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Enhancing photon squeezing one Leviton at a time.
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A mesoscopic device in the simple tunnel junction or quantum point contact geometry emits
microwaves with remarkable quantum properties, when subjected to a sinusoidal drive in the GHz
range. In particular, single and two-photon squeezing as well as entanglement in the frequency
domain have been reported. By revising the photo-assisted noise analysis developed in the framework
of electron quantum optics, we present a detailed comparison between the cosine drive case and other
experimentally relavent periodic voltages such as rectangular and Lorentzian pulses. We show that
the latter drive is the best candidate in order to enhance quantum features and purity of the outgoing
single and two-photon states, a noteworthy result in a quantum information perspective.

PACS numbers: 72.70.+m, 73.23.-b, 42.50.-p

I. INTRODUCTION

The rise of electron quantum optics (EQO)1,2 as a
prominent topic in the condensed matter agenda has been
possible thanks to a remarkable synergy between exper-
imental observations and theoretical investigations. In
particular, the realization of on-demand electron sources
based on periodically driven quantum dots3 or trains
of Levitons, i. e. properly designed Lorentzian voltage
pulses in time4,5, represented the actual starting point of
this new field of research. They allow the on-demand
injection of individual excitations into mesoscopic de-
vices mimicking the conventional photonic quantum op-
tics with quantum Hall edge channels behaving as waveg-
uides and quantum point contacts (QPC) playing the role
of half-silvered mirrors.

A milestone of this branch of mesoscopic physics has
been the electronic translation of few-excitation inter-
ferometers like: the Hanbury-Brown-Twiss6, able to ac-
cess the granular nature of the particles through par-
titioning at a QPC, and the Hong-Ou-Mandel7, where
the statistical properties of the excitations are investi-
gated by means of controlled two-particle collisions. Mea-
surements clearly showed anti-bunching effects related
to the fermionic nature of the electrons8 as well as de-
phasing and decoherence induced by the electron-electron
interaction9–11, remarkable phenomena without parallel
in the photonic domain.

New experimental investigations carried out in tun-
nel junctions12–14 and Josephson junctions15 have shown
the deep connection between the finite frequency photo-
assisted noise generated by a periodic drive applied to a
mesoscopic device and the fluctuations of the correspond-
ing emitted radiation in the microwave regime.16–19 In
particular, measurements show unequivocally that the

outgoing radiation is strongly non-classical presenting
quantum features such as: single-photon squeezing12,
two-photon squeezing and entanglement in the frequency
domain.13 These results naturally opened interesting per-
spectives in the quantum information domain.20 How-
ever, this phenomenology has been investigated so far
only for the cases of harmonic and bi-harmonic drives21

and a more detailed analysis of possible voltage profiles in
view of optimizing the quantum properties of the emitted
radiation is still lacking.
In this paper, taking advantage of the results achieved4

and the tools22–25 elaborated in the framework of EQO,
we compare the photo-assisted finite frequency noise as-
sociated with the current outgoing from a non-interacting
tunnel junction after applying an experimentally realiz-
able drive like cosine, rectangular and Lorentzian signals,
showing that the latter voltage represents the optimal
compromise between the maximization of the squeezing
and of the purity of the emitted single and two-photon
states.
This provides the proper theoretical framework to re-

alize new experiments devoted to controlling and improv-
ing the quantum behavior of the associated emitted elec-
tromagnetic radiation. Our analysis also contributes to
start a new phase of EQO. Indeed, until now, the main
motivation behind this branch of physics has been to
properly revise conventional optics experiments for exci-
tations propagating ballistically in condensed matter sys-
tems. With this work, we shed light on the consequences
of optimal injection of individual electron wave-packets
on the quantum properties of the emitted photons.
The paper is organized as follows. In Section II we

discuss the connections between the current fluctuations
and the quadratures of the emitted electromagnetic field.
A possible measurement set-up able to access these fluc-
tuations is shown in Section III. Section IV is devoted to

http://arxiv.org/abs/1802.00188v1
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the quantum mechanical calculation of the photo-assisted
noise at finite frequency associated with various possible
voltage drives. The characterization of the single-photon
squeezing as well as the purity of the states generated by
the different drives are discussed in Section V. In Section
VI we investigate the features associated with two-photon
states and characterize their entanglement. Finally, Sec-
tion VII is devoted to the conclusions.

II. QUADRATURES OF THE EMITTED

ELECTROMAGNETIC FIELD

According to Ref. 18, the current operator I describ-
ing the charge flowing through a mesoscopic device can
be connected to the outgoing electromagnetic field anni-
hilation operator a through the relation

a(ω) = −i
I(ω)

√

2A(ω)
(1)

with A(ω) = GF~ω a function which depends linearly
on: the linear conductance G of the tunnel junction (as-
sumed here energy independent), the Fano factor F and
the fixed measurement frequency ω of the detection set-
up (see below).
Notice that the above equation exactly holds only in

the case of ideal matching at low impedance between the
sample and the measurement set-up18.
The quadratures of the electromagnetic field are then

defined as12

A(ω) =
1√
2
[I(ω) + I(−ω)]

= i
√

A(ω)
[

a(ω)− a†(ω)
]

(2)

B(ω) =
i√
2
[I(ω)− I(−ω)]

= −
√
A
[

a(ω) + a†(ω)
]

(3)

Using the Robertson formulation of the Heisenberg prin-
ciple

∆A∆B ≥ 1

2
|〈[A,B]〉|, (4)

with ∆A =
√

〈A2〉 − 〈A〉2 (and an analogous expression
for the operator B) and [A,B] the usual definition of the
commutator, as well as the conventional bosonic commu-
tation relation

[

a(ω), a†(ω)
]

= 1, (5)

one directly obtains

∆A∆B ≥ A (6)

which naturally connects the quantum fluctuations of the
electromagnetic field quadrature at a given frequency ω
with the current fluctuations, namely the finite frequency
noise. An experimental scheme to detect these fluctua-
tions will be presented in the following Section.

III. EXPERIMENTAL SET-UP

i(t)

ω

⊗

⊗

kω0 − ω

cos kω0t

X
(k)(ω0,ω)

Tunnel 
 junction

V (t)

Figure 1. (Color on-line) Schematic view of a two-filters set-
up designed to measure the dynamical response of the noise
X (k). A tunnel junction (yellow box) is driven by a time de-
pendent voltage V (t) and emits a current i(t) which is split
into two. The resulting contributions are filtered at frequency
ω and |kω0−ω| respectively (blue boxes). They are then mul-
tiplied among themselves and with a cosine signal (⊗ sym-
bols). The final output is then averaged over a period.

When a mesoscopic device is subjected to an exter-
nal non-adiabatic AC drive at frequency ω0 (in the GHz
range) a two-filter measurement (see Fig. 1) allows to
access both the stationary photo-assisted noise at finite
frequency26–29 (zero-th order harmonic) and a more gen-
eral dynamical response of the current fluctuations30,31,
corresponding to the higher order harmonics at a fre-
quency kω0 (k ∈ N

∗).
After filtering at a given frequency Ω, the physical cur-

rent i(t) outgoing from the sample becomes

i(t) → iΩ(t) ≈ i(Ω)eiΩt + i(−Ω)e−iΩt, (7)

providing an operative definition for the k-th harmonics
of the dynamical response of the noise measured at a
frequency ω (again in the GHz range)

X (k)(ω0, ω) = 〈iω(t)ikω0−ω(t) cos(kω0t)〉, (8)

according to the functioning of the set-up described in
Fig. 1.31 Notice that the filtering procedure consists in
extracting the DC part by time averaging (operation de-

noted by 〈...〉). Therefore, keeping only the non zero
terms in the average, the expression in Eq. (8) reduces
to

X (k)(ω0, ω) =
1

2
[〈i(ω)i(kω0 − ω)〉+ 〈i(−ω)i(−kω0 + ω)〉] .

(9)

IV. QUANTUM MECHANICAL CALCULATION

In order to theoretically investigate the above quantity,
we need to link the definition in Eq. (9) with a quantum

mechanical one by introducing symmetrized correlators
of current operators, namely31,32

〈i(ω1)i(ω2)〉 ⇒
1

2
[〈I(ω1)I(ω2)〉c + 〈I(ω2)I(ω1)〉c] . (10)
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We want to remark here the fact that, for sake of clar-
ity, we distinguished the notation for the physical cur-
rent (i) and the associated quantum mechanical operator
(I). Moreover, we introduced the notation 〈O1O2〉c =
〈O1O2〉 − 〈O1〉〈O2〉 for quantum mechanical correlator
(at zero or finite temperature T ) between two arbitrary
operators O1 and O2. According to this, and taking into
account the reality condition I†(ω) = I(−ω) for the cur-
rent operator, one can write

X (k)(ω0, ω) =
1

2

[

ℜ
{

X (k)
+ (ω0, ω)

}

+ ℜ
{

X (−k)
+ (ω0,−ω)

}]

(11)
with

X (k)
+ (ω0, ω) = 〈I(ω)I(kω0 − ω)〉c (12)

and ℜ{...} indicating the real part.

We can consider now the experimentally relevant case
of a non-interacting tunnel junction (or QPC geom-
etry) subjected to a periodic drive V (t) with period
T = 2π/ω0, which can be naturally decomposed into
DC and AC part as

V (t) = VDC + VAC(t) (13)

with

1

T

∫ +T

2

−T

2

dtVAC(t) = 0. (14)

In this case one obtains the explicit form for the dy-

namical response of the noise at frequency kω0

X (k) =
1

2
ℜ
{

+∞
∑

n=−∞

pn(z)p
∗
n+k(z)S0(q + 1 + nλ, θ)

+

+∞
∑

n=−∞

pn(z)p
∗
n−k(z)S0(q − 1 + nλ, θ)

}

.

(15)

Notice that, in the above expression we introduced the
short notations: q = eVDC/~ω, λ = ω0/ω, θ = kBT/~ω

and z = eṼ /~ω0 (Ṽ the amplitude of the AC voltage) and
we have omitted the functional dependence for notational
convenience.
The function

S0(ξ, θ) = Aξ coth

(

ξ

2θ

)

, (16)

represents the rescaled variables version of the ther-
mal/shot noise crossover formula

S0(VDC , T ) = GFeVDC coth

(

eVDC

2kBT

)

(17)

evaluated for a tunnel junction geometry in a normal
metal.26,27

In the zero temperature limit it reduces to

S0(ξ, θ → 0) = A|ξ|. (18)

Moreover, according to the general definition of the
photo-assisted amplitudes22,33, one has

pn(z) =

∫ T /2

−T /2

dt

T e2iπn
t

T e−2iπzϕ(t), (19)

with

ϕ(t) = e

∫ t

−∞

dt′

T V̄AC(t
′), (20)

where V̄AC(t) is the AC part of V (t) with unitary and
dimensionless amplitude.
It is worth to note that for k = 0 the expression in Eq.
(11) reduces to

X (0) = S̃ =
1

2

+∞
∑

n=−∞

Pn(z) [S0(q + 1 + nλ, θ) + S0(q − 1 + nλ, θ)] , (21)

with Pn(z) = |pn(z)|2, and represents the photo-assisted

noise S̃ measured at finite frequency ω, as expected.

In order to proceed with our analysis, we need to spec-
ify the functional form of the photo-assisted amplitudes

pn(z) for experimentally relevant voltage drives. In the
following we will focus on three different signals: a cosine,
a rectangular periodic drive and a train of Lorentzian
pulses.22 We will keep separate the DC and AC amplitude
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in such a way to consider the parameters q (correspond-
ing to the number of electrons injected in the junction by
the drive22,23) and z in Eq. (15) as totally independent.

A. Cosine drive

The simple sinusoidal drive we are considering is

VAC(t) = −Ṽ cos (ω0t) (22)

leading to photo-assisted amplitudes in Eq. (19) of the
form

pn(z) = Jn (−z) . (23)

Notice that here we introduced n-th Bessel’s function of
the first kind Jn(x). They satisfy the relation

J−n(x) = (−1)nJn(x) (24)

which allows to further manipulate Eq. (15) in such a
way to recover the expression reported in Refs. 12 and
31.

B. Rectangular drive

The AC voltage profile in this case is given by

VAC(t) =











−Ṽ for− T
2 ≤ t < −η T

2 ,

Ṽ
(

1
η − 1

)

for− η T
2 ≤ t ≤ η T

2 ,

−Ṽ for η T
2 ≤ t < T

2

(25)

with η the width of the pulse in units of the period. The
associated photo-assisted probability amplitudes read

pn(z) =
z sin {π [(η − 1)z + ηn]}
π(z + n) [(η − 1) z + ηn]

. (26)

Notice that this particular drive reduces to the conven-
tional square wave for η = 1/2 and that for η → 0 (and
z = 1/2) one has

pn(z =
1

2
) =

2

π (2n+ 1)
, (27)

in agreement with what reported in Ref. 34 for the case
of a Dirac comb in time. Moreover, for η = 1 the photo-
assisted amplitudes are zero, as expected for a purely DC
bias.

C. Lorentzian voltage pulses

A periodic train of Lorentzian pulses has an AC con-
tribution

VAC(t) =
Ṽ

π

+∞
∑

l=−∞

η

η2 +
(

t
T
− l

)2 − Ṽ (28)

characterized by the photo-assisted amplitudes22,35

pn(z) = z

+∞
∑

s=0

Γ(z + n+ s)

Γ(z + 1− s)

(−1)se−2πη(2s+n)

(n+ s)!s!
, (29)

with Γ(x) the Euler’s Gamma function. Notice that, in
this case, η parametrizes the width at half height of the
pulse and in the limit η → 0 we recover the Dirac comb
case (see Eq. (27)).

V. SINGLE-PHOTON SQUEEZING

Due to the previous considerations about the current
correlators one can write the quadratures fluctuations of
the emitted radiation as12

〈A2〉c = (∆A)2 = S̃ + X (k) (30)

〈B2〉c = (∆B)2 = S̃ − X (k) (31)

where, as stated above, the squeezing of the emitted
electromagnetic field is achieved for 〈A2〉c/A < 1 or
〈B2〉c/A < 1. We consider now the behavior of the

−2 −1 0 1 2
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0. 0
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Q
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〉
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〈
B 2

cos

〉
c

〈
A 2
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〉
c

〈
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〉
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Figure 2. (Color on-line) Quadratures of the emitted electro-
magnetic field in units of A, as a function of q (number of
injected electrons) and at zero temperature (θ = 0). Curves
represent: 〈B2

lor〉c for the Lorentzian drive at z = 0.856 and
η = 0.1 (full black curve), 〈A2

lor〉c for the Lorentzian drive at
z = 0.856 and η = 0.1 (red full curve), 〈A2

cos〉c at z = 0.706
for the cosine drive case (gray dashed curve) and 〈B2

cos〉c at
z = 0.706 for the cosine drive case (orange dashed curve).
Thin black horizontal line indicates the vacuum fluctuations
(in units of A). The choice of the parameter z in each curve
has been achieved by numerical minimization of the noise.

quadratures for different drives measured at ω = ω0/2
(k = 1) and zero temperature (θ = 0), which has been
already shown to be the more favorable configuration in
order to enhance squeezing in the sinusoidal drive case.18

It is shown in Fig. 2 for drives which are in phase with
the periodic current probe cos kω0t. Out of phases sig-
nals lead, in general, to a suppression of X (k) and con-
sequently of the squeezing effect (see Eq. (15)). The
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θ = 0 θ = 0.04 θ = 0.08
Square 0.641 0.697 0.753
Cosine 0.618 0.676 0.733

Lorentzian (η = 0.1) 0.486 0.549 0.611

Table I. Minimum of the quadratures for the square, cosine
and Lorentzian drive achieved numerically at various experi-
mentally relevant temperatures.

presented results have been obtained by numerically min-
imizing the noise as a function of z (amplitude of the AC
drive). It is easy to note that for the cosine drive the
fluctuations of the quadrature 〈A2

cos〉c (〈B2
cos〉c) goes be-

low the quantum vacuum (thin black horizontal line) for
q = 1 (q = −1) at expenses of the other which stays well
above, as already reported in Ref. 12. This phenomenol-
ogy is exactly what is expected for a generic squeezed
state where the fluctuations along one quadrature are
suppressed, while the ones along the canonically conju-
gated one are enhanced in order to preserve the Heisen-
berg principle. Very similar behavior is obtained for the
square drive (rectangular pulse at η = 1/2, not shown)
even if in this case the noise signal is slightly above the
one for the cosine drive at any temperature (see Table
I). The explicit mirror symmetry connecting 〈A2

cos〉c and
〈B2

cos〉c (also present in the square drive) is in full agree-
ment with the general properties of the photo-assisted
amplitude probabilities.22

Even more evident is the squeezing behavior of the ra-
diation generated by the Lorentzian drive. Indeed, one
has that 〈B2

lor〉c (black full curve in Fig. 2) goes below
both the quantum vacuum and the minimum associated
with the cosine drive. This is obtained at the expense of
〈A2

lor〉c (red full curve in Fig. 2) that is above 〈B2
cos〉c

for the same value of z which minimizes the conjugated
quadrature. Moreover, the mirror symmetry discussed
above is absent here. This picture survives also at finite
temperature comparable with experiments12 (see Table
I). The present analysis seems to indicate that the strict
hierarchy among the periodic drives reported in Refs. 22
and 23 for the photo-assisted noise at zero frequency still
survives in the finite frequency case (and consequently
for the associated electromagnetic quadratures) indicat-
ing again the Lorentzian drive as the best candidate in
order to minimize the noise (maximize the squeezing).
This idea is further strengthened by the analysis of

the evolution of the minimum of 〈B2
lor〉c at zero tem-

perature as a function of the width of the Lorentzian
pulse η (see black squares in Fig. 3). The minima of
the quadrature are obtained by choosing for each η the
value of parameter z at which the squeezing is maximized
(zmin). This curve remains above the theoretical mini-
mum 4/π2 ≈ 0.405 (thin grey horizontal line) predicted
in Ref. 34 for a Dirac comb signal and asymptotically ap-
proaches the minimum of the cosine drive (≈ 0.618) (thin
black horizontal line).12 Notice that, as stated above,
the corresponding minimum for the square drive is even
higher (≈ 0.641). To complete this analysis, it is also in-

teresting to compare the Lorentzian drive with a train of
rectangular pulses (see red circles in Fig. 3). In this case,
for a quite extended range of η (0 < η < 0.4) we have
a squeezing which is better with respect to the cosine
drive and comparable with the Lorentzian pulse. Notice
that both the Lorentzian and the rectangular pulse con-
verge towards the theoretical minimum discussed above
for η → 0, as expected. According to Fig. 3 (inset),
while the value of zmin increases exponentially with η
in the Lorentzian case, it stays roughly constant in the
rectangular case. However, even if very promising in view
of maximizing the squeezing, narrow rectangular pulses
requires a greater number of harmonics to be generated
experimentally and also present some drawbacks for what
it concerns the properties of the emitted quantum pho-
tonic states. We will address this point in the following.
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Figure 3. (Color on-line) Value of the minimum of 〈B2
lor〉c

(Lorentzian drive, black squares) and 〈B2
rect〉c (rectangular

drive, red circles) in units of A, as a function of η and at zero
temperature (θ = 0). They are compared with the theoretical
minimum derived for a Dirac comb 4/π2 ≈ 0.405 (thin grey
horizontal line) and the numerical minimum calculated for
the cosine drive (≈ 0.618) (thin black horizontal line). The
values of z are different for each η in order to maximize the
squeezing (z = zmin). Inset. Corresponding evolution of the
value of zmin at which the minimum of the noise occurs (same
color code and style for the points).

A. Single-photon state purity

Another interesting quantity to look at in order to
characterize the electromagnetic radiation emitted by
mesoscopic devices is the purity of the outgoing single-
photon state, defined as18

µ =
1

2

|〈[A,B]〉|
∆A∆B

=
A

√

(

S̃ − X (1)
)(

S̃ + X (1)
)

. (32)

This quantity is µ = 1 for a pure state and lower than
1 for a generic mixed state. In Fig. 4 we show the
behavior of this quantity for the Lorentzian drive (red
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diamonds) as a function of η in comparison with the
optimal values obtained for the cosine drive (≈ 0.931,
thin black horizontal line). In all cases we have a value
of µ quite close to one, signature of an highly (even if
not perfectly) pure state. Moreover, we can note that
there is a region of η (very narrow pulses) for which
the Lorentzian drive is slightly above the cosine drive.
In particular, the purity associated with the Lorentzian
drive has a maximum (for η ≈ 0.2) and asymptotically
converges to the value of the cosine drive from above.
From this result we can deduce the fact that Lorentzian
drive can not only generate pure electronic states, namely
the Levitons4,5,22,36, but also quite pure outgoing single-
photon squeezed states. For a further comparison, one
can see that the purity of the quantum electromagnetic
state emitted by a Lorentzian drive is by far greater with
respect to the one of a rectangular drive (blue triangles).
Indeed, even if we have showed above that this signal
leads to a compatible squeezing for the same range of η,
the achieved values of µ are quite far from the others,
approaching 1 only at η > 0.7 where the correspond-
ing squeezing is very small (see Fig. 3). It is worth to
note that even higher values of purity, closely approach-
ing unity, can be achieved for the Lorentzian drive case
(not shown). However, this regime is reached to the detri-
ment of the squeezing which, even if still present, becomes
less effective.

0. 2 0. 4 0. 6 0. 8

η

0. 88

0. 90

0. 92

0. 94

µ

Figure 4. (Color on-line) Evolution of the single-photon pu-
rity µ as a function of η in the optimal squeezing configuration
(z = zmin) for a Lorentzian drive (red diamonds) and a rect-
angular pulse (blue triangles), Curves are compared with the
optimal values calculated for a cosine (≈ 0.931, thin black
horizontal line). The corresponding value for a square wave
is obtained for the rectangular pulse at η = 1/2.

According to these considerations the Lorentzian drive
emerges as the most promising candidate among the
experimentally feasible drives in order to create pure
squeezed photonic states suitable for quantum communi-
cation applications. Notice that a recent analysis carried
out for an asymmetric quantum dot geometry also indi-
cated a train of Levitons as the candidate to maximize
the squeezing of the outgoing electromagnetic field.34

VI. TWO-PHOTON ENTANGLEMENT

According to the results derived above and following
Ref. 13, it is possible now to investigate the entanglement
properties of microwave photons emitted at different fre-
quencies ω1 = ω and ω2 = ω0 − ω. Proceeding as before,
we can define a quadrature for each frequency, namely

A1,2(ω1,2) =
1√
2
[I(ω1,2) + I(−ω1,2)] (33)

B1,2(ω1,2) =
i√
2
[I(ω1,2)− I(−ω1,2)] . (34)

It is then possible to identify various different fluctu-
ations involving these quadratures, which are again con-
nected to different harmonic of the photo-assisted finite
frequency noise.

Due to the constraints ω1 + ω2 = ω0 and ω1 6= ω2, the
diagonal fluctuations read

〈A2
1〉c = 〈B2

1〉c = S̃ (35)

〈A2
2〉c = 〈B2

2〉c = S̃λ (36)

where S̃λ represents the photo-assisted noise in Eq. (21)
calculated at frequency ω2 = ω0−ω, but with the param-
eters properly rescaled with respect to ω1 = ω in order
to allow comparison, namely

S̃λ =
1

2

+∞
∑

n=−∞

Pn(z) [S0(q + λ− 1 + nλ, θ) + S0(q − λ+ 1 + nλ, θ)] . (37)

The non-diagonal fluctuations can be written instead as

〈A1A2〉c = −〈B1B2〉c = X (1). (38)

It is worth noting that here, differently from what is seen
in the previous section, the ratio λ = ω0/ω is a free
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parameter not constrained a priori by the condition λ =
2. Concerning the crossed fluctuations one has

〈A1B2〉c = 〈A2B1〉c = X (1)
+ −X (1)

− (39)

with, for real probability amplitudes,

X (1)
+ =

1

2

∑

n

pn(z)pn+1(z)S0(q + 1 + nλ, θ) (40)

X (1)
− =

1

2

∑

m

pm+1(z)pm(z)S0(q − 1 + λ+mλ, θ).(41)

It is easy to note that, due to the reality of the photo-
assisted amplitudes (valid for all the considered drives)
and the fact that the sum indices are mute, one has

〈A1B2〉c = 〈A2B1〉c ≈ 0 (42)

as long as λ ≈ 2.
The above considerations justify the experimental

choice λ ≈ 2.07 (ω1 and ω2 different but very close) done
in Ref. 13. Indeed, for this value of the parameter λ, one
can safely neglect the crossed contributions with respect
to the others (see Fig. 3 of Ref. 13).

A. Two-photon squeezing

It is useful, at this point, to introduce the rescaled
operators

α1 =
A1√
2A

, (43)

α2 =
A2

√

2A(λ− 1)
(44)

and analogous definitions for β1 and β2, leading to the
quantum limit at zero AC and DC voltage and zero tem-
perature

〈α2
1,2〉c = 〈β2

1,2〉c =
1

2
. (45)

It is easy to note that the fluctuations of these new op-
erators are trivially related to the previously discussed
photo-assisted noise measured at finite frequency. More
interesting are the operators

u =
α1 − α2√

2
, (46)

v =
β1 + β2√

2
(47)

connecting two photons emitted at different frequencies.
Their fluctuations are given by

〈u2〉c = 〈v2〉c =
1

4A

[

S̃ +
S̃λ

λ− 1
− 2X (1)

√
λ− 1

]

. (48)

Proceeding on the same way we can define similar ex-
pression also for the combinations w = (α1 + α2)/

√
2

θ = 0 θ = 0.04 θ = 0.08
Square 0.661 0.699 0.752
Cosine 0.639 0.668 0.732

Lorentzian (η = 0.1) 0.512 0.551 0.610

Table II. Minimal values of the parameter δ (at fixed λ =
2.07) achieved numerically for various experimentally relevant
drives and temperatures.

and y = (β1 − β2)/
√
2 (with an opposite sign in front

of the non-diagonal contribution). The behavior of the
above quantities is qualitatively very similar to what
was reported in Fig. 2 for the single-photon squeez-
ing (due to the fact that λ ≈ 2 also in this case), but
the physical meaning is deeply different. Indeed, they
indicate the emergence of non trivial correlations be-
tween the fluctuations of the quadratures of photons
emitted at different frequencies. This phenomenology
usually indicated as two-photon squeezing represents a
first, even if not conclusive, indication of the possibility
of entanglement between the emitted photons. We have
that, at low enough temperatures, all the investigated
drives show two-photon squeezing at q ≈ 1 for the op-
erators 〈u2〉c = 〈v2〉c, which is again maximum for the
Lorentzian drive case.

B. Comments about entanglement

The two-photon squeezing discussed above proves the
existence of non-trivial correlations between the quadra-
tures of the electromagnetic field at different frequencies.
For strong enough correlations one can have entangle-
ment. This is guaranteed for continuous variables as long
as the condition

δ = 〈u2〉c + 〈v2〉c < 1, (49)

which constitutes the continuous version of the Bell
inequality37, is satisfied for some range of parameters.
Conversely the two-photon state is separable. The above
condition is obviously fulfilled for a relatively wide range
of voltages around q ≈ 1 for all the considered drives and
also at experimentally reasonable values of temperature
as reported in Table II.

C. Purity of the two-photon state

Also in this case it is possible to define the purity of the
emitted two-photon state. To this aim one can define the
quadrature vector20 ξ = (α1, β1, α2, β2) and the related
correlation matrix γij = 2〈ξiξj〉c in such a way that the
two-photon state purity reads

µ2 =
1

√

Det(γ)
=

(λ− 1)2A2

S̃S̃λ −
[

X (1)
]2 (50)
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extending the definition given in Eq. (32).

The behavior of this quantity for the various drives is
reported in Fig. 5. The behavior is qualitatively similar
to what is observed in Fig. 4 for the single-photon pu-
rity µ, with the only difference that the Lorentzian drive
(red diamonds) shows no maximum and asymptotically
approaches the value for the cosine drive (≈ 0.917, thin
black horizontal line) from below.

The above considerations allows us to drawn interest-
ing conclusions about the prominent role played by the
Lorentzian pulses in generating quite pure entangled two-
photon states suitable for quantum information applica-
tion.

0. 2 0. 4 0. 6 0. 8

η

0. 87

0. 89

0. 91

0. 93

µ
2

Figure 5. (Color on-line) Evolution of the two-photon purity
µ2 as a function of η in the optimal squeezing configuration
(z = zmin) for a Lorentzian drive (red diamonds) and a rect-
angular pulse (blue triangles). They are compared with the
optimal values calculated for a cosine voltage (≈ 0.917, thin
black horizontal line).

VII. CONCLUSION

We have considered a mesoscopic device in a tunnel
junction (or QPC geometry) subjected to various dif-
ferent periodic drives. Under this condition the system
emits microwave radiation with remarkable non-classical
features. We have compared various experimentally rel-
evant drives like cosine, rectangular and Lorentzian in
order to determine which one is more suitable in or-
der to enlighten quantum properties of the outgoing
electromagnetic field. We have showed that a train of
Lorentzian voltage pulses, already investigated at length
in the framework of electron quantum optics due to its
remarkable peculiarities in terms of single-electron emis-
sion, represents the best candidate in order to achieve
both single and two-photon squeezing as well as two-
photon entanglement in the frequency domain. More-
over, this peculiar drive leads to single and two-photon
quantum states of quite high purity. We think that the
present analysis will have an important impact on quan-
tum communication applications. Possible further devel-
opments of our work could address the role played by
interaction in further enhancing or suppressing the ob-
served quantum features of the emitted radiation.38,39
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