedra. Since μ is directly related to the flip events and spatial
proximity to them, we plot in Fig. 3c μ as a function of distance
from unstable and stable tetrahedra. We recognize that unstable

tetrahedra correspond to the cores of large plastic activities and
the stable tetrahedra correspond to cores of much weaker but still
finite plastic activities. The two curves roughly merge around
r ¼ 4d, which yields the range of influence zone. Next we
investigate the connection between the shapes of the tetrahedra
and flip events. From Fig. 3d, it is obvious that flip is much more
likely among highly distorted tetrahedra which have δ>0:245.
And the more distorted, the more likely a tetrahedron will flip in
the subsequent shear step. Stable tetrahedra are more likely to
have smaller δ, i.e., more regular shape. Intermediate tetrahedra
tend to have shapes between these two extremes. These results are
reminiscent of previous findings in which a polytetrahedral glass
order based on quasi-regular tetrahedra has been defined in
granular packings based on δ>0:24520. It is interesting to see that
the defective structure associated with this order plays a sig-
nificant role in plasticity, similar to the role played by dislocations
in crystals. As shown in the following, the analogy is much more
profound as we find that the flip process of unstable tetrahedra
are equivalent to the rotation motions of 4-ring disclinations
which are topological defects associated with rotational degrees of
freedom (Supplementary Table 2). Although the shape parameter
δ does not influence the non-affine displacements directly
(Fig. 3b), it nevertheless yields a facilitation mechanism for sub-
sequent plastic activities, i.e., a tetrahedron has to be heavily
distorted to undergo a flip event upon shear, and it is therefore
more likely have a new flip event close to a previous one since the
tetrahedra are on average more distorted there (Supplementary
Note 5). This facilitation effect is discernable within a diameter of
4d of the flipped site similar to the influence zone as observed in
Fig. 3c, which is obtained by analyzing the spatial correlation of
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flip events of two subsequent shear steps. The existence of facil-
itation mechanism thus indicates a spatial and temporal corre-
lations between flip events. Recently, the collective behavior of
microscopic plastic deformations in relation to macroscopic force
fluctuations has been analyzed in sheared granular materials, and
it is observed that a significant long-range strain correlation is
directly related to the macroscopic avalanche behavior29. It is
therefore interesting to investigate in the future how the local
facilitation mechanism as identified here is related to shear band
formation and avalanches30, 31.

Topological nature of plasiticity. It is well-known that for
crystalline materials the carriers for microscopic plasticity are
dislocations which are topological defects associated with trans-
lational degrees of freedom. For our system, we also characterized
the topological nature of the flip events based on N-ring dis-
clination structures32. An N-ring structure on Delaunay network
represents a tetrahedral group with one edge as a common axis
and coplanar between neighboring members. A 5-ring structure is
considered to be the disclination-free ground state structure,
whereas other N-ring structures possess disclination defects,
which are topological defects associated with rotational degrees of
freedom. The N-ring concept was originally developed to describe
the potential ideal glass state. Since 5-ring structures alone cannot
tile space, the ideal glass structure is conjectured to possess evenly
spaced 6-ring structures in a 5-ring structure background as
introduced by Frank and Kasper32–34. For low-density hard
sphere systems, there should therefore exist many disclination
defects. As shown in Fig. 4a, consistent with this picture, the
5-ring is most populous in the initial dense state, decreasing in
amount after the shear, and the steady state has significantly more
disclination defects. Interestingly, the only way an N-ring

structure can transform into another one is through flips. It turns
out that 2–2 flip is equivalent to a 4-ring structure rotating into
another 4-ring structure (Fig. 2a) and 2–3/3–2 flips correspond to
a 4-ring structure transforming into a 3-ring structure and vice
versa. Since a 3-ring structure (even more distorted tetrahedra) is
mechanically very unstable and therefore only exists transiently,
plasticity in our system essentially happens through 2–2 flips or
the rotation of 4-ring structures. We emphasize that a 2–2 flip is
therefore the only pathway for N-ring structure to transform
between each other, e.g., Fig. 4b shows how a 2–2 flip process can
change a neighboring 5-ring into a 4-ring structure. We therefore
establish close connections between a 2–2 flip, rotation of a 4-ring
structure, and local plasticity.

Discussion
In conclusion, we find that elementary plastic events in sheared
granular materials mainly happen through flip events of highly
distorted coplanar tetrahedra of the Delaunay network. This
result supports the concept that highly distorted coplanar tetra-
hedra are structural defects of disordered granular packings and
carriers of microscopic plasticity. Since flip events can also be
described as the rotation motions of 4-ring disclinations which
are topological defects associated with rotational degrees of
freedom, close analogies with dislocations in crystals can be
drawn. We believe our results should not be considered as
applicable to granular materials only, but also to atomic and
molecular amorphous systems, despite the fact that granular
materials are athermal and have friction. To understand why the
presence of friction does not modify the overall picture, it is
useful to compare the potential/free energy landscape of a ther-
mal glassy system with the one of a frictional granular system.
These two landscapes can be expected to be quite similar on the
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length scale of the size of the particles. However, because of
friction, the former will remain very rugged even on much
smaller scales35; whereas, the landscape of an atomic-glass for-
mers is basically smooth for length scales below the size of atoms.
This difference in the landscapes will lead to rather different
behavior in their plastic behaviors. Despite the fact that the
topological pathways to a local saddle point in a granular material
and a thermal glass will be quite similar, the microscopic dyna-
mical and plastic behaviors of their two systems are quite dif-
ferent. For thermal glassy systems, the overcoming of the
landscape barrier is related to thermal fluctuations and it will be
instantaneous. In granular materials, on the other hand, since the
pathway can be stabilized by friction, it can freeze the motion on
the topological pathway of a plastic deformation followed in
thermal glassy systems. So in general we expect that the structural
and topological characteristics of plastic deformations as observed
in our system will remain also valid in thermal glassy systems, i.e.,
our results should be applicable to a wide range of amorphous
materials, thus allowing to gain insight into mechanical properties
of such materials.

Methods
Experimental details. A shear setup suitable for X-ray tomography study was
built27. As shown in Fig. 1a, the setup is a rectangular acrylic glass container with
dimension of 8ðLÞ ´ 7ðWÞ ´ 32ðHÞmm3. The shear is generated by a 2 mm-thick
L-shaped bracket which can move in the vertical direction against a block of width
W. The coordination axes are set so that the shearing direction is along +z-
direction, opposite to gravity. The direction normal to the shear plane is the x-
direction with coordination zero at the interface between the bracket and the block.
Two blocks with W ¼ 25d and W ¼ 15d were used to investigate the influence of
the boundary on shear band formation. The bracket surface and the opposite
surface of the container were roughened by glued glass particles. Before each shear
sequence, the particles are slowly poured into the container up to a height around
25 mm, then the container was tapped 10,000 times at two tapping intensity 1.5 g
and 4.5 g to reach different initial steady state volume fraction ϕ. Each tap consists
of one cycle of 30 Hz sine wave at an interval of 0.5 s.

As shown in Fig. 1c, the initial packing was first recorded by a tomography scan.
Then the shearing bracket was moved at a constant speed for around 1/3d before
another tomography scan was carried out. Since each shear step has an effective
strain of Δγ ¼ 1:2 ± 0:2% and lasts 0.525 s, the strain rate _γ is 0.023 s−1. The
corresponding inertial number I ¼ _γdffiffiffiffiffiffi

P=ρ
p is about 3 ´ 10�5, therefore ensuring the

shearing quasi-static36. We estimate the pressure by P ¼ ϕρgH, with the volume
fraction ϕ ¼ 0:60, density ρ ¼ 2:7 g cm�3, and the distance between the center of
the imaging window to the upper surface of the packing is H ¼ 5mm.

The tomography imaging window has 2048ðWÞ ´ 560ðHÞ pixels, with a spatial
resolution of 6.5 μm/pixel, which can image about 3.6 mm-height section at the
middle of the sample. A complete tomography scan consists of 1500 projection
images, which takes about 5 min. Through image processing and particle tracking
algorithms20, 35, the centroids and trajectories of the all particles can be determined
to be within an error less than 3:3 ´ 10�3d.

Data availability. The datasets generated during and/or analysed during the
current study are available from the corresponding author on reasonable request.
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