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KEY POLYNOMIALS, SEPARATE AND IMMEDIATE VALUATIONS, AND

SIMPLE EXTENSIONS OF VALUED FIELDS.

G. LELOUP

Abstract. In order to study simple extensions of valued fields, notions of key polynomials were devel-
oped. Model theoretical properies of extensions of valued fields were also studied. The properties of

valuations used in model theory shed a new light on key polynomials and they make it possible to ob-

tain underlying properties of these extensions. Key polynomials are used for defining separate valuations
which approximate a valuation on an extension K(χ). A valuation νλ on K(χ) is separate if there is a

K-basis Bλ of K[χ] such that νλ is determined by its restrictions to K and Bλ. For every valuation ν
the aim is to find a family of monic polynomials of K[χ], which are called key polynomials, and a family

νλ of separate valuations such that for every λ the elements of Bλ are products of key polynomials, and,

for every f ∈ K[χ], ν(f) is the maximum of the family (νλ(f)). The approach of the present paper
shows the links between some properties of valuations used in model theory and the key polynomials.

The existence of a family of separate valuations as above follows in a natural way. Our definitions rely

on euclidean division of polynomials, on bases of vector spaces and on classical properties of valuations.

1 The purpose of this work is twofold. On the one hand, it is to show the links between the model
theoretical study of extensions of valued fields of W. Baur, F. Delon and the author (see [B 81], [B 82],
[D 82], [D 88], [D 91], [L 89], [L 03]) and the study of simple extensions of valued fields of S. Maclane
([ML 36a], [ML 36b]), M. Vaquié ([V 07]), F. J. Herrera Govantes, W. Mahloud, M. A. Olalla Acosta,
M. Spivakovsky ([HOS 07], [HMOS 14]) and others. These last authors made this study with algebraic
geometrical purposes. On the other hand, it is to give a different approach to the study of key polyno-
mials. This approach relies on euclidean division of polynomials, basis of vector spaces and the notions
of separate and immediate extensions used in model theoretical study of extensions of valuations. In the
following, we use the word “module” which is shorter than “vector space”. As much as possible, we try
to use only elementary properties of valuations. Furthermore, we try to make clear that some valuations
that we define are only K-module valuations (see definition below). However, we use an approximation
theorem of Ribenboim in one proof, pseudo-Cauchy sequences in two subsections dedicated to immediate
extensions, and the graded algebra associated to a valuation in two proofs (all the definitions will be
given below). On the one side, pseudo-Cauchy sequence play an important role in the study of immediate
extensions. On the other side graded algebras are a good tool for providing nice proofs of some proper-
ties of separate extensions. This work is self-contained and when we use results on key polynomials of
preceding papers, we generally give a proof.

S. MacLane introduced key polynomials to define families of separate valuations which approximate
an extension of ν to the field K(χ), where χ is algebraic or transcendental over K. They are also used
for defining the different extensions of a fixed valuation to a given simple algebraic extension of a field.
Here we will focus on the first purpose. S. MacLane gave a definition of a key polynomial for a valuation,
but with this definition Φ is a key polynomial for the generalized Gauss valuation νΦ that we will define
in Proposition 3.15 and Notations 3.16, but not for ν in general. In the works of S. MacLane and of M.
Vaquié, the key polynomials Φ are constructed by induction, starting from the degree 1 key polynomials.
In [HOS 07] the authors do not define key polynomials but families of key polynomials, by means of
properties that these families have to satisfy. Then they construct such families by induction, starting
from the degree 1, in a different way from the constructions of S. MacLane and M. Vaquié. Here, we give
a general characterization of key polynomials by means of first order formulas (in the language of valued
fields together with a predicate interpreted by the generator of the simple extension). In Proposition 3.23
we show that Φ being a key polynomial for ν is equivalent to being a MacLane key polynomial for the
generalized Gauss valuation νΦ. However, we only need a family of key polynomials that we call strict
key polynomials. With our definition, it is not necessary to construct the families of key polynomials
by induction on the degree, but we construct independently the key polynomials of each degree, if any
(Definition 4.9). Next we deduce a family (νλ) of K-module valuations (where λ runs over a partially
ordered set) and we prove in a natural way that, for every f ∈ K[χ], ν(f) is the maximum of the family
νλ(f), and that, if the family of λ’s is infinite, there are infinitely many λ’s such that νλ(f) = ν(f)
(Theorem 4.11).
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2 G. LELOUP

General properties.
A valuation on a field K is a morphism ν from the multiplicative group (K∗, ·) to an abelian lin-

early ordered group (νK,+) called the valuation group. We add an element ∞ to νK (∞ > νK), we
set ν(0) = ∞, and we assume that ν(x + y) ≥ min(ν(x), ν(y)), for every x, y in K. It follows that if
ν(x) 6= ν(y), then ν(x + y) = min(ν(x), ν(y)). If ν(x) = ν(y), then ν(x + y) can be arbitrarily large.
The set {x ∈ K | ν(x) ≥ 0} is a local domain and {x ∈ K | ν(x) > 0} is its maximal ideal, they are
called respectively the valuation ring and the maximal ideal of the valued field. The quotient field of the
valuation ring by the maximal ideal is denoted by Kν , and is called the residue field of the valued field.
The residue characteristic of (K, ν) is the characteristic of Kν . We have charKν = 0 ⇒ charK = 0 and
charK > 0⇒ charKν = charK. For x in the valuation ring of (K, ν), its class modulo the maximal ideal
will be denoted by xν . For every subsetM ofK we denote by ν(M), or νM , the set {ν(x) | x ∈M, x 6= 0}.

An extension (L|K, ν) of valued fields consists in an extension L|K of fields, where L is equipped with
a valuation ν. If L|K is a field extension and ν is a valuation on K, then there is a least one extension of
ν to L. For n ∈ N∗, we denote by Kn[χ] the K-submodule of K[χ] of all polynomials of degree at most
n, where χ is algebraic or transcendental over K. We let K0[χ] = K and if χ is transcendental over K,
then we let K∞[χ] = K[χ]. We assume that ν is a finite rank valuation (the rank of ν is the number of
proper convex subgroups of νK), so that νK and νK(χ) have countable cofinality. If the rank is 1, then
νK embeds in the ordered group (R,+); we also say that ν is archimedean.

Assume that M is a K-module (where K is a field). A mapping ν from M to a linearly ordered group
together with an element ∞ will be called a K-module valuation, if for every y1, y2 in M and x ∈ K:
ν(y1) =∞⇔ y1 = 0, ν(y1 + y2) ≥ min(ν(y1), ν(y2)), ν(xy1) = ν(x) + ν(y1) (it follows that its restriction
to K is a valuation of field).

Separate and immediate extensions.
Assume that ν is a K-module valuation on M . In general, for every x1, . . . , xn in K, pairwise distinct

y1, . . . , yn in M , ν(x1y1 + · · ·+ xnyn) is at least equal to min(ν(x1y1), . . . , ν(xnyn)), and it can be arbi-
trarily large. The K-module valuation ν is said to be separate if there exists a basis B of M such that for
every x1, . . . , xn in K, pairwise distinct y1, . . . , yn in B, ν(x1y1 + · · ·+xnyn) = min(ν(x1y1), . . . , ν(xnyn)).
If this holds, then the basis B is said to be ν-separate (in short separate). Note that if B is a basis of
L, then we can define a separate K-module valuation ν′ by setting, for every x1, . . . , xn in K, pairwise
distinct y1, . . . , yn in B, ν′(x1y1 + · · ·+xnyn) = min(ν(x1y1), . . . , ν(xnyn)). If ν is separate, then one can
compute the valuation of any element of M by means of the restrictions of ν to K and B.

We will see in Proposition 2.19 that for d ∈ N ∪ {∞} such that 0 < d ≤ [K[χ] :K] − 1, the extension
(Kd[χ]|K, ν) is separate if, and only if, for every integer n, 1 ≤ n ≤ d, ν(χn−Kn−1[χ]) = {ν(χ− y) | y ∈
Kn−1[χ]} has a maximal element. Futhermore, if χ is transcendental over K, and ν is a field valuation
on K(χ), then (K(χ)|K, ν) is separate if, and only if, for every n ∈ N∗, ν(χn −Kn−1[χ]) has a maximal
element.

Let M ⊂ N be K-submodules of L. We say that the K-module N is immediate over M if for every
l ∈ N , the set ν(l −M) = {ν(l − x) | x ∈ M\{l}} is a subset of νM and it has no maximal element.
We say that it is dense over M if for every l ∈ N , the set ν(l −M) is equal to νM . One can prove that
saying that the extension of valued field (L|K, ν) is immediate is equivalent to saying that νL = νK and
Lν = Kν . We will show in Proposition 1.7 that for d, d′ in N∪{∞} such that 0 ≤ d < d′ ≤ [K[χ] :K]−1,
(that is, if χ is algebraic over K, then d′ < [K[χ] :K]), the extension (Kd′ [χ]|Kd[χ], ν) is immediate if,
and only if, for every n ∈ {d + 1, . . . , d′}, ν(χn −Kn−1[χ]) has no maximal element. Furthermore, if ν
is a field valuation and νK[χ] is a group, then it is dense if, and only if, for every n ∈ {d + 1, . . . , d′},
ν(χn −Kn−1[χ]) = νK. The sets ν(χn −Kn−1[χ]), which appear in Propositions 1.7 and 2.19, will be
used in the definitions of key polynomials, and in the construction of families of key polynomials.

Families of key polynomials.
Now, let (K(χ)|K, ν) be a simple extension of valued fields. If there is no confusion, then for every poly-

nomial f(χ) of K[χ] we write f instead of f(χ). S. MacLane defined families (νi) of separate K-module
valuations to approximate ν (where i runs over a well-ordered set). Note that if Bi is a separate basis for
νi, and the restrictions of ν and νi to K and Bi are equal, then for every f ∈ K[χ] we have νi(f) ≤ ν(f)
(in short, νi ≤ ν). Assume that χ is algebraic (so that K(χ) = K[χ]), and that there exists f ∈ K[χ] such
that νi(f) < ν(f). Since νi ≤ ν, we have νi(1/f) ≤ ν(1/f). Hence νi(f) < ν(f) = −ν(1/f) ≤ −νi(1/f).
So νi(1/f) 6= −νi(f). It follows that νi doesn’t satisfy the rule νi(fg) = νi(f)+νi(g). Now, we will prove
in Proposition 3.15 that, in some cases, if deg(f) + deg(g) < [K[χ] :K], then νi(fg) = νi(f) + νi(g). This
motivates the following definitions.

If for every f , g in K[χ] such that deg(f) + deg(g) < [K[χ] :K] we have ν(fg) = ν(f) + ν(g), then we
say that ν is partially multiplicative, or a p-m valuation. In the case where [K[χ] :K] =∞, we assume in
addition that g 6= 0 implies ν(f/g) = ν(f)− ν(g), that is, ν is a field valuation in the usual sense. If ν is
a field valuation (in the usual sense), then we will also say that it is multiplicative.
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Let Φ be a monic polynomial of degree d. We say that Φ is a strict key polynomial if, for every f ,
g in Kd−1[χ] with deg(f) + deg(g) < [K[χ] : K], ν(fg) = ν(r) < ν(qΦ), where fg = qΦ + r is the
euclidean division. A positive integer d is said to be a strict key degree if there is a strict key polynomial
of degree d. Trivially, 1 is a strict key degree, and we see that any strict key polynomial is irreducible.
Let d1 = 1 < d2 < · · · < dn be the first n strict key degrees. For i ≤ n, let Φdi be a strict key polynomial
of degree di, and dn+1 = [K(χ) :K]. We let B be the family of the Φe1d1

· · ·Φendn , where, for 1 ≤ j ≤ n,

e1 + e2d2 + · · · + ejdj < dj+1. Since the degree mapping is one-to-one from B onto [0, [K(χ) :K][, B is
indeed a basis of the K-module K[χ]. We let νΦd1

,...,Φdn
be the separate K-module valuation defined

by this basis. Then, for every f ∈ K[χ], all the νΦd1
,...,Φdn

(f) are bounded above by ν(f). We prove

that there exists a family F of strict key polynomials such that, for every f ∈ K[χ], by letting dn be
the greatest strict key degree which is at most equal to deg(f), there exist Φd1

, . . . ,Φdn in F such that
νΦd1

,...,Φdn
(f) = ν(f).

The family F is defined in the following way. Let d be a strict key degree. We say that d is a separate
key degree if the set ν(χd − Kd−1[χ]) has a maximal element. We will show in Proposition 3.26 that
every monic polynomial Φd of degree d such that ν(Φd) = max ν(χd−Kd−1[χ]) is a strict key polynomial.
We say that d is an immediate key degree if the set ν(χd −Kd−1[χ]) has no maximal element. We will
show in Proposition 3.26 that there exists a sequence (Φd,n) of key polynomials of degree d such that

the sequence (ν(Φd,n)) is increasing and cofinal in ν(χd −Kd−1[χ]). Now, let 1 = d1 < d2 < · · · be the
sequence of strict key degrees. If di is a separate key degree, then we let Φdi be a strict key polynomial
such that ν(Φdi) = max ν(χdi −Kdi−1[χ]). For notational convenience, for every non-negative integer n
we set Φdi,n = Φdi . If di is an immediate key degree, then we let (Φdi,n) be a sequence of key polynomials

of degree di such that the sequence (ν(Φdi,n)) is increasing and cofinal in ν(χdi−Kdi−1[χ]). Then we can
let F be the family of the νΦd1,n1

,...,Φdk,nk
’s, where k and the ni’s run over N. If the degree of f is less

than dk+1, then ν(f) is the maximum of the family νΦd1,n1
,...,Φdk,nk

, and infinitely many νΦd1,n1
,...,Φdk,nk

’s

are equal to ν(f) (Theorem 4.11).
Since the key polynomials of each degree are defined independently, the proof of this approximation

theorem is short and it relies on a decreasing induction on the degrees of key polynomials. Furthermore,
the rank of the valuation does not appear in the proof, it works whenever the rank is 1 or not. Note
that in the case of an infinite rank, the only difference would be that the cardinal of the family is not
necessarily countable, since in the νΦd1,n1

,...,Φdk,nk
’s it may occur that the ni’s run over an uncountable

ordered set.
If there is at most one immediate strict key degree, then we get an algorithm to calculate ν(f)

for every polynomial f . Let dk be the greatest key degree which is a most equal to the degree of
f . Then νΦd1,n,...,Φdk,n

(f) = ν(f) ⇔ νΦd1,n,...,Φdk,n
(f) = νΦd1,n+1,...,Φdk,n+1

(f). Hence we compute

νΦd1,n,...,Φdk,n
(f), and we stop when this condition holds.

If we have ν(r) ≤ ν(qΦ) instead of ν(r) < ν(qΦ) in the definition of strict key polynomials, then
we say that Φ is a key polynomial. Key polynomials can also be characterized in the following way.
Let Φ be a monic irreducible polynomial and d be the degree of Φ. Assume that d ≤ [K[χ] : K]/2.
Since the K-modules Kd−1[χ], Kd−1[X] and K[X]/(Φ) are isomorphic (where K[X] denotes the ring
of formal polynomials), ν induces a K-module valuation ν̄ on K[X]/(Φ) by setting, for f ∈ Kd−1[X],
ν̄(f(X) + (Φ)) = ν(f(χ)). Note that ν̄(K[X]/(Φ)) = ν(Kd−1[χ]). Now, Φ is a key polynomial if, and
only if, (K[X]/(Φ), ν̄) is a valued field (i.e. ν̄ is multiplicative). If Φ is a strict key polynomial, then in
addition the residue field (K[X]/(Φ))ν̄ is canonically isomorphic to (Kd−1[χ])ν (so, it embeds in (K[χ])ν).

Some model theory.
In above study, we see that the simpler case is the separate one. In the model theorical study of ex-

tensions of valued fields, separate extensions also give interesting results. A valued field (K, ν) is said to
be algebraically maximal if no extension of ν to an algebraic extension of K is immediate. If the residue
characteristic is 0, then being algebraically maximal is equivalent to being henselian, i.e. ν having a
unique extension to any agebraic extension of K. A famous theorem of J. Ax, S. Kochen and Y. Ershov
([AK 65]) says that the elementary theory of a henselian valued field (K, ν) of residue characteristic 0
is determined by the elementary theory of its residue field and the elementary theory of its value group.
Next, this result was extended to other families of algebraically maximal valued fields. The aim is to get
similar results in the case of extensions of valued fields. Now, in [D 91] F. Delon proved that given a
theory TF of fields of characteristic 0 and a theory TV of non trivial linearly ordered abelian groups, the
theory of immediate henselian extensions (L|K, ν), where Kν is a model of TF and νK is a model of TV ,
is indecidable and admits 2ℵ0 completions. The failure comes from the sets ν(l−K), where l ∈ L. Now,
if K, L are henselian, charKν = 0, and (L|K, ν) is separate, then the first-order theory of the extension
is determined by the theories of the residual extension and of the extension of valued groups. The same
holds if (L|K, ν) is an extension of algebraically maximal Kaplansky fields or of real-closed fields (see
[B 81], [B 82], [L 89], [L 03]). Furthermore, we have similar results with dense extensions. In the case
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where (L|K, ν) is an extension of valued fields of residue characteristic 0, there exists a henselian subfield
H, K ⊆ H ⊆ L, such that (H|K, ν) is separate and (L|H, ν) is immediate (see [D 88]). This shows that
it can be interesting to focus on separate and immediate extensions.

Summary of the paper.
In Section 1 we generalize the definitions of immediate and dense extensions to extensions of modules,

equipped with K-module valuations. Then we focus on the case of simple extensions. We prove Proposi-
tion 1.7, and we generalize a result of F. Delon which shows that if the residue characteristic is 0 and ν is
archimedean, then any simple immediate algebraic extension of valued field is dense (Theorem 1.10). We
also recall definitions and properties of pseudo-Cauchy sequences which will be used later. Section 2 is
devoted to separate extensions. In the same way as in Section 1, we focus on the case of simple extensions,
and we prove Proposition 2.19. Then we recall definitions and properties of the graded algebras associ-
ated to valuations, since they are useful in the study of separate extensions. In Section 3, we characterize
key polynomials and key degrees. We compare this definition with the definition of S. MacLane and
M. Vaquié (Proposition 3.23). We study the K-module valuations defined by key polynomials, and the
associated bases generated by these key polynomials. Next we set properties of key degrees. We prove,
for example, that if d is an immediate key degree and d′ is the next strict key degree, then the extension
(Kd′−1[χ]|Kd−1[χ], ν) is immediate (Theorem 3.36). We also give characterizations of the successor of
a given strict key degree (Theorems 3.36 and 3.37). In particular, we look at conditions for being the
greatest strict key degree. For example, we show that this holds if ν(χd−Kd−1[χ]) = νKd−1[χ] = νK(χ)
(Proposition 3.41). Next, we look at the links between the separate strict key polynomials and the graded
algebra of a valuation. Then, in Section 4, we use key polynomials to define the K-module valuations
which approximate a given valuation of K(χ)|K. We focus on the particular cases of immediate and
separate extensions. We also show some links with the definitions of the families of key polynomials
by M. Vaquié and by F. J. Herrera Govantes, W. Mahloud, M. A. Olalla Acosta and M. Spivakovsky
(without going into the details). In Section 5 we come back to the definitions of decomposition, inertia
and ramification fields, which are defined by means of subgroup of the Galois group of a normal extension.
In this study also appear an immediate step and separate steps. However, this approach differs from the
approach by means of key polynomials. We show this in some examples.

In the present paper we study only the properties which follow in a natural way from our definition
of key polynomials, and we do not look at all properties studied in previous papers. In particular, we do
not investigate the number of immediate strict key degrees or the links with the defect of an extension.

1. Immediate extensions

In this section, L|K is an extension of fields and ν is a K-module valuation on L. If M is a K-module,
then we assume that νM has no greatest element. This holds if νK is not trivial. Indeed, for every x ∈ K
with ν(x) > 0 and y ∈M , we have xy ∈M and ν(xy) = ν(x) + ν(y) > ν(y).

1.1. Basic properties. We generalize the definitions of immediate and dense extensions to extensions
of K-modules.

Notations 1.1. Let l ∈ L and M be a K-submodule of L. We denote by ν(l−M) the subset {ν(l−x) |
x ∈M\{l}} of νM . For any polynomial f , we denote by ν(f(M)), or νf(M), the subset {ν(f(x)) | x ∈
M}\{∞}.

Note that ν(l −M) ∩ νM is an initial segment of νM .

Definitions 1.2. Let M ⊆ N be K-submodules of L, and l ∈ L.
We say that l is pseudo-limit over (M,ν) if ν(l −M) ⊆ νM , and ν(l −M) has no maximal element.
We say that l is limit over (M,ν) if ν(l −M) = νM .
The extension (N |M,ν) is said to be immediate if every element of N is pseudo-limit over (M,ν).
The extension (N |M,ν) is said to be dense if every element of N is limit over M .

Remark 1.3. It follows that if (N |M,ν) is dense, then it is immediate.

Lemma 1.4. Let l ∈ L and M be a K-submodule of L. The element l is pseudo-limit over (M,ν) if,
and only if, for every x ∈M there exists y ∈M such that ν(l − y) > ν(l − x).

Proof. If l is pseudo-limit, then ν(l − M) has no maximal element. Hence, for every x ∈ M there
exists y ∈M such that ν(l − y) > ν(l − x). Conversely, if for every x ∈M there exists y ∈M such that
ν(l−y) > ν(l−x), then ν(l−M) has no maximal element. Now, let x, y in M such that ν(l−y) > ν(l−x).
Then, since ν(l − x) = ν(l − y + y − x) < ν(l − y), it follows that ν(l − y) = ν(y − x) ∈ νM . Hence
ν(l −M) ⊆ νM . Consequently, l is pseudo-limit over M . �

Notations 1.5. For γ in νL and M a K-submodule of L, let Mγ,ν be the Kν-module {x ∈M | ν(x) ≥
γ}/{x ∈M | ν(x) > γ}. In the case where γ = 0, we often write Mν instead od M0,ν .
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For f ∈ K[l] with ν(f) ≥ γ, we denote by fγ,ν the class of f modulo the ideal {g ∈ K[l] | ν(g) > γ} of
the ring K[l].

Remark 1.6. .
1) (N |M,ν) is immediate if, and only if, νN = νM and, for every γ ∈ νM , Nγ,ν = Mγ,ν .
2) (N |K, ν) is immediate if, and only if, νN = νK and Nν = Kν .

Proof. .
1) We assume that (N |M,ν) is immediate. Let l ∈ N . Since l is pseudo-limit over M , there is x ∈M

such that ν(l − 0) < ν(l − x). Hence ν(l) = ν(x) ∈ νM . Let γ ∈ νM and l ∈ N such that ν(l) = γ.
There exists x ∈M such that γ = ν(l − 0) < ν(l − x). Hence lγ,ν = xγ,ν ∈Mγ,ν .

Assume that νN = νM and, for every γ ∈ νM , Nγ,ν = Mγ,ν . Let l ∈ N and x ∈ M . Let y1 in M
such that ν(y1) = ν(l − x) and (y1)ν(y1),ν = lν(y1),ν . Therefore, ν(l − x− y1) > ν(y1) = ν(l − x). We let
y := x+ y1. By Lemma 1.4, (N |M,ν) is immediate.
2) It remains to prove that if νN = νK and Nν = Kν , then for every γ ∈ νM , Nγ,ν = Mγ,ν . Let γ ∈ νK
and l ∈ N such that ν(l) = γ. We take x1 ∈ K\{0} such that ν(x1) = ν(l). Hence ν(l/x1) = 0. Since N is
a K-module, l/x1 belongs to N . Now, let x2 ∈ K such that (l/x1)ν = (x2)ν . Therefore, ν(l/x1−x2) > 0.
Set x := x1x2. Then, ν(l − x) = ν(x1(l/x1 − x2)) = ν(x1) + ν(l/x1 − x2) > ν(x1) = ν(l). It follows that
lγ,ν = xγ,ν . �

1.2. Extensions generated by one element. In this subsection, K(χ)|K is a simple extension of
valued fields, where χ is algebraic or transcendental over K.

By definition, if (K(χ)|K, ν) is immediate, then χ is pseudo-limit over K. We show that, with some ad-
ditional conditions, a limit (resp. pseudo-limit) element can generate a dense (resp. immediate) extension.
First, we characterize the immediate and dense extensions by means of the sets ν(χn −Kn−1[χ]).

Proposition 1.7. Let d, d′ in N ∪ {∞} such that 0 ≤ d < d′ ≤ [K[χ] :K]− 1, (that is, if χ is algebraic
over K, then d′ < [K[χ] :K]). Recall that we defined K0[χ] = K and K∞[χ] = K[χ].
a) (Kd′ [χ]|Kd[χ], ν) is immediate if, and only if, for every n ∈ {d + 1, . . . , d′}, ν(χn −Kn−1[χ]) has no
maximal element.
b) Assume that ν is a p-m valuation on K(χ) and that νKd[χ] is a subgroup of νK(χ). Then the extension
(Kd′ [χ]|Kd[χ], ν) is dense if, and only if, for every n ∈ {d+ 1, . . . , d′}, ν(χn −Kn−1[χ]) = νKd[χ].

Proof. a) ⇒. Assume that, for some n ∈ {d+ 1, . . . , d′}, ν(χn−Kn−1[χ]) has a greatest element ν(f). If
ν(f) is not in νKd[χ], then νKd′ [χ] 6= νKd[χ], and, by Remark 1.6 1), the extension is not immediate. If
ν(f) ∈ νKd[χ], say ν(f) = γ. For every g ∈ Kd[χ] we have ν(f − g) ≤ ν(f), hence fγ,ν 6= gγ,ν . It follows
that (Kd′ [χ])γ,ν 6= (Kd[χ])γ,ν , so the extension is not immediate.
⇐. Assume that (Kd′ [χ]|Kd[χ], ν) is not immediate, and let n be the smallest integer such that, for

some polynomial f of degree n, either ν(f) /∈ νKd[χ] or, for every g ∈ Kd[χ], fγ,ν 6= gγ,ν , where γ = ν(f).
Note that, by dividing f by an element ofK, we can assume that f is a monic polynomial of degree n. First
assume that ν(f(χ)) /∈ νKd[χ], and let g be a monic polynomial of degree n. Then deg(f−g) < n, hence,
by minimality of n, ν(f−g) ∈ νKd[χ]. So ν(f−g) 6= ν(f). It follows: ν(g) = min(ν(g−f), ν(f)) ≤ ν(f),
which proves that ν(f) is the greatest element of ν(χn −Kn−1[χ]).

Assume that γ = ν(f) ∈ νKd[χ], and, for every g ∈ Kd[χ], fγ,ν 6= gγ,ν . Let g be a monic polynomial
of degree n. If ν(g − f) 6= γ, then ν(g) = min(ν(g − f), ν(f)) ≤ ν(f). Now, assume that ν(g − f) = γ.
By minimality of n, we have fγ,ν 6= (g − f)γ,ν . So ν(g) = ν(g − f + f) = min(ν(g − f), ν(f)) ≤ ν(f).
Consequently, ν(f) is the greatest element of ν(χn −Kn−1[χ]).

b) If (Kd′ [χ]|Kd[χ], ν) is dense, then it is immediate. Hence for every n ∈ {d + 1, . . . , d′} we have:
ν(χn −Kn−1[χ]) ⊆ νKd[χ]. Furthermore: ν(χd+1 −Kd[χ]) = νKd[χ]. Now, for every n ∈ {d+ 2, . . . , d′}
we have ν(χn − Kn−1[χ]) ⊇ ν(χn − χn−(d+1)Kd[χ]) = (n − (d + 1))ν(χ) + ν(χd+1 − Kd[χ]) = νKd[χ]
(since νKd[χ] is a subgroup). It follows: ν(χn −Kn−1[χ]) = νKd[χ].

Conversely, assume that for every n ∈ {d + 1, . . . , d′} we have ν(χn − Kn−1[χ]) = νKd[χ]. Then
in particular it has no greatest element. So by a) (Kd′ [χ]|Kd[χ], ν) is immediate. Let f ∈ Kd′ [χ],
n be its degree and xn be the coefficient of χn in f . Without loss of generality we can assume that
n ∈ {d+ 1, . . . , d′}. We show that for every γ ∈ Kd[χ] there is g ∈ Kd[χ] such that ν(f − g) > γ. Since
ν(χn−Kn−1[χ]) = νKd[χ] which is a group, there is gn−1 ∈ Kn−1[χ] such that ν((f/xn)− (gn−1/xn)) >
γ − ν(xn). Hence ν(f − gn−1) > γ. In the same way, for d ≤ j ≤ n − 2 we get gj ∈ Kj [χ] such that
ν(gj+1−gj) > γ. Therefore ν(f−gd) = ν(f−gn−1+· · ·+gd+1−gd) ≥ min(ν(f−gn−1), . . . , ν(gd+1−gd)) >
γ. So every element of Kd′ [χ] is limit over Kd[χ]. This implies that (Kd′ [χ]|Kd[χ], ν) is dense. �

Proposition 1.8. Assume that ν is a p-m valuation on K(χ). Let A be the valuation ring of (K, ν) and
n ≥ 2, n < [K(χ) :K]. If ν(χn − (Kn−1[χ] ∩ A[χ])) = ν(Kn−1[χ] ∩ A[χ]) and νK[χ] = νKn−1[χ], then
(K[χ]|Kn−1[χ], ν) is dense. In particular, if ν(χ − A) = ν(A) and νK[χ] = νK, then (K[χ] :K, ν) is
dense.
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Proof. Let (fi) be a sequence of polynomials of Kn−1[X]∩A[X] such that the sequence (ν(χn−fi(χ))) is
increasing and cofinal in νKn−1[χ]. Let f ∈ K[X]. By multiplying all the coefficients of f by an element
of K, we can assume that f ∈ A[X]. If f ∈ Kn−1[X], then f(χ) it is limit over Kn−1[χ]. Assume that
deg(f) ≥ n, and for every i let f(χ) = gi(χ)·(χn−fi(χ))+hi(χ) be the euclidean division. Since χn−fi(χ)
is a monic polynomial, when we do the euclidean division we see that the valuations of all the coefficients
of gi and of hi belong to A. In particular, ν(gi(χ)) ≥ min(nν(χ), 0) and ν(hi(χ)) ≥ min(nν(χ), 0).
Now, for i large enought we have ν(χn−fi(χ)) > −min(nν(χ), 0)+ν(f(χ)), hence ν(f(χ)) = ν(hi(χ)) <
ν(gi(χ)(χn−fi(χ))). It follows that ν(f(χ)−hi(χ)) = ν(gi(χ)(χn−fi(χ))) ≥ ν(χn−fi(χ))+min(nν(χ), 0)
is cofinal in νKn−1[χ], and that ν(f(χ)−Kn−1[χ]) = νK[χ]. So f(χ) is limit over (K, ν). Consequently,
(K[χ]|Kn−1[χ], ν) is dense. �

Definition 1.9. A finite immediate extension (L|K, ν) of valued fields is defectless if the restriction of ν
to K admits [L :K] distinct extensions to L. In general, this number of extensions divides [L :K].

Theorem 1.10. Assume that ν is multiplicative on L and that (L|K, ν) is a finite algebraic immediate
defectless and Galois extension of valued fields, such that ν is an archimedean valuation (i.e. νL embeds
in R). Then (L|K, ν) is dense.

To prove this theorem, we need to sate more properties. We start with some notations.
Let f be a polynomial degree of n. For 1 ≤ i ≤ n, set f(i) = (1/i!) f (i), where f (i) is the i-th formal

derivative of f . If the characteristic of K is p > 0, then we do not replace p·x by 0; the simplification holds,
if necessary, after the division by i!. For example, if f(X) = Xp, then we have f(1)(X) = pXp−1 = 0,
and f(p)(X) = (1/p!)·p! = 1.

Proposition 1.11. Assume that χ is limit over (K, ν), and that ν is a p-m valuation on K(χ). Then
(K(χ)|K, ν) is dense.

Proof. Let f ∈ K[X]. If f(χ) ∈ K, then it is limit over (K, ν). Otherwise, for every x ∈ K, f(χ) 6= f(x).
Let n be the degree of f . For x ∈ K, we let f(x) = (x − χ)nf(n)(χ) + · · · + (x − χ)f(1)(χ) + f(χ) be
the Taylor expansion of f(x). Since f(χ) 6= f(x), one of the f(j), 1 ≤ j ≤ n, is different from 0. Then

ν(f(x)− f(χ)) ≥ min
1≤j≤n

ν((x− χ)jf(j)(χ)) = min
1≤j≤n

jν(x− χ) + ν(f(j)(χ)). Since the set of ν(x − χ)’s is

cofinal in νK and f(1)(χ), . . . , f(n)(χ) are fixed elements, this proves that the set of ν(f(x) − f(χ))’s is
cofinal in νK. Hence f(χ) is limit over (K, ν). Consequently (K[χ]|K, ν) is dense. Now, assume that χ

is transcendental over K. Let f , g in K[X] and x, y in K such that ν(f(χ)− f(x)) > ν(f(χ)) = ν(f(x))
and ν(g(χ)− g(y)) > ν(g(χ)) = ν(g(y)). Then

ν

(
f(χ)

g(χ)
− f(x)

g(y)

)
= ν(f(χ)g(y)− g(χ)f(x)− ν(g(χ))− ν(g(y)) =

= ν(f(χ)(g(y)− g(χ)) + g(χ)(f(χ)− f(x)))− 2ν(g(χ)).

Now, the sets of ν(g(y)− g(χ))’s and ν(f(χ)− f(x))’s are cofinal in νK. Hence the set of ν

(
f(χ)

g(χ)

)
’s is

cofinal in νK. It follows that (K(χ)|K, ν) is dense. �

The following proposition generalizes a result of [D 82] (p. 103) to the case when the residue field need
not have characteristic 0. The proof is based on the same idea. We give it for completeness. We get a
sufficient condition for being dense, by proving that some initial segment is closed under addition.

Proposition 1.12. (Delon) Let A be the valuation ring of K. Assume that χ is separable algebraic and
pseudo-limit over K, and let f be the irreducible polynomial of χ over K. Assume in addition that ν is
a p-m valuation on K(χ), that f(X) ∈ A[X] and ν(f ′(χ)) = 0. We have the following.
1) The initial segment of νK generated by νf(K) is closed under addition.
2) If (K, ν) is archimedean, then (K(χ)|K, ν) is dense.

Proof. We keep the notations of the proof of Proposition 1.11.
1) Since f(X) is a monic polynomial of A[X], by properties of extensions of valued fields we have

ν(x) ≥ 0. We show that for every x ∈ K, such that ν(x − χ) > 0, we have ν(f ′(x)) = 0 (note that
f ′ = f(1)). Since f(X) ∈ A[X], for every i ≥ 0 we have f(i)(X) ∈ A[X]. Hence ν(f(i)(χ)) ≥ 0. Set

h(X) = f ′(X), and let h(x) − h(χ) = (x − χ)h(1)(χ) + · · · + (x − χ)dh(d)(χ) be the Taylor expansion.
Then

ν(f(x)− f(χ)) ≥ min
1≤i≤d

(iν(x− χ) + ν(h(i)(χ))) ≥ ν(x− χ) > 0.

Hence ν(h(x)) = ν(h(χ)) = 0. Now, let x0 ∈ A, such that ν(χ− x0) > 0. First we show that ν(f(x0)) =
ν(χ−x0). Indeed, we can write f(x0) as f(x0) = (x0−χ)f(1)(x0)+(x0−χ)2g(x0, χ), where the coefficients
of g belong to A (since the coefficients of f belong to A). Now, ν(χ) ≥ 0 and ν(χ − x0) > 0. Hence
ν(x0) ≥ 0. Therefore, ν(g(x0, χ)) ≥ 0. Consequently, ν((x0 − χ)f(1)(x0)) = ν(x0 − χ) < 2ν(x0 − χ) ≤
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ν((x0 − χ)2g(x0, χ)). So ν(f(x0)) = ν(x0 − χ).
Let x1 ∈ K be such that

ν

(
x1 − x0 +

f(x0)

f(1)(x0)

)
> 2ν(x0 − χ). Since ν

(
f(x0)

f(1)(x0)

)
= ν(f(x0)) = ν(x0 − χ),

this implies that ν(x1−x0) = ν(x0−χ). Using Taylor expansion, f(x1) can be written as f(x1) = f(x0)+
(x1−x0)f(1)(x0)+(x1−x0)2λ, with ν(λ) ≥ 0. Hence ν(f(x1)) ≥ min(ν(f(x0)+(x1−x0)f(1)(x0)), ν((x1−
x0)2λ)) ≥ 2ν(x0− l). Since the set ν(f(K)) is an initial segment of νK, it follows that ν(f(K)) is closed
under addition.

2) Let x1 be as in 1). Since ν(x1 − x0) = ν(x0 − χ), we have ν(x1 − χ) ≥ ν(x0 − χ). Hence
ν(x1−χ) = ν(f(x1). It follows that ν(χ−K) contains a nontrivial initial segment which is closed under
addition. Assume that νK is archimedean. Then ν(χ − K) = νK, hence χ is limit over K. Now, it
follows from Proposition 1.11 that (K(χ)|K, ν) is dense. �

Now, we give sufficient conditions for hypothesis of Proposition 1.12 being satisfied.

Proposition 1.13. Assume that ν is multiplicative on L and that (L|K, ν) is a finite immediate defectless
Galois extension of valued fields. Then, there is χ ∈ L with irreducible polynomial f in A[X] such that
ν(f ′(χ)) = 0 and L = K[χ] (where A is the valuation ring of (K, ν)).

Before proving this proposition, we recall some definitions of [R 68] and [E 72]. Let L be a field
together with valuations ν1, . . . , νn, and for i ∈ {1, . . . , n} let Ai be the valuation rings of (L, νi) and
Ui = ν−1

i ({0}) be the group of units of Ai. For i 6= j in {1, . . . , n}, the valuations νi and νj are said
to be incomparable if nor Ai ⊆ Aj nor Aj ⊆ Ai. They are independent if Ai ·Aj = L. Note that if
these valuations are archimedean, then they are independent if, and if, they are incomparable, which
in turn is equivalent to: νi 6= νj (see [E 72, p. 82]). Now, we assume that ν1, . . . , νn are pairwise
incomparable. Then one can prove that, for i 6= j in {1, . . . , n}, νj(Ui) is a nontrivial convex subgroup
of νjL. A n-tuple (γ1, . . . , γn) ∈ ν1L × · · · × νnL is compatible if there exists l ∈ L such that ν1(l) =
γ1, . . . , νn(l) = γn (Théorème 1 p. 135 in [R 68]). One can prove that if, for every i ∈ {1, . . . , n},
γi ∈

⋂
j 6=i

νi(Uj), then (γ1, . . . , γn) is compatible. Since
⋂
j 6=i

νi(Uj) is an intersection of finitely many non

trivial convex subgroups, it is non trivial. Now, if the νiL are embedded in the same ordered group,
then there exists a compatible n-tuple (γ1, . . . , γn) such that 0 < γ1 < · · · < γn. By the approximation
Theorem (Théorème 3, p. 136, in [R 68]), if (γ1, γ2, . . . , γn) is compatible and l1, l2, . . . , ln are elements

of L, such that ∀i, 1 ≤ i ≤ n, νi(li) < γi ⇒ γi − νi(li) ∈
⋂
j 6=i

νi(Uj), then there exists l ∈ L such that

∀i, 1 ≤ i ≤ n, νi(l − li) = γi.

Proof of Proposition 1.13. Let ν1 = ν, . . . , νn be the extensions to L of the restriction of ν to K, and
(γ1, . . . , γn) ∈ ν1L × · · · × νnL be a compatible n-tuple such that 0 < γ1 < · · · < γn. Let x1, . . . , xn
in K such that xi 6= 0 ⇒ ν(xi) = 0, (xi)ν 6= (x1)ν (for i > 1). If Kν is infinite, then we can assume
that the (xi)ν ’s are pairwise distinct. Otherwise, if (xi)ν = (xj)ν , then we assume xi = xj . By the
approximation Theorem, there exists l ∈ L such that, for every i ∈ {1, . . . , n}, νi(l − xi) = γi. Denote
by f its irreducible polynomial over K. Let σ1, . . . , σn be the elements of the Galois group of L|K,
and li = σi(l). We know that we can assume that for i ∈ {1, . . . , n} we have: νi = ν1 ◦ σi ([R 68, p.
166]). By hypothesis, ν1(l − x1) > 0 and, for i ∈ {2, . . . , n}, ν1(li − l) = ν1(li − xi + xi − l). Since
lν1

= (x1)ν1
6= (xi)ν1

, it follows: ν1(xi − l) = 0. Now, ν1(li − xi) = ν1(σi(l) − σi(xi)) (because xi ∈ K,
hence xi = σi(xi)) and ν1(li − xi) = νi(l − xi) > 0. Therefore ν1(li − l) = 0 and (li)ν1

6= lν1
.

Since the roots of f belong to the set {l1, . . . , ln} ⊆ A1 (indeed, ν1(li − xj) = 0 and ν1(xj) ≥ 0 ⇒
ν1(li) ≥ 0), it follows that f ∈ A1[X]. Consequently, f ∈ A[X] (because f ∈ K[X]).

Let f(X) = Xn+an−1X
n−1+· · ·+a1X+a0 and fν(X) = Xn+(an−1)νX

n−1+· · ·+(a1)νX+(a0)ν . The
element lν1

is a root of fν and f ′ν = (fν)′. Now, f(X) =
∏n
i=1(X−li) hence f ′(X) =

∑n
i0=1

∏
i 6=i0(X−li).

We have f ′(X) = (X − l2)(X − l3) · · · (X − ln) +
∑n
i0=2

∏
i 6=i0(X − li),

(f ′ν)(X) = (X − (l2)ν)(X − (l3)ν) · · · (X − (ln)ν) +
∑n
i0=2

∏
i 6=i0(X − (li)ν)

(f ′ν)((l1)ν) = ((l1)ν − (l2)ν)((l1)ν − (l3)ν) · · · ((l1)ν − (ln)ν) + 0.
Hence (f ′ν)((l1)ν) 6= 0 because we proved: ∀i, 2 ≤ i ≤ n, (li)ν 6= (l1)ν . So, (l1)ν is a simple root of fν and
ν(f ′(l1)) = 0.

We show that ν1, ν2, . . . , νn are pairwise distinct on K(l). Let 1 ≤ i < j ≤ n.
If xi 6= xj , then by hypothesis (xi)ν 6= (xj)ν , and lνi = (xi)ν 6= (xj)ν = lνj . Consequently νi 6= νj on

K(l).
If xi = xj , νi(l − xi) = γi 6= γj = νj(l − xj). Therefore νi 6= νj on K(l).
This proves that ν admits n distinct extensions to K(l), hence [K(l) : K] ≥ n. Since K(l) ⊆ L, it

follows that [K(l) :K] = n = [L|K]. Therefore: K(l) = L. We let χ = l. �
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Proof of Theorem 1.10. Follows from Propositions 1.12 and 1.13. �

Remark 1.14. If L|K is not algebraic, then the extension (L|K, ν) need not be dense, even if it is
archimedean and separable. For example, let k be the field Q or Fp with p prime. Let K be the field of
generalized polynomials k(Q) := {f =

∑n
i=1 xiX

γi | n ∈ N∗, x1, . . . , xn in k, γ1, . . . , γn in Q}, and for
f ∈ K let ν(f) be the minimum of the set of γi’s such that xi 6= 0. Denote by

k((Q)) = {f =
∑
γ∈Λ

xγX
γ | Λ is a well-ordered subset of Q, and ∀γ ∈ Λ xγ ∈ k}

the field of generalized formal power series with coefficients in k and exponents in Q. If γ /∈ Λ, then
we set xi = 0. For f ∈ k((Q)), the set {γ ∈ Γ | xγ 6= 0} is called the support of f . It follows that the
support of f is well-ordered. We let ν(f) be the minimum of the support of f if f 6= 0, and ν(0) = ∞.
By properties of valued fields, k((Q)) is a valued field such that the extension (k((Q))|K, ν) is immediate.

Now, let l =
∑∞
i=1X

1− 1
i ∈ k((Q)). Then for every positive integer n, ν(l−

∑n
i=1X

1− 1
i ) = 1− 1

n+1 , and

this sequence is cofinal in ν(l−K), but not in Q. Therefore, ν(l−K) = {γ ∈ Q | γ < 1} is bounded. So
(K(l)|K, ν) is not dense.

We saw in Proposition 1.11 that if χ is limit over (K, ν) and ν is a p-m valuation on K(χ), then the
extension (K(χ)|K, ν) is dense. We will show in the following subsection that if χ is pseudo-limit on
(K, ν), then the extension (K(χ)|K, ν) is not necessarily immediate. Now, with additional conditions, if
l is pseudo-limit over (K, ν), then the extension (K(l)|K, ν) is immediate.

1.3. Pseudo-Cauchy sequences. We assume that χ is pseudo-limit over (K, ν), and we let (xi) be
a sequence of elements of K such that the sequence (ν(χ − xi)) is increasing and cofinal in ν(χ − K).
We say that (xi) is a pseudo-Cauchy sequence which pseudo-converges to χ, and that χ is a pseudo-
limit of (xi). Pseudo-Cauchy sequences were introduced by Kaplansky in [K 42]. The reader can find
definitions and properties online in the Book of F-V Kuhlmann [FVK]. We recall below some properties
of pseudo-Cauchy sequences, that we will also need in Subsection 4.2.

Definitions 1.15. A pseudo-Cauchy sequence of the valued field (K, ν) is a sequence (xi) of elements of
K (where i runs over a well-ordered set) such that for every i < j < k, ν(xi − xj) < ν(xj − xk).
An element x of K is a pseudo-limit of (xi) if for every i we have: ν(x− xi) = ν(xi − xi+1).

Remark 1.16. Let x be a pseudo-limit of a pseudo-Cauchy sequence (xi), and x′ be another element.
Then x′ is a pseudo-limit of (xi) if, and only if, for every i, ν(x− x′) > ν(x− xi). Now, if the sequence
(ν(x− xi)) is cofinal in νK, then there is no other pseudo-limit. So, we can say that x is the limit of the
pseudo-Cauchy sequence (xi).

Proposition 1.17. Let (L|K, ν) be an extension of valued fields.
1) The extension (L|K, ν) is immediate if, and only if, every element of L is pseudo-limit of a pseudo-
Cauchy sequence of K which has no pseudo-limit in K.
2) The extension (L|K, ν) is dense if, and only if, it is immediate and every element of L\K is limit of
a pseudo-Cauchy sequence of K without pseudo-limit in K.

Proposition 1.18. Let (xi) be a pseudo-Cauchy sequence of a valued field (K, ν). For every polynomial
f(X) ∈ K[X] (the ring of formal polynomials), the sequence (ν(f(xi))) is either increasing or increasing
then constant. In this last case, if x is a pseudo-limit of (xi), then (ν(f(xi))) is eventually equal to
ν(f(x)). Furthermore, there is a unique monic polynomial f of minimal degree such that the sequence
(ν(f(xi))) is not eventually constant, and f is irreducible.

Definitions 1.19. Let (xi) be a pseudo-Cauchy sequence of the valued field (K, ν).
1) If for every f ∈ K[X] the sequence (ν(f(xi))) is eventually constant, then (xi) is said to be of
transcendental type.
2) Otherwise, (xi) is said to be of algebraic type. The monic polynomial f of degree minimal such that
the sequence (ν(f(xi))) is not eventually constant is called the irreducible polynomial of the sequence (xi)
over (K, ν).

Remark 1.20. Assume that χ is algebraic over K and is pseudo-limit of a pseudo-Cauchy sequence
of (K, ν) without pseudo-limit in K. Then (xi) is of algebraic type, and its irreducible polynomial has
degree at most equal to the degree of the irreducible polynomial of χ.

One can define the extension of a valuation, to an immediate extension, by means of pseudo-Cauchy
sequences.

Proposition 1.21. Let (xi) be a pseudo-Cauchy sequence of a valued field (K, ν), without pseudo-limit
in K.
1) Assume that (xi) is of transcendental type and that χ is transcendental over K. There is a unique
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extension of ν to K(χ) such that (K(χ)|K, ν) is immediate and χ is a pseudo-limit of (xi). We know
that for every f(X) ∈ K[X], the sequence (ν(f(xi))) is eventually equal to some γ. We set ν(f(χ)) = γ.
2) Assume that (xi) is of algebraic type and that χ is a root of the irreducible polynomial of (xi). Let d
be the degree of this irreducible polynomial. Then K(χ) = Kd−1[χ] and we can define ν(f(χ)), for every
f(X) ∈ Kd−1[X], in the same way as in 1).

Lemma 1.22. Let ν be a p-m valuation of K(χ)|K. Assume that χ is pseudo-limit of a pseudo-Cauchy
sequence (xi) of K (without pseudo-limit in K). Let f(X) ∈ K[X], and assume that the sequence
(ν(f(xi))) is eventually equal to some γ. Then γ = ν(f(χ)), and f(χ)γ,ν ∈ Kγ,ν .

Proof. Let f(X)− f(χ) = (X −χ)nf(n)(χ) + · · ·+ (X −χ)f(1)(χ) be the Taylor expansion of f(X), as in
Proposition 1.11. For every xi we have ν(f(xi) − f(χ)) = ν((xi − χ)nf(n)(χ) + · · · + (xi − χ)f(1)(χ)) ≥
min1≤j≤n ν((xi − χ)jf(j)(χ)) = min1≤j≤n(jν(xi − χ) + ν(f(j)(χ)). Now, since the sequence (ν(xi − χ))
is increasing, the jν(xi −χ) + ν(f(j)(χ)’s are eventually pairwise distinct. Hence the minimum is carried
by only one index, say j0. Consequently, ν(f(xi)− f(χ)) = ν((xi − χ)nf(n)(χ) + · · ·+ (xi − χ)f(1)(χ)) =
j0ν(xi − χ) + ν(f(j0)(χ)) is increasing. Since ν(f(xi)) = γ and ν(f(χ)) are constant, it follows that
ν(f(χ)) = ν(f(xi)) < ν(f(χ)− f(xi)). Therefore, f(χ)ν(f(χ)),ν = f(xi)ν(f(χ)),ν ∈ Kν(f(χ)),ν . �

Definitions 1.23. A valued field (K, ν) is said to be maximal if (K, ν) admits no immediate extension.
It is said to be algebraically maximal if (K, ν) admits no immediate algebraic extension.

Proposition 1.24. Let (K, ν) be a valued field.
The field (K, ν) is maximal if, and only if, every pseudo-Cauchy sequence of (K, ν) has a pseudo-limit in
(K, ν).
The field (K, ν) is algebraically maximal if, and only if, every pseudo-Cauchy sequence of (K, ν) of
algebraic type has a pseudo-limit in (K, ν).

Proposition 1.25. Let ν be a p-m valuation of valued field on K(χ). Assume that χ is pseudo-limit of
a pseudo-Cauchy sequence (xi) of K (without pseudo-limit in K) and that (xi) is of transcendental type
over (K, ν). Then the extension (K(χ)|K, ν) is immediate.

Proof. By Lemma 1.22, for every f(X) ∈ K[X] we have f(χ) ∈ νK and f(χ)ν(f(χ)),ν ∈ Kν(f(χ)),ν . By
Remark 1.6, the extension (K(χ)|K, ν) is immediate. �

Corollary 1.26. Let ν be p-m valuation of valued fields on K(χ). Assume that (K, ν) is algebraically
maximal and that χ is pseudo-limit over (K, ν). Then (K[χ]|K, ν) is immediate.

The following example shows that we cannot delete the condition (xi) of transcendental type in Propo-
sition 1.25.

Example 1.27. Assume hat (L|K, ν) is an extension of valued fields such that νL > νK, and that L
contains an element l′ which is pseudo-limit and algebraic over (K, ν). We let f(X) be its irreducible
polynomial, d be the degree of f(X), (xi) be a pseudo-Cauchy sequence of (K, ν) without pseudo-limit in
K and which pseudo-converges to l′. We assume that f is also the irreducible polynomial of the sequence
(xi). For every monic polynomial g(X) of degree n < d, we know that the sequence (ν(g(xi))) is eventually
constant. Now, let g(xi)− g(l′) = (xi− l′)n−1g(1)(l

′) + · · ·+ (xi− l)g(n)(l
′) be its Taylor expansion. Since

l′ is pseudo-limit, the set of ν(xi − l′)’s is infinite. Hence for ν(xi − l) large enought, the minimum of
the ν((xi − l′)jg(j)(l

′) = jν(xi − l′) + ν(g(j)(l
′)) is carried by only one j, and this index is fixed, say j0.

Then, ν(g(xi) − g(l′)) = j0ν(xi − l′) + ν(g(j0)(l
′)) is increasing. By hypothesis, the sequence (ν(g(xi)))

is eventually constant. Hence (ν(g(xi))) is eventually equal to ν(g(l′)), and ν(g(l′)) < ν(g(l′) − g(xi)),
with g(xi) ∈ K. Hence g(l′) is not the maximum of ν((l′)n−Kn−1[l′]). By Proposition 1.7 the extension
(Kd−1[l′]|K, ν) is immediate. Now, let l′′ in L such that ν(l′′) > νK, and l = l′ + l′′. Let g be a
monic polynomial of degree n < d, and g(l) − g(l′) = (l − l′)n−1g(1)(l

′) + · · · + (l − l′)g(n)(l
′) be its

Taylor expansion. Then, g(l)− g(l′) = (l′′)n−1g(1)(l
′) + · · ·+ (l′′)g(n)(l

′) has valuation greater than νK.
Consequently, ν(g(l)) = ν(g(l′)). This proves that the extension (Kd−1[l]|K, ν) is immediate. Now,
f(l) = f(l) − f(l′) = (l′′)d−1f(1)(l

′) + · · · + (l′′)f(d)(l
′) is greater than νK. It follows that f(l) is the

maximum of ν(ld −Kd−1[l]), and that the extension (Kd[l]|Kd−1[l], ν) is not immediate.

2. Separate extensions

In this section, L|K is an extension of fields and ν is a K-module valuation on L.

2.1. Basic properties.

Definitions 2.1. (Baur, [B 82]) Let M be a K-submodule of L.
1) A sequence (l1, . . . , ln) of L is said to be separate over M (or ν-separate if necessary) if for every

x1, . . . , xn in M , we have: ν(x1l1 + · · · + xnln) = min1≤i≤n ν(xili). If M = K, then we say separate
instead of separate over K.
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2) The extension (L|K, ν) is said to be separate if every finitely generated K-submodule of L admits
a basis which is separate over K. If this holds, then we say that ν is separate (or separate over K).

Definition 2.2. Let M be a finitely generated K-submodule of L. If M admits a basis which is separate
over K, then we say that M is separate.

Remark 2.3. ([B 81]) If the sequence (l1, . . . , ln) of L is separate over K, then l1, . . . , ln are linearly
independent over K.

In the remainder of this subsection we will prove the following two theorems.

Theorem 2.4. (Delon) Let N be a K-submodule of L. Then, (N |K, ν) is a separate extension if, and
only if, for every finitely generated K-submodule M of N and l ∈ N\M , the set ν(l−M) has a maximal
element.

This theorem has been stated in [D 88, p. 421], assuming that (K, ν) is henselian and char(Kν) = 0.
So we give the proof for completeness.

We know that if L|K is finite and ν is multiplicative, then 1 ≤ [Lν : Kν ](νL : νK) ≤ [L : K].
Furthermore, by Remark 1.6, (L|K, ν) is immediate if, and only if, 1 = [Lν :Kν ](νL :νK). The following
theorem proves that (L|K, ν) being separate can be seen as the opposite case.

Theorem 2.5. Assume that L|K is a finite algebraic extension of fields and that ν is multiplicative on
L. Then (L|K, ν) is separate if, and only if, [L :K] = [Lν :Kν ](νL :νK).

Definition 2.6. Let (L|K, ν) be a finite extension of valued fields (where ν is multiplicative). Then

(L|K, ν) is defectless if
[L :K]

[Lν :Kν ](νL :νK)
is equal to the number of extensions of ν|K to L.

We recall that (K, ν) is henselian if ν admits a unique extension to every algebraic extension of K.

Corollary 2.7. If (K, ν) is henselian, then every defectless finite algebraic extension of (K, ν) is separate.

We start with properties a separate sequences.

Lemma 2.8. ([B 82] p. 676) Let (l1, . . . , ln) be a separate sequence of elements of L, y in L and k1, . . . , kn
in K. The following holds.
Every subsequence of (l1, . . . , ln) is separate.
The sequence (k1l1, . . . , knln) is separate.
If ν is multiplicative on L then the sequence (yl1, . . . , yln) is separate.

Lemma 2.9. ([B 81], [B 82] (S4), p. 676) Let (l1, . . . , ln) be a sequence of elements of L such that: ∀i,
1 ≤ i ≤ n, ν(li) = 0. Then (l1, . . . , ln) is separate if, and only if, (l1)ν , . . . , (ln)ν are linearly independent
over Kν . This can be generalized in the following way. If ν(l1) = · · · = ν(ln) = g, then (l1, . . . , ln) is
separate if, and only if, for every x1, . . . , xn in {x ∈ K | ν(x) = 0} ∪ {0}, either ν(x1l1 + · · ·+ xnln) = g
or x1 = · · · = xn = 0.

Proposition 2.10. Let li1, . . . , lini
, 1 ≤ i ≤ p, be sequences which satisfy:

∀i, 1 ≤ i ≤ p, ∀j, 1 ≤ j ≤ ni, ν(lij) = ν(li1) <∞
and the ν(li1) are pairwise non-congruent modulo νK. The following assertions are equivalent.
The sequence l11, . . . , l1n1

, l21, . . . , l2n2
, . . . , lp1, . . . , lpnp

is separate.
For every i in {1, . . . , p}, li1, li2, . . . , lini

is separate.
If ν is mutiplicative on L then this condition is equivalent to:
for every i in {1, . . . , p}, 1, (li2l

−1
i1 )ν , . . . , (lini l

−1
i1 )ν are linearly independent over Kν .

Proof. Assume that the sequence is separate. Then by Lemma 2.8, for 1 ≤ i ≤ p, the sequence
li1, li2, . . . , lini

is separate.
Conversely, let x11, . . . , x1n1

, x21, . . . , x2n2
, . . . , xp1, . . . , xpnp

in K. For 1 ≤ i ≤ p, set yi = xi1li1 + · · ·+
xini lini . Since li1, . . . , lini is separate, we have: ν(yi) = min{ν(xij) + ν(lij) | 1 ≤ j ≤ ni}. Therefore, the
ν(yi)’s are pairwise non-congruent modulo νK. In particular, they are pairwise distinct, and ν(y1 + · · ·+
yp) = min{ν(yi) | 1 ≤ i ≤ p}. This proves that the sequence l11, . . . , l1n1

, l21, . . . , l2n2
, . . . , lp1, . . . , lpnp

is
separate.

If ν is multiplicative on L, then

li1, li2, . . . , lini is separate if, and only if, 1, (li2l
−1
i1 ), . . . , (lini l

−1
i1 ) is separate.

By Lemma 2.9, this in turn is equivalent to 1, (li2l
−1
i1 )ν , . . . , (lini

l−1
i1 )ν are linearly independent over

Kν . �

Lemma 2.11. ([D 88] Lemme 5) Let M ⊆ N be two K-submodules of L such that M is finitely generated
and N admits a separate basis. Then M admits a separate basis (in other words, it is separate).
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The following theorem is an immediate consequence of Lemma 2.11.

Theorem 2.12. Assume that L is a finite algebraic extension of K. Then (L|K, ν) is separate if, and
only if, the K-module L admits a separate basis.

Remark. Theorem 2.12 is not true if (L|K) is not a finite algebraic extension, (see [D 88] p. 426).
However, we will see later that it remains true if L is generated by one transcendental element and ν is
multiplicative.

Proof of Theorem 2.5. Set r := [Lν :Kν ] et q := (νL : νK). By properties of valuations, we have that
rq ≤ [L :K].

Assume that [L :K] = rq. Let x1, . . . , xr, y1, . . . , yq be elements of L such that ν(x1) = · · · = ν(xr) = 0,
(x1)ν , . . . , (xp)ν are linearly independent overKν , and ν(y1), . . . , ν(yq) are pairwise non-congruent modulo
νK. By Proposition 2.10, the sequence {xiyj | 1 ≤ i ≤ r, 1 ≤ j ≤ q} is separate. It follows that they are
linearly independent over K. Since its cardinal is rq, it is a basis of L over K. Now, by Theorem 2.12,
(L|K, ν) is separate.

Assume that (L|K, ν) is separate, so L admits a separate basis B. We define an equivalence relation
over B by setting y1 ∼ y2 ⇔ ν(y1) ≡ ν(y2) modulo νK. By Lemma 2.8, we can assume that all the
elements of every class of B modulo ∼ have the same valuation. Let C = {l1, . . . , lp} be a class of B
modulo ∼. By Lemma 2.8 1, (l2/l1), . . . , (lp/l1) is a separate sequence of elements of L with valuation
0. We deduce from Lemma 2.9 that p ≤ r. Now, if p < r, then there exists l′p+1 in L such that

1ν , (l2/l
−1
1 )ν , . . . , (lp/l

−1
1 )ν , (l

′
p+1)ν are linearly independent over Kν . Then 1, (l2/l

−1
1 ), . . . , (lp/l

−1
1 ), l′p+1

is a separate sequence, hence so is l1, l2, . . . , lp, lp+1, where lp+1 = l′p+1l1. By Proposition 2.10, B∪{lp+1}
is a separate sequence, hence B is not a maximal subset of linearly independent elements, so it is not a
basis: a contradiction. It follows that p = r. Now, there are at most (νL : νK) = q classes modulo ∼.
Since B is a separate basis, for every l ∈ L there exists x ∈ K and b ∈ B such that ν(l) = ν(xb). It follows
that there are exactly q classes modulo ∼. Hence B is the disjoint union of q classes, which one contains
r elements. It follows: [L :K] = card(B) = rq. �

Lemma 2.13. Assume that (L|K, ν) is separate. Let M be a finite K-submodule of L and l ∈ L\M .
Then every separate basis of M extends to a separate basis of the K-submodule generated by M and l.

Proof. Consider a separate basis B of M and a separate basis B′ of N := M ⊕K ·l. Since ν(M) ⊆ ν(N),
the number of classes of B′ modulo the relation ∼ defined in the proof of Theorem 2.5 is greater or equal
to the number of classes of B modulo ∼. If it is greater, then we add to B and element of the additional
class, and we get the separate basis of N . Otherwise, one of the classes of B′ has more elements than
the corresponding class of B. Say l′1, . . . , l

′
k+1 and l1, . . . , lk. By Lemma 2.8, we can assume that all the

element of these classes have the same valuation γ. Assume that there exists a family (xij)1≤i≤k+1, 1≤j≤k
in {x ∈ K | ν(x) = 0} ∪ {0} such that for i ∈ {1, . . . , k + 1}: (∗i) ν(l′i − (xi1l1 + · · · + xiklk)) > γ.
We show that we get a contradiction. Without loss of generality we can assume that x11 6= 0. Then:
ν(l1 + x12x

−1
11 l2 + · · ·+ x1kx

−1
11 lk − x

−1
11 l
′
1) > γ. For i ≥ 2 we put x−1

11 l
′
1 − (x12x

−1
11 l2 + · · ·+ x1kx

−1
11 lk) in

place of l1. So we get an inequality ν(l′i + x−1
11 l
′
1 − (x12x

−1
11 + xi2)l2 − · · · − (x1kx

−1
11 + xik)lk) > γ. We

can eliminate (x1jx
−1
11 +xij)lj if ν(x1jx

−1
11 +xij) > 0, so we can assume that all the coefficients belong to

{x ∈ K | ν(x) = 0} ∪ {0}. We proceed in the same way with l2, . . . , lk. Since there are k + 1 inequalities
(∗i), finally we get some ν(y1l

′
1 + · · ·+ yk+1l

′
k+1) > γ = min ν(yil

′
i): a contradiction. Hence there is some

l′i, say l′k+1 such that for every xj in {x ∈ K | ν(x) = 0}∪{0} (1 ≤ j ≤ k): ν(l′k+1 +x1l1 + · · ·+ klk) = γ.
It follow that the sequence l1, . . . , lk, l

′
k+1 is separate. By Proposition 2.10, the sequence B ∪ {l′k+1} is

separate. �

Proof of Theorem 2.4. Assume that (N |K, ν) is separate. Let M be a finitely generated K-submodule
of N , and l ∈ N\M . By Lemma 2.13, there exist a basis l1, . . . , lk of M ⊕ K · l such that l1, . . . , lk−1

belong to M . Now, l can be written as l = x1l1 + · · ·+ xklk, with x1, . . . , xk in K. Since l /∈M , we have
xk 6= 0. Hence for every y in M there exist y1, . . . , yk−1 in K such that l−y = y1l1 + · · ·+y−1lk−1 +xklk,
hence ν(l − y) ≤ ν(xklk). So ν(xklk) = max ν(l − M). Conversely, we prove by induction on the
dimension of the submodule M that it contains a separate basis. If dim(M) = 1, then the result
is trivial. Assume that M admits a separate basis l1, . . . , lk and let l /∈ M . Let y ∈ M such that
ν(l − y) = max ν(l −M), and set lk+1 = l − y. We show that the family l1, . . . , lk, lk+1 is separate.
Let x1, . . . , xk, xk+1 in K, with xk+1 6= 0, and γ = min(ν(x1l1), . . . , ν(xklk)). If γ < ν(xk+1lk+1), then
ν(x1l1 + · · · + xklk + xk+1lk+1) = γ = min(ν(x1l1), . . . , ν(xklk), ν(xk+1lk+1)). If γ > ν(xk+1lk+1), then
ν(x1l1 + · · · + xklk + xk+1lk+1) = ν(xk+1lk+1) = min(ν(x1l1), . . . , ν(xklk), ν(xk+1lk+1)). Assume that
γ = ν(xk+1lk+1). Since ν(lk+1) is the maximum of ν(l −M), γ ≤ ν(x1l1 + · · · + xklk + xk+1lk+1) =
ν(xk+1)+ν(x1x

−1
k+1l1+· · ·+xkx−1

k+1lk+lk+1) ≤ ν(xk+1)+ν(lk+1) = γ. So, ν(x1l1+· · ·+xklk+xk+1lk+1) =
min(ν(x1l1), . . . , ν(xklk), ν(xk+1lk+1)). �

The following properties show more links between separate and immediate extensions.
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Proposition 2.14. ([B 81]) If (K, ν) is a maximal valued field, then every multiplicative extension of
(K, ν) is separate.

Theorem 2.15. ([D 88, Corollaire 7]) Assume that ν is multiplicative on L and that (K, ν) is henselian
of residue characteristic 0. Then any algebraic extension of (K, ν) is separate.

Theorem 2.16. ([D 88, p. 421]) Assume that ν is multiplicative on L and that (K, ν) is henselian of
residue characteristic 0. Then (L|K, ν) is separate if, and only if, L is linearly disjoint over K from every
immediate extension of (K, ν).

2.2. Extensions generated by one element. In this subsection, K(χ)|K is a simple extension of
fields, where χ is algebraic or transcendental over K.

Proposition 2.17. Let d ∈ N ∪ {∞} such that 0 < d ≤ [K[χ] :K] − 1. Then (Kd[χ]|K, ν) is separate
if, and only if, the K-module Kd[χ] admits a separate basis. Furthermore, we can assume that the degree
mapping is one-to-one, and that every polynomial of this basis is monic.
Assume that χ is transcendental over K, and that ν is multiplicative on K(χ). Then (K(χ)|K, ν) is sepa-
rate if, and only if, the K-module K[χ] admits a separate basis. (⇒ holds even if ν is not multiplicative).

Proof. Assume that (Kd[χ]|K, ν) is separate. By Lemma 2.13, the separate basis 1 of K can be completed
in a separate basis of the module generated by 1 and χ. Necessarily, the second element of this basis
has degree 1. Let n ≥ 1 and assume that the K-module Kn[χ] of polynomials of degree at most n has a
separate basis of (n+ 1) elements of respective degrees 0, 1, . . . , n. By Lemma 2.13, this separate basis
can be completed in a separate basis of Kn+1[χ], and the degree of the new element is n+ 1. So we get
the required separate basis by induction. By Lemma 2.8 we can assume that every polynomial of this
basis is monic.

Conversely, assume that Kd[χ] contains a separate basis, and let M be a finitely generated K-
submodule. By Lemma 2.11, M has a separate basis.
Assume that χ is transcendental over K, and that ν is multiplicative on K(χ) and let M be a finitely
generated submodule of K(χ). Then there is a polynomial f(χ) 6= 0 such that f(χ)·M ⊆ K[χ]. We take
a separate basis of f(χ)·M , and we divide all its elements by f(χ) so that, since ν is multiplicative, by
Lemma 2.8, we get a separate basis of M . �

Example 2.18. Let (K, ν) be a valued field. Pick some x in K, some γ in an extension of νK, and, for
every x0, x1, . . . , xn in K, set ν′(xn(χ−x)n+ · · ·+x1(χ−x)+x0) = min(ν(xn)+nγ, . . . , ν(x1)+γ, ν(x0)).
Then one can check that ν′ defines a p-m valuation on the ring K[χ]. We say that ν′ is a Gauss valuation.
Then ν′ is a separate valuation and 1, (χ− x), . . . , (χ− x)n, . . . is a separate basis of (K[χ], ν′).

Note that if ν′′ is another K-module valuation on K[χ] which extends ν and such that ν(χ− x) = γ,
then, for every f in K[χ], ν′(f) ≤ ν′′(f).

We state a refinement of Theorem 2.4, which characterizes separate extensions by means of initial
segments. This proposition completes Proposition 1.7.

Proposition 2.19. Let d ∈ N ∪ {∞} such that 0 < d ≤ [K[χ] :K] − 1. The extension (Kd[χ]|K, ν) is
separate if, and only if, for every integer n, 1 ≤ n ≤ d, ν(χn −Kn−1[χ]) has a maximal element.
Assume that χ is transcendental over K, and that ν is multiplicative on K(χ). Then (K(χ)|K, ν) is
separate if, and only if, for every n ∈ N∗, ν(χn −Kn−1[χ]) has a maximal element.

Proof. In both equivalences, ⇒ follows from Theorem 2.4. In order to prove the converse, we construct
by induction a separate basis such that the degree mapping is one-to-one. Then, by Proposition 2.17,
(Kd[χ]|K, ν) is separate. The case where χ is transcendental also follows from Proposition 2.17. Trivially,
1 is a separate basis of K0[χ] = K. Assume that we have a separate basis (f0, . . . , fn−1) of Kn−1[χ].
Let fn be a monic polynomial such that ν(fn) = max(ν(χn − Kn−1[χ])). Since the degree of fn is n,
(f0, . . . , fn−1, fn) is a basis of Kn[χ]. Let f = xnfn + · · · + x0 in Kn[χ]. If xn = 0, then by induction
hypothesis ν(f) = min

0≤i≤n−1
ν(xifi) = min

0≤i≤n
ν(xifi). Now we assume: xn 6= 0. Since ν(fn) is maximal, we

have ν

(
f

xn

)
≤ ν(fn). If ν

(
f
xn
− fn

)
< ν(fn), then ν

(
f

xn
− fn

)
= ν

(
f

xn

)
. So:

ν(f) = ν(xn) + ν

(
f

xn

)
= ν(xn) + ν

(
f

xn
− fn

)
=

= ν(xn) + min
0≤i≤n−1

ν

(
xifi
xn

)
= min

0≤i≤n−1
ν(xifi) = min

0≤i≤n
ν(xifi).

If ν

(
f

xn
− fn

)
≥ ν(fn), then min

0≤i≤n−1
ν(xifi) ≥ ν(xnfn). Furthermore, since ν(fn) is maximal we have

ν

(
f

xn

)
= ν(f). Therefore: ν(f) = min

0≤i≤n
ν(xifi). �
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2.3. Graded algebra associated to a valuation. In the proofs of Remark 3.35 and Theorem 3.37 we
will introduce the graded algebra associated to a valuation. We will also show more properties in Subsec-
tion 3.6 because they are used in the definition of key polynomials by F. J. Herrera Govantes, W. Mahloud,
M. A. Olalla Acosta and M. Spivakovsky. Now, we review some basic facts. Let (K, ν) be a valued field.
Recall that, for every γ ∈ νK, Kγ,ν denotes the Kν-module {x ∈ K | ν(x) ≥ γ}/{x ∈ K | ν(x) > γ}.
Now, let Gν(K) be the graded algebra Gν(K) =

⊕
γ∈νK

Kγ,ν . In the case where K is the valued field k((Γ))

of generalized formal power series with coefficients in a field k and exponents in a linearly ordered abelian
group Γ (see Remark 1.14), then Gν(K) is isomorphic to the ring of generalized polynomials k[Γ]. More
generally, the K-module Gν(K) is isomorphic to the K-module Kν [νK] of polynomials with coefficients
in Kν and exponents in νK. If K contains a lifting of νK, then we can assume that these graded alge-
bras are isomorphic. In particular, if νK = Z, then they are isomorphic. If (K ′, ν′) is an ℵ1-saturated
elementary extension of (K, ν), then it contains a lifting of its value group (see [K 75]). Hence Gν′(K

′) is
isomorphic to the ring of polynomials K ′ν′(ν

′K ′). Therefore every graded algebra Gν(K) embeds in a ring
of polynomials. If (K, ν) contains a lifting K0 of its residue field and a lifting Γ of νK, then it contains
the algebra K0[Γ], which is isomorphic to Gν(K). Now, if (K, ν) is henselian and char(Kν) = 0, then we
know that it admits a lifting of Kν . It follows that every valued field (K, ν) of residue characteristic 0
admits an extension (K ′, ν′) which contains a subalgebra which is isomorphic to Gν(K). Furthermore,
(K ′, ν′) embeds in the power series field K ′0((ν′K ′)) equipped with the canonical valuation.

For every x ∈ K, let inν(x) = xν(x),ν be the image of x in Kν(x),ν , which is also its image in Gν(K). In

the case of a subfield of a power series field, we have inν

∑
γ∈Λ

xγχ
γ

 = xγ0
χγ0 , where γ0 is the smallest

element of the support of the serie (i.e. the well ordered subset Λ of νK such that xγ0
6= 0, see Remark

1.14). In general, for every x, y in K, we have inν(x)inν(y) = inν(xy). Assume that ν(x) = ν(y). If
inν(x) = −inν(y), then inν(x+ y) = 0. Otherwise, inν(x+ y) = inν(x) + inν(y).

An element of Gν(K) is called homogeneous if it belongs to
⋃

γ∈νK
Kγ,ν . In the case of a polynomial

ring, this is equivalent to being a monomial. One can see that the inversible elements of Gν(K) are the
homogeneous ones.

For further purposes, if M is a K-submodule of L, we denote by Gν(M) the additive group
⊕
γ∈νM

Mγ,ν .

Let (L|K, ν) be an extension of valued fields, and l1, . . . , ln in L. Recall that the family (l1, . . . , ln) is a
separate over (K, ν) if, and only if, for every x1, . . . , xn inK, ν(x1l1, . . . , xnln) = min(ν(x1l1), . . . , ν(xnln)).
Now, this equivalent to saying that for every x1, . . . , xn in K with ν(x1l1) = · · · = ν(xnln), we have
ν(x1l1, . . . , xnln) = ν(x1l1). This last equality is equivalent to inν(x1)inν(l1) + · · ·+ inν(xn)inν(ln) 6= 0.
So, if inν(l1), . . . , inν(ln) are linearly independent in theGν(K)-moduleGν(L), then the family (l1, . . . , ln)
is separate. Now, assume that for every x1, . . . , xn in K with ν(x1l1) = · · · = ν(xnln), we have
ν(x1l1, . . . , xnln) = ν(x1l1). Let y1, . . . , yn in Gν(K). Every yj can be written as a finite sum of
homogeneous elements: yj = inν(xj,1) + · · · + inν(xj,ij ). It follows that y1inν(l1) + · · · + yninν(ln) can
be written as a sum of inν(x1,k1

)inν(l1) + · · · + inν(xn,kn)inν(ln), where the non-zero inν(xj,kj )inν(lj)
have the same valuation. Therefore, y1inν(l1) + · · ·+ yninν(ln) 6= 0. Consequently, the family (l1, . . . , ln)
is separate over (K, ν) if, and only if, inν(l1), . . . , inν(ln) are linearly independent over Gν(K). Further-
more, if (l1, . . . , ln) is a maximal separate family, then (inν(l1), . . . , inν(ln)) is a basis of Gν(L). Now,
if [L : K] is finite, then the dimension of the Gν(K)-module Gν(L) is [Lν : Kν ] ·(νL : νK). Hence, by
Theorem 2.5, (L|K, ν) is separate if, and only if, Gν(L) is a Gν(K)-module of dimension [L :K].

Turning to immediate extensions, by Remark 1.6, (L|K, ν) is immediate if, and only if, Gν(L) = Gν(K).

The following lemma shows that if, for l ∈ L, inν(l) satisfies a relation of algebraic dependence over
Gν(K), then we can define its irreducible polynomial.

Lemma 2.20. Let l ∈ L. Assume that inν(l) satisfies a relation of algebraic dependence over Gν(K),
and let n be the smallest degree such that such a relation exists. Then, inν(l) satisfies a relation of the
form inν(l)n+ inν(xn−1)inν(l)n−1 + · · ·+ inν(x0) = 0, where x0, . . . , xn−1 belong to K and ν(x0) = · · · =
ν(xn−1l

n−1) = ν(ln).

Proof. See for example [HOS 07]. �

We sometimes call homogeneous a polynomial inν(χ)n + inν(xn−1)inν(χ)n−1 + · · · + inν(x0), where
x0, . . . , xn−1 belong to K , such that ν(x0) = · · · = ν(xn−1χ

n−1) = ν(χn).

3. Key polynomials.

In this section, K(χ)|K is an extension of fields, where χ is algebraic or transcendental over K.
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3.1. Definitions. We generalize the definition of key polynomials of S. MacLane ([ML 36a] and [ML 36b]).
In next subsection we will compare S. MacLane’s definition and the following one.

Notation 3.1. Let Φ be a monic polynomial of degree d ≥ 1. For f , g in Kd−1[χ], we will denote
by qΦ(f, g) and rΦ(f, g) respectively (in short q(f, g) and r(f, g)) the quotient and the remainder of
the euclidean division of fg by Φ. In other words, q(f, g) and r(f, g) belong to Kd−1[χ] and fg =
Φ·q(f, g) + r(f, g).

Definitions 3.2. Let ν be a K-module valuation on K(χ) and Φ be a monic polynomial of degree d ≥ 1.
We say that Φ is a key polynomial for ν if, for every f , g in Kd−1[χ] with deg(f) + deg(g) < [K[χ] :K],
we have ν(fg) = ν(r(f, g)).
We say that Φ is a strict key polynomial for ν if, for every f , g in Kd−1[χ] with deg(f)+deg(g) < [K[χ] :K],
we have ν(fg) = ν(r(f, g)) < ν(q(f, g)·Φ).
Let d be a positive integer.
We say that d is a key degree of (K(χ)|K, ν) if there exists a key polynomial of degree d.
We say that d is a strict key degree of (K(χ)|K, ν) if there exists a strict key polynomial of degree d.
Assume that d is a key degree. If ν(χd − Kd−1[χ]) has no maximal element, then we say that d is an
immediate key degree. Otherwise, we say that d is a separate key degree. If this maximum does not belong
to νKd−1[χ], then we say that d is a valuational key degree. If this maximum belongs to νKd−1[χ], then
we say that d is a residual key degree.

Remarks 3.3. 1) The integer 1 is a strict key degree. Furthermore, every monic polynomial of degree
1 is a strict key polynomial.
2) Every key polynomial is irreducible.
3) If ν is partially multiplicative and Φ is a key polynomial (resp. a strict key polynomial) for ν of degree
d, then, for every p-m valuation ν′ such that the restriction of ν′ to Kd−1[χ] is equal to the restriction of
ν and ν′(Φ) ≥ ν(Φ), Φ is a key polynomial (resp. a strict key polynomial) for ν′.
4) Assume that ν is partially multiplicative. If Φ is a key polynomial, then ν(Φ) ≥ {ν(r(f, g))−ν(q(f, g)) |
f ∈ Kd−1[χ], g ∈ Kd−1[χ], deg(f)+deg(g) < [K[χ] :K]}. If Φ is a monic polynomial, then Φ is a strict key
polynomial if, and only if, ν(Φ) > {ν(r(f, g))− ν(q(f, g)) | f ∈ Kd−1[χ], g ∈ Kd−1[χ], deg(f) + deg(g) <
[K[χ] :K]}.

Proof. 1) and 3) are trivial.
2) Assume that there exist two polynomials f , g in Kd−1[χ] such that fg = Φ, then r(f, g) = 0, and

ν(r(f, g)) =∞ > ν(fg). Hence Φ is not a key polynomial for ν.
4) Clearly, if Φ is a key polynomial (resp. a strict key polynomial), then ν(Φ) ≥ {ν(r(f, g))−ν(q(f, g)) |

f ∈ Kd−1[χ], g ∈ Kd−1[χ], deg(f) + deg(g) < [K[χ] :K]} (resp. ν(Φ) > {ν(r(f, g)) − ν(q(f, g)) | f ∈
Kd−1[χ], g ∈ Kd−1[χ], deg(f) + deg(g) < [K[χ] : K]}). Now, if ν(Φ) > ν(r(f, g)) − ν(q(f, g)), then
ν(q(f, g)Φ) > ν(r(f, g)) = ν(fg − q(f, g)Φ). Hence ν(r(f, g))− ν(fg). �

The following lemma explains the distinction that we make between the valuational and the residual
key degrees.

Lemma 3.4. Let d be a positive integer. Assume that ν(χd − Kd−1[χ]) has a maximum ν(Φ). Then
either ν(Φ) /∈ νKd−1[χ], or Φν(Φ),ν /∈ (Kd−1[χ])ν(Φ),ν .

Proof. Assume that ν(Φ) ∈ νKd−1[χ]. Since ν(Φ) is maximal in ν(χd −Kd−1[χ]), for every f ∈ Kd−1[χ]
such that ν(f) = ν(Φ) we have ν(Φ − f) = ν(Φ) = ν(f). Hence (Φ)ν(Φ),ν 6= fν(Φ),ν . It follows that
Φν(Φ),ν /∈ (Kd−1[χ])ν(Φ),ν . �

Let Φ be a monic irreducible polynomial of K[X] of degree d ≥ 1 (K[X], the ring of formal polynomials
with coefficients in K). Then K[X]/(Φ) is a field, such that the canonical epimorphism ρ : K[X] →
K[X]/(Φ) is an isomorphism from the K-module Kd−1[X] onto the K-module K[X]/(Φ). Now, for f, g
in Kd−1[X], we set f ∗ g = r(f, g). Then ρ(f ∗ g) = ρ(r(f, g)) = ρ(fg). Hence (Kd−1[X],+, ∗) is a field
which is isomorphic to K[X]/(Φ). The same operation can be defined in K[χ] whenever d ≤ [K(χ) :K]/2.

Notation 3.5. Let Φ be a monic irreducible polynomial of K[χ] of degree d, 1 ≤ d ≤ [K(χ) :K]/2. The
field (Kd−1[χ],+, ∗) defined above will be denoted by KΦ.

Note that if ν is a p-m valuation on the field K(χ), then its restriction to Kd−1[χ] induces a valuation
of the K-modules KΦ and K[X]/(Φ). If Y is a root of Φ(X) in some algebraic extension, then the fields
KΦ and K[Y] are isomorphic.

Proposition 3.6. Let Φ be an irreducible monic polynomial of degree d, 1 ≤ d ≤ [K(χ) :K]/2, and ν be
a p-m valuation on K(χ). Then Φ is a key polynomial for ν if, and only if, the valued K-module (KΦ, ν)
is a valued field.
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Proof. Let f, g in Kd−1[χ]. Then ν(f ∗g) = ν(r(f, g)) and ν(fg) = ν(f)+ν(g). Hence (KΦ, ν) is a valued
field if, and only if, for every f, g in Kd−1[χ] we have: ν(r(f, g)) = ν(fg). This in turn is equivalent to
saying that Φ is a key polynomial. �

Corollary 3.7. Let Φ be a key polynomial of degree d, 1 ≤ d ≤ [K(χ) :K]/2, and ν be a p-m valuation
on K(χ). Then νKd−1[χ] is a subgroup of νK(χ).

Proof. Indeed, if Φ is a key polynomial, then for every f , g in Kd−1[χ] we have ν(f ∗ g) = ν(rΦ(f, g)) =
ν(fg) = ν(f) + ν(g). Hence νKΦ = νKd−1[χ]. �

Remark 3.8. Let Φ be a monic polynomial of degree d, 1 ≤ d ≤ [K(χ) :K]/2, and ν be a p-m valuation
on K(χ).

(1) The polynomial Φ is a strict key polynomial if, and only if, for every f , g in Kd−1[χ], ν(fg) =
ν(rΦ(f, g)) and (fg)ν(fg),ν = (rΦ(f, g))ν(fg),ν . Indeed, if ν(fg) = ν(rΦ(f, g)), then ν(fg − rΦ(f, g)) > 0
is equivalent to (fg)ν(fg),ν = (rΦ(f, g))ν(fg),ν .

(2) If Φ is a strict key polynomial, then the group Gν(Kd−1[χ]) is a subalgebra of Gν(K(χ)). Indeed,
since (fg)ν(fg),ν = fν(f),νgν(g),ν , Φ is a strict key polynomial if, and only if, for every f , g in Kd−1[χ],
(f ∗ g)ν(fg),ν = fν(f),νgν(g),ν . Therefore, the group Gν(Kd−1[χ]) is a subalgebra of Gν(K(χ)), and it is
isomorphic to Gν(KΦ). Hence Gν(K) embeds in Gν(KΦ) and Gν(KΦ) embeds in Gν(K(χ)).

(3) It follows from Proposition 3.6 that if Φ is a strict key polynomial, then Kd−1[χ]ν is a subfield of
K(χ)ν .

3.2. MacLane’s key polynomials. In [ML 36a] and [ML 36b] S. MacLane defined key polynomials in
the case of discrete valuations. M. Vaquié ([V 07]) generalized this definition to arbitrary valuations.
In [V 07] the key polynomials are defined on the ring of formal polynomials. The case of algebraic
extensions is obtained by means of a pseudo-valuation, by quotienting K[χ] by the socle of ν. A pseudo-
valuation ν of K is a mapping from K onto a linearly ordered group νK together with an element ∞
which shares the properties of multiplicative valuations except ν(x) = ∞ ⇒ x = 0. In this case the
set I = {x ∈ K | ν(x) = ∞} is a prime ideal which is called the socle of ν. Then ν induces a p-m
valuation on the integral domain K/I. So, in [V 07] χ is transcendental over K and ν is a valuation or
a pseudo-valuation. Now, in Definition 3.2, we can assume that ν is a pseudo-valuation and that χ is
transcendental. Here we extend the definition of [V 07] to the case of an algebraic extension, and we do
not require χ being transcendental.

In this subsection, ν is a K-module valuation on K(χ) or a pseudo-valuation.

Definition 3.9. Let Φ be a monic polynomial of degree d and d′ = [K[χ] : K] − d. We say that
Φ is ν-minimal if for every f ∈ Kd−1[χ] and every h ∈ Kd′−1[χ], ν(f − hΦ) = min(ν(f), ν(hΦ)).
We say that Φ ν-irreducible if for every f , g in K[χ] with deg(f) + deg(g) < [K[χ] : K] such that,
for every h ∈ Kd′−1[χ], ν(f − hΦ) = min(ν(f), ν(hΦ)) and ν(g − hΦ) = min(ν(g), ν(hΦ)), we have:
∀h ∈ Kd′−1[χ] ν(fg − hΦ) = min(ν(fg), ν(hΦ)).

Remark 3.10. By setting h = 1 in above definition, we see that every monic polynomial, which is
ν-minimal and ν-irreducible, is irreducible.

Proposition 3.11. Assume that ν is a p-m valuation or a pseudo-valuation. Let d < [K[χ] :K] in N∗,
d′ = [K[χ] :K]− d, Φ be a non constant monic polynomial in K[χ] of degree d. The following assertions
are equivalent.
1) Φ is ν-minimal and ν-irreducible.
2) For every f , g in Kd−1[χ] with deg(f) + deg(g) < [K[χ] : K] and every h in Kd′−1[χ], we have
ν(fg + hΦ) = min(ν(fg), ν(hΦ)).
3) Φ is a key polynomial such that the sequence (Φm) (md < [K(χ) :K]) is separate over Kd−1[χ].

Before proving Proposition 3.11 we state a lemma.

Lemma 3.12. ([ML 36a] Lemma 4.3) Assume that ν is a p-m valuation or a pseudo-valuation. Let
d < [K[χ] :K] in N∗, d′ = [K[χ] :K] − d, Φ be a ν-minimal non constant monic polynomial in K[χ] of
degree d. Let f ∈ K[χ] and f = qΦ + r be the euclidean division of f by Φ. The following assertions are
equivalent.
a) ν(r) > ν(f)
b) ν(r) > min(ν(f), ν(qΦ))
c) ∃h ∈ Kd′−1[χ] ν(f − hΦ) > min(ν(f), ν(hΦ)).

Proof. Trivially we have: a) ⇒ b) and b) ⇒ c). We prove c) ⇒ a). Let h ∈ Kd′−1[χ]. By hypothesis,
deg(r) < d and deg(q) < d′. Hence ν(f−hΦ) = ν((q−h)Φ+r) = min(ν((q−h)Φ), ν(r)) ≤ ν(r). Therefore
ν(f−hΦ) > min(ν(f), ν(hΦ))⇒ ν(r) > min(ν(f), ν(hΦ)). Now, ν(f−hΦ) > min(ν(f), ν(hΦ))⇒ ν(f) =
ν(hΦ), hence ν(r) > ν(f). �



16 G. LELOUP

Proof of Proposition 3.11.
2) ⇒ 1). Assume that Φ satisfies the hypothesis of 2). By setting g = 1 if follows that Φ is a

non constant monic polynomial in K[χ] of degree d such that for every f in Kd−1[χ] and every h in
Kd′−1[χ] we have ν(f + hΦ) = min(ν(f), ν(hΦ)). Hence Φ is ν-minimal. In order to prove that Φ is
ν irreducible, let f and g in K[χ] such that deg(f) + deg(g) < [K[χ] :K] and for every h ∈ Kd′−1[χ],
ν(f − hΦ) = min(ν(f), ν(hΦ)) and ν(g − hΦ) = min(ν(g), ν(hΦ)). By euclidean division, f et g can be
written as f = qΦ + r and g = q′Φ + r′. By Lemma 3.12, we have ν(f) = ν(r) and ν(g) = ν(r′). Let
h ∈ Kd′−1[χ]. Then ν(fg−hΦ) = ν((qq′Φ+qr′+q′r−h)Φ+rr′) = min(ν((qq′Φ+qr′+q′r−h)Φ), ν(rr′)),
because both of r and r′ belong to Kd−1[χ]. Hence ν(fg − hΦ) ≤ ν(rr′) = ν(fg). Now, we have
min(ν(fg), ν(hΦ)) ≤ ν(fg−hΦ) ≤ ν(fg). So, ν(fg−hΦ) = min(ν(fg), ν(hΦ)). Hence Φ is ν-irreducible.

1) ⇒ 2). We assume that Φ be a monic, ν-minimal and ν-irreducible polynomial. Let f , g in Kd−1[χ]
with deg(f) + deg(g) < [K[χ] : K]. Since Φ is ν-minimal, for every h in K[χ] we have ν(f + hΦ) =
min(ν(f), ν(hΦ)) and ν(g + hΦ) = min(ν(g), ν(hΦ)). Now, Φ is ν-irreducible, hence ν(fg + hΦ) =
min(ν(fg), ν(hΦ)).

2)⇒ 3). Assume that Φ satisfies the hypothesis of 1) and 2). Let f , g in Kd−1[χ] with deg(f)+deg(g) <
[K[χ] :K]. By letting h = −qΦ(f, g), 2) implies ν(rΦ(f, g)) = min(ν(fg), ν(qΦ(f, g)Φ)). Since Φ is ν-
minimal, by Lemma 3.12 we have ν(rΦ(f, g)) = ν(fg). Hence Φ is a key polynomial. Now, let m ∈ N∗
with dm < [K[χ] :K], f0, . . . , fm in Kd−1[χ]. We have: ν(fmΦm + · · · + f0) = min(ν((fmΦn−1 + · · · +
f1)Φ), ν(f0)), ν(fmΦn−1 + · · ·+ f1) = min(ν((fmΦn−2 + · · ·+ f2)Φ), ν(f1)), and so on. So by induction
we have ν(fmΦm + · · · + f0) = min(ν(fmΦn−1), . . . , ν(f0)). Hence the family (Φm)m∈N is separate over
Kd−1[χ].

3)⇒ 2). We take f , g in Kd−1[χ] and h in Kd′−1[χ] with deg(f)+deg(g) < [K[χ] :K]. The polynomial
h can be written as h = hmΦm+· · ·+hΦ+h0, where hm, . . . , h1, h0 belong to Kd−1[χ]. Let q = q(f, g) and
r = r(f, g); since f and g belong to Kd−1[χ], we have deg(q) < d, i.e. q ∈ Kd−1[χ]. We have: ν(fg+hΦ) =
ν(hmΦm+1 + · · · + h1Φ2 + (q + h0)Φ + r) = min(ν(hnΦm+1), . . . , ν(h1Φ2), ν((q + h0)Φ), ν(r)). Since Φ
is a key polynomial, we have ν(fg) = ν(r) ≤ ν(qΦ). If ν(h0Φ) ≥ ν(r), then ν((q + h0)Φ) ≥ ν(r). Hence
min(ν((q + h0)Φ), ν(r)) = ν(r) = min(ν(h0Φ), ν(r)). If ν(h0Φ) < ν(r), then min(ν((q + h0)Φ), ν(r)) =
ν(h0Φ) = min(ν(h0Φ), ν(r)). Therefore: ν(fg + hΦ) = min(ν(hmΦm+1), . . . , ν(h1Φ2), ν(h0Φ)ν(fg)) =
min(ν(hΦ), ν(fg)). �

Remark 3.13. We use the hypothesis “ν is a p-m valuation” for proving 2) ⇒ 1). For proving 2) ⇒ 3)
the condition “for every f ∈ Kd′−1[χ], ν(Φf) = ν(Φ) + ν(f)” is sufficient. The remainder of the proof
remains true with a K-module valuation.

In MacLane’s definition, the key polynomials are the ν-minimal and ν-irreducible polynomials. Propo-
sition 3.11 shows that this definition is stronger than Definition 3.2. The difference will appear more
clearly in Subsection 3.3 (for example Remark 3.18). Now, we extend the definition of S. MacLane to
K-module valuations.

Definition 3.14. Let Φ be a polynomial of degree d. We say that Φ is a ML key polynomial for ν if Φ
is a key polynomial such that the sequence (Φm) (md < [K(χ) :K]) is separate over Kd−1[χ].

3.3. Separate valuations defined by key polynomials. We generalize the definition of augmented
valuations of S. MacLane ([ML 36a] and [ML 36b]).

Assume that Φ is a monic irreducible polynomial of degree d, and let γ be an element of an extension
of νK(χ).

For every f = f0 + f1Φ + · · ·+ fmΦm in K[χ] (with f0, f1, . . . , fm in Kd−1[χ] and deg(fm) + dm <
[K[χ] :K]), set ν′(f) = min

0≤i≤m
ν(fi) + iγ.

Assume that ν is a p-m valuation on K(χ) and that Φ is a key polynomial for ν of degree d. We saw in
Remarks 3.3 4) that the set {ν(r(f, g))−ν(q(f, g)) | f ∈ Kd−1[χ], g ∈ Kd−1[χ], deg(f)+deg(g) < [K[χ] :
K]} is bounded above by ν(Φ). We extend the addition of elements of νK to the addition of Dedekind
cuts in the usual way. We also define an element −∞ < νK(χ), and we let δ +∞ = ∞, δ −∞ = −∞,
for every δ in the Dedekind completion of νK(χ).

Proposition 3.15. Let Φ be a monic irreducible polynomial of degree d, γ be an element of an extension
of νK(χ), ν be a K-module valuation defined on Kd−1[χ], and ν′ be defined as above.
1) The application ν′ is a K-module valuation and the family (Φm) (dm < [K[χ] :K]) is separate over
Kd−1[χ].
2) Assume that ν is a p-m valuation and that Φ is a key polynomial for ν. Denote by β the upper-bound
of the set {ν(r(f, g))− ν(q(f, g)) | f ∈ Kd−1[χ], g ∈ Kd−1[χ], deg(f) + deg(g) < [K[χ] :K]}, and assume
that γ ≥ β.
a) For every f = fmΦm + · · · + f1Φ + f0, g = gmΦm + · · · + g1Φ + g0, with f0, . . . , fm, g0, . . . , gm in
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Kd−1[χ] such that deg(f) + deg(g) < [K[χ] :K] we have:

ν′(fg) = ν′

 2m∑
j=0

(
j∑
i=0

r(fi, gj−i)

)
Φj

 ≤ ν′
fg − 2m∑

j=0

(
j∑
i=0

r(fi, gj−i)

)
Φj

− (γ − β).

(Here if i > m, then we let fi = gi = 0.) In particular, ν′ is a p-m valuation.
b) The polynomial Φ is a ML key polynomial for ν′. Furthermore it is a strict key polynomial if, and
only if, γ > β or β is not a maximum.

Proof. 1) Clearly, if ν′ is a K-module valuation, then the family (Φm) is separate over Kd−1[χ]. Let
f0, . . . , fm, g0, . . . , gm in Kd−1[χ] and let f = fmΦm + · · · + f1Φ + f0, g = gmΦm + · · · + g1Φ + g0. We
have trivially

ν′(f + g) = min
0≤j≤m

(ν(fj + gj) + jγ) ≥ min
0≤j≤m

(min(ν(fj) + jγ, ν(gj)) + jγ)

≥ min(ν′(f), ν′(g)).

We have that ν′(f) = ∞ ⇔ f = 0. Now, for x ∈ K, ν′(xf) = ν′(x) + ν′(f), since ν is a K-module
valuation.

2) a) Since deg(f) + deg(g) < [K[χ] :K], for every i, j we have deg(fi) + deg(gj) < [K(χ) :K]. Hence
ν(figj) = ν(fi) + ν(gj). Denote by i0 (resp. j0) the smallest index such that ν′(f) = ν(fi0 + i0γ) (resp.
ν′(g) = ν(gj0 + j0γ)), and for i > m set fi = gi = 0. We have

ν′(fg) = ν′

 2m∑
j=0

(
j∑
i=0

figj−i

)
Φj

 ≥ min
0≤i≤j≤2m

(ν′(figj−i) + jγ)

≥ min
0≤i≤j≤2m

(ν(fi) + iγ + ν(gj−i) + (j − i)γ) ≥ ν′(f) + ν′(g).

For every i, j, let qi,j−i = q(fi, gj−i) and ri,j−i = r(fi, gj−i).

fg =

2m∑
j=0

(
j∑
i=0

qi,j−iΦ + ri,j−i

)
Φj =

=

2m+1∑
j=1

(
j−1∑
i=0

qi,j−i−1

)
Φj +

2m∑
j=0

(
j∑
i=0

ri,j−i

)
Φj .

Since max(deg(fi),deg(gj−i)) < d, ν is a p-m valuation and Φ is a key polynomial, we have:
ν′(fi) + ν′(gj−i) = ν(fi) + ν(gj−i) = ν(ri,j−i) = ν′(ri,j−i) = ν′(figj−i), and
ν(ri,j−i) ≤ ν(qi,j−i) + β ≤ ν′(qi,j−i) + γ.
Furthermore, ν′(f) + ν′(g) = ν(fi0) + i0γ + ν(gj0) + j0γ ≤

≤ ν(fi) + iγ + ν(gi,j−i−1) + (j − i− 1)γ = ν(figi,j−i−1) + (j − 1)γ =
= ν(ri,j−i−1) + (j − 1)γ ≤ ν(qi,j−i−1) + β + (j − 1)γ = ν(qi,j−i−1) + jγ − (γ − β).

Consequently: ν′

fg − 2m∑
j=0

(
j∑
i=0

r(fi, gj−i)

) ≥ ν′(f) + ν′(g) + (γ − β).

Now, let hi0+j0 be the coefficient of Φi0+j0 in the decomposition of fg by Φ. We have

hi0+j0 = r0,i0+j0 + r1,i0+j0−1 + · · ·+ ri0,j0 + · · ·+ ri0+j0,0 + q0,i0+j0−1 + · · ·+ qi0+j0−1,0.

By hypotheses, for 0 ≤ i ≤ i0 + j0 − 1 we have:
ν(qi,i0+j0−1−i) + (i0 + j0)γ ≥ ν(qi,i0+j0−1−i) + β + (i0 + j0 − 1)γ ≥ ν(figi0+j0−1−i) + (i0 + j0 − 1)γ =
= ν(fi) + iγ + ν(gi0+j0−1−i) + (i0 + j0 − 1− i)γ.
If i ≤ i0−1, then ν(fi)+iγ > ν′(f). Otherwise, i0+j0−1−i ≤ j0−1, and ν(gi0+j0−1−i)+(i0+j0−1−i) >
ν′(g). In any case, ν(qi,i0+j0−1−i) + (i0 + j0)γ > ν′(f) + ν′(g). In the same way, for 0 ≤ i ≤ i0 + j0:
ν(ri,i0+j0−i) + (i0 + j0)γ = ν(fi) + iγ + ν(gi0+j0−i) + (i0 + j0 − i)γ ≥ ν′(f) + ν′(g),
and equality holds if, and only if, i = i0 and j = j0. Hence the minimum is carried by a unique term, so
ν(hi0+j0) = ν(fi0gj0) = ν(fi0) + ν(gj0). Consequently: ν′(fg) = ν′(f) + ν′(g).

Assume that χ is transcendental over K. For all nonzero f , g in K[χ], set ν′(f/g) = ν′(f) − ν′(g).
Then, for every f , f ′, g, g′ in K[χ], with g 6= 0 6= g′, we have:

ν

(
f

g
· f
′

g′

)
= ν

(
ff ′

gg′

)
= ν(f) + ν(f ′)− ν(g)− ν(g′) = ν

(
f

g

)
+ ν

(
f ′

g′

)
, and

ν

(
f

g
+
f ′

g′

)
= ν

(
fg′ + f ′g

gg′

)
= ν(fg′ + f ′g)− ν(g)− ν(g′) ≥
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≥ min(ν(fg′), ν(f ′g))− ν(g)− ν(g′) = min

(
ν

(
f

g

)
, ν

(
f ′

g′

))
.

Hence ν′ is a multiplicative valuation.
2) b) If f , g belong toKd−1[χ], then f = f0, g = g0 and ν′(fg) = ν′(r(f, g)) ≤ ν′(fg−r(f, g))−(γ−β) =

ν′(q(f, g))−(γ−β). Hence Φ is a key polynomial for ν′. If γ > β or β is not a maximum, then the inequality
is strict. If β is a maximum, say β = ν(rΦ(f, g)) − ν(qΦ(f, g)), then ν(qΦ(f, g)Φ) = ν(qΦ(f, g)) + β =
ν(rΦ(f, g)). Hence Φ is not a strict key polynomial. Since the family (Φm) (dm < [K[χ] :K]) is separate
over Kd−1[χ], by 3) of Proposition 3.11, Φ is a ML key polynomial for ν′. �

Notations 3.16. The K-module valuation ν′ defined in Proposition 3.15 will be denoted by νΦ,γ . We
set νΦ = νΦ,ν(Φ). If Φ1 and Φ2 are irreducible polynomials such that deg(Φ1) < deg(Φ2), we denote
by νΦ1,Φ2

the K-module valuation (νΦ1,ν(Φ1))Φ2,ν(Φ2). By induction, for every irreducible polynomials
Φ1, . . . ,Φn, with deg(Φ1) < · · · < deg(Φn), we define the K-module valuation νΦ1,...,Φn

.

Remark 3.17. If the degree of Φ is 1, then for every f , g in Kd−1[χ] = K, we have q(f, g) = 0. Hence
the set {ν(r(f, g)) − ν(q(f, g)) | f ∈ Kd−1[χ], g ∈ Kd−1[χ], deg(f) + deg(g) < [K[χ] :K]} is equal to
{−∞} and is bounded above by any element. Hence Proposition 3.15 shows that the Gauss valuations
defined in Example 2.18 are p-m valuations. So, for every monic Φ ∈ K[χ], the p-m valuation νΦ can be
called a generalized Gauss valuation.

Remark 3.18. If ν is a p-m valuation, then it follows from Proposition 3.15 that Φ is a ML key
polynomial for ν if, and only if, Φ is a key polynomial for ν and ν = νΦ.

Proposition 3.19. Let Φ be a monic polynomial of degree d and ν be a p-m valuation on K[χ]. Then Φ
is a key polynomial for ν if, and only if, there exists a p-m valuation ν′ of K[χ], such that its restriction
to Kd−1[χ] is equal to the restriction of ν, and ν′(Φ) > ν(Φ).
If this holds, then for every γ ≥ ν(Φ) in an extension of νK[χ], νΦ,γ is a p-m valuation of K[χ] such
that its restriction to Kd−1[χ] is equal to the restriction of ν, νΦ,γ(Φ) = γ and Φ is a ML key polynomial
for νΦ,γ .

Proof. Assume that ν′ is a p-m valuation of K[χ] such that its restriction to Kd−1[χ] is equal to the
restriction of ν, and ν′(Φ) > ν(Φ). Let f , g in Kd−1[χ] such that deg(f)+deg(g) < [K[χ] :K], q = q(f, g)
and r = r(f, g). Without loss of generality we can assume that q 6= 0. We have ν(fg) = ν(f) + ν(g) =
ν′(f) + ν′(g) = ν′(fg). Therefore, ν(qΦ + r) = ν′(qΦ + r) is greater or equal to both of min(ν(qΦ), ν(r))
and min(ν′(qΦ), ν(r)), where ν(qΦ) < ν′(qΦ). It follows that ν(qΦ) 6= ν(r) or ν′(qΦ) 6= ν(r), hence
ν(qΦ+r) = min(ν(qΦ), ν(r)) or ν′(qΦ+r) = min(ν′(qΦ), ν(r)). In any case, since ν(qΦ) = ν(q)+ν(Φ) <
ν′(q) + ν′(Φ) = ν′(qΦ) we see that this minimum is ν(r) and that ν(r) ≤ ν(qΦ)− (ν′(Φ)− ν(Φ)). Now,
if Φ is a key polynomial for ν, then the hypotheses of Proposition 3.15 2) are satisfied. Hence, the proof
of the converse follows the proof of Proposition 3.15.

The remainder also follows from Proposition 3.15. �

Notation 3.20. If ν and ν′ are K-module valuations on K(χ), then we set ν ≤ ν′ if for every f ∈ K[χ]
we have ν(f) ≤ ν′(f).

Remark 3.21. 1) By the definition of νΦ, for every K-module valuation ν′ such that the restrictions of
ν′ and νΦ to Kd−1[χ] are equal and ν′(Φ) = νφ(Φ), we have νΦ ≤ ν′.
2) Assume that χ is algebraic over K, that ν is multiplicative, and ν′(f) < ν(f). If ν′ ≤ ν, then
ν′(1/f) ≤ ν(1/f) = −ν(f) < −ν′(f). Hence ν′(1/f) 6= −ν′(f). It follows that ν′ is not multiplicative.
Hence we cannot improve the conclusion that ν′ is partially multiplicative in Proposition 3.15.

Remark 3.22. In valuation theory, we say that ν′ is finer than ν if ∀x ν′(x) ≥ 0⇒ ν(x) ≥ 0 (see [R 68,
p. 54]). Assume that χ is algebraic over K. Then K(χ) = K[χ], so, if ν′ ≤ ν, then ν′ is finer than ν. Now,
any two distinct extensions of a valuation to an algebraic extension are incomparable (see Corollaire 5,
p. 158 in [R 68]). Therefore, this also proves that if ν′ 6= ν, then ν or ν′ is not multiplicative. In the case
where χ is transcendental over K and ν, ν′ are valuations such that ν′ ≤ ν, then we cannot deduce that
ν and ν′ are comparable in the sense of Ribenboim. Indeed, assume that ν(f) = ν′(f) = ν′(g) < ν(g).
Then, ν′(f/g) = 0 > ν(f/g). Assume that ν′(f) < ν(f) = ν(g) = ν(g). Then ν′(f/g) < 0 = ν(f/g).

Proposition 3.23. Let ν be a p-m valuation on K[χ], and Φ be a non constant monic polynomial in
K[χ] of degree d. Then Φ is a key polynomial for ν if, and only if, there exists a p-m valuation ν′ ≤ ν such
that the restrictions of ν and ν′ to Kd−1[χ] are equal, and Φ is a ML key polynomial for ν′. Furthermore,
we can take ν′ = νΦ.

Proof. ⇐. If Φ is a ML key polynomial for ν′, then it is a key polynomial for ν′. Now, by 3) of Remark
3.3, it is a key polynomial for ν.
⇒. By Proposition 3.19, νΦ is a p-m valuation such that Φ is a ML key polynomial for νΦ. By

construction, the restrictions of ν and νΦ to Kd−1[χ] are equal. By Remark 3.21 1) we have νΦ ≤ ν. �
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3.4. Bases generated by polynomials. Let Φ1, . . . , Φn, . . . be monic irreducible polynomials of
K[χ] of degrees d1 = 1, d2, . . . , dn, respectively, where dn−1 divides dn (if the family has a maximal
element dn, we set dn+1 = [K(χ) :K]). We let B be the family of the Φe11 · · ·Φenn , where for 0 ≤ i ≤ n− 1

we have: 0 ≤ ei <
di+1

di
. Since the degree mapping is one-to-one from B onto [0, [K(χ) :K][, B is a basis

of the K-module K[χ]. Furthermore, for every m in N, B ∩ Km[χ] is a basis of the K-module Km[χ].
Now, we can define a basis even if some degree does not divide the following one. Indeed, in the case
where we have only d1 = 1 < d2 < · · · < dn < · · · , we require: for every n, e1 + e2d2 + · · ·+ endn < dn+1.

Definition 3.24. Let B be a K-basis of K[χ]. We say that B is generated by polynomials if it is
constructed in the above way. If so, then Φ1, Φ2, . . . , Φn, . . . , are called the generating polynomials for
B.

Remark 3.25. Let ν be a K-module valuation on K(χ), Φ1, . . . , Φk, . . . be generating polynomials
for a basis B. For k ≥ 1, fix ν′(Φk). For every e1, . . . , ek with e1 + e2d2 + · · · + ekdk < dk+1, let
ν′(Φe11 · · ·Φ

ek
k ) = e1ν

′(Φ1) + e2ν
′(Φ2) + · · · + ekν

′(Φk) and for every pairwise distinct y1, . . . , yk in B,
x1, . . . , xk in K set ν′(x1y1 + · · ·+ xkyk) = min

1≤i≤k
ν(xi)ν

′(yi). Then ν′ is a separate K-module valuation.

If for every k ≥ 1 we have ν′(Φk) = ν(Φk), then the K-module valuation ν′ defined above is the K-module
valuation νΦd1

,...,Φdk
defined in Notations 3.16.

3.5. Properties of key degrees.

Proposition 3.26. Let d be an integer and ν be a p-m valuation on K[χ].
1) Assume that d is an immediate key degree and let Φ be a key polynomial of degree d. Then every monic
polynomial Φ′ of degree d, such that ν(Φ′) > ν(Φ), is a strict key polynomial (so d is a strict key degree).
2) Assume that d is a separate key degree and let Φ be a key polynomial of degree d.
a) If Φ is a strict key polynomial, then every monic polynomial Φ′ of degree d, such that ν(Φ′) ≥ ν(Φ), is
a strict key polynomial. In particular, any monic polynomial Φ′ of degree d, such that ν(Φ′) is maximal
in ν(χd −Kd−1[χ]), is a strict key polynomial.
b) If d is not strict, then every key polynomial of degree d has valuation ν(Φ), and ν(Φ) is maximal in
ν(χd −Kd−1[χ]).

This proposition is a consequence of the following lemma.

Lemma 3.27. Let d be a positive integer, ν be a p-m valuation on K[χ], Φ and Φ′ be monic polynomials
of degree d such that Φ is a key polynomial for ν.
1) If ν(Φ′) > ν(Φ), then Φ′ is a key polynomial for νΦ, a strict key polynomial for ν, and νΦ ≤ νΦ′ .
2) If ν(Φ′) = ν(Φ) and Φ is a strict key polynomial for ν, then Φ′ is a strict key polynomial for both of
ν and νΦ. Furthermore, νΦ = νΦ′ .
3) If ν(Φ′) = ν(Φ) and Φ, Φ′ are key polynomials for ν, then νΦ = νΦ′ .

Proof. Set h = Φ′ − Φ. Assume that ν(Φ′) ≥ ν(Φ). Then we have ν(h) ≥ ν(Φ). Furthermore, Φ
and Φ′ are monic polynomials, so the degree of h is lower than d. Now, Φ′ = Φ + h, hence νΦ(Φ′) =
min(ν(Φ), ν(h)) = ν(Φ). Let f , g in Kd−1[χ] with deg(f) + deg(g) < [K[χ] :K]. We have: νΦ(fg) =
νΦ(f) + νΦ(g) = ν(f) + ν(g) = ν(fg). Let r′ = rΦ′(f, g), q′ = qΦ′(f, g).

1) We assume that ν(Φ′) > ν(Φ). Hence ν(f) = ν(Φ). If νΦ(q′Φ′) < νΦ(r′) (= ν(r′)), then νΦ(fg) =
νΦ(q′Φ′ + r′) = νΦ(q′Φ′) = ν(q′Φ) = νΦ(q′Φ). Now, ν(q′Φ′) > ν(q′Φ) = ν(fg) and ν(r′) > νΦ(q′Φ′) =
νΦ(fg) = ν(fg). Hence ν(fg) ≥ min(ν(q′Φ′), ν(r′)) > ν(fg): a contradiction. Therefore, νΦ(q′Φ′) ≥
νΦ(r′). Now, ν(r′) = νΦ(r′) and νΦ(q′Φ′) = ν(q′Φ) < ν′(q′Φ′). Hence Φ′ is a strict key polynomial for ν.
Since νΦ(fg) = ν(fg) = ν(r′) = νΦ(r′), Φ′ is a key polynomial for νΦ. Furthermore, νΦ and νΦ′ are equal
on Kd−1[χ], and νΦ′(Φ) = νΦ′(Φ

′−h) = min(νΦ′(Φ
′), νΦ′(h)) = min(ν(Φ′), ν(h)) = ν(h) = ν(Φ) = νΦ(Φ).

By Remark 3.21, we have νΦ ≤ νΦ′ .
2) We assume that ν(Φ′) = ν(Φ) and Φ is a strict key polynomial for ν. Let q1 = qΦ(q′, h) and

r1 = rΦ(q′, h). Since Φ is a strict key polynomial for ν, we have ν(q1Φ) > ν(r1) = ν(q′h) ≥ ν(q′Φ).
Hence ν(q′) < ν(q1) and ν(q′+q1) = ν(q′). We have: fg = q′Φ′+r′ = q′Φ+q′h+r′ = (q′+q1)Φ+r′+r1,
hence q′ + q1 = qΦ(f, g), r′ + r1 = rΦ(f, g) and ν(fg) = ν(r′ + r1) < ν((q′ + q1)Φ) = ν(q′Φ) ≤ ν(r1).
It follows: ν(r′ + r1) = ν(r′), so ν(fg) = ν(r′) < ν(q′Φ) = ν(q′Φ′). This proves that Φ′ is a strict key
polynomial for ν. Now, νΦ(fg) = ν(fg) = ν(r′) = νΦ(r′) and νΦ(q′Φ′) = νΦ(q′Φ) = ν(q′Φ) > ν(r′).
Hence Φ′ is a strict key polynomial for νΦ. In the same way as in 1), we have: νΦ ≤ νΦ′ . Now, since Φ′

is a strict key polynomial, we have in a symmetric way: νΦ′ ≤ νΦ.
3) We assume that ν(Φ′) = ν(Φ) and Φ, Φ′ are key polynomials for ν. We have: Φ′ = Φ + h, with

ν(h) ≥ ν(Φ) and deg(h) < d. Hence νΦ(Φ′) = min(ν(Φ), ν(h)) = ν(Φ) = ν(Φ′) = νΦ′(Φ
′). So by Remark

3.21 we have: νΦ′ ≤ νΦ. In the same way, νΦ ≤ νΦ′ , hence νΦ′ = νΦ. �

Lemma 3.28. Let ν be a p-m valuation on K[χ] and Φ be a monic polynomial of degree d. Then, ν = νΦ

on Kd[χ] if, and only if, ν(Φ) = max ν(χd −Kd−1[χ]).
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Proof. By the definition of νΦ, ν and νΦ are equal on Kd−1[χ]. Hence, we can consider polynomials of
degree d. So, we let f be a polynomial of degree d. Without loss of generality we can assume that f
is a monic polynomial. Hence f − Φ has degree less than Φ. Assume that ν(f) = νΦ(f). Then ν(f) =
νΦ(Φ + f −Φ) = min(ν(Φ), ν(f −Φ) ≤ ν(Φ). This proves that ν(Φ) is the maximum of ν(χd−Kd−1[χ]).
Conversely, assume that ν(Φ) = max ν(χd − Kd−1[χ]). We have ν(f − Φ) ≥ min(ν(f), ν(Φ)) = ν(f).
Therefore, ν(f) ≥ νΦ(f) = νΦ(Φ + f − Φ) = min(ν(Φ), ν(f − Φ)) ≥ ν(f). Hence νΦ(f) = ν(f). �

Remark 3.29. The valuation of a strict key polynomial is not necessarily maximal. Indeed, we saw in
Remark 3.3 1) that every monic polynomial of degree 1 is a strict key polynomial. This holds whether 1
is a separate key degree or not.

Remark 3.30. Let d be a key degree. Then d is an immediate key degree if, and only if, the extension
(Kd[χ]|Kd−1[χ], ν) is immediate.

Proof. Assume that d is an immediate key degree. Let Φ ∈ Kd[χ]\Kd−1[χ]. Without loss of generality
we can assume that Φ is a monic polynomial. Then, since ν(χd−Kd−1[χ]) has no maximum element and
Φ ∈ χd −Kd−1[χ], there is y ∈ χd −Kd−1[χ] such that ν(Φ− y) > ν(Φ). Then ν(Φ) = ν(y) ∈ νKd−1[χ]
and Φν(Φ),ν = fν(Φ),ν . The converse follows from Lemma 3.4. �

The following two lemmas give useful criteria for being a key polynomial or a strict key polynomial.

Lemma 3.31. Let ν, ν′ be p-m valuations on K(χ), and Φ be a monic polynomial of degree d ≥ 1.
Assume that their restrictions to Kd−1[χ] are equal, that ν′ ≤ ν and ν′(Φ) < ν(Φ).
1) Let f ∈ K[χ] and f = qΦ + r be the euclidean division of f by Φ. Then ν′(f) < ν′(r)⇔ ν′(f) < ν(f)
and ν′(f) = ν′(r)⇔ ν′(f) = ν(f).
2) Φ is a key polynomial for ν′ and a strict key polynomial for ν.
3) ν′ = ν′Φ = νΦ,ν′(Φ).

Proof. 1) We have ν′(r) = ν(r) and ν′(qΦ) < ν(qΦ). Assume that ν′(r) ≤ ν′(qΦ). Then ν(f) =
min(ν(qΦ), ν(r)) = ν(r). Furthermore, ν(f) ≥ ν′(f) ≥ min(ν′(qΦ), ν(r)) ≥ ν(r) = ν(f). Hence ν′(f) =
ν(f) = ν(r). Assume that ν′(qΦ) < ν(r) < ν(qΦ). Hence ν′(f) = min(ν′(qΦ), ν′(r)) = ν′(qΦ) < ν′(r) =
min(ν(qΦ), ν(r)) = ν(f). Assume that ν(qΦ) ≤ ν(r). Then ν′(f) = min(ν′(qΦ), ν′(r)) = ν′(qΦ) <
ν(qΦ) = min(ν(qΦ), ν(r)) ≤ ν(f), and ν′(f) < ν′(r).

2) Let f , g in Kd−1[χ] with deg(f) +deg(g) < [K[χ] :K]. Since deg(f) < deg(Φ) and deg(g) < deg(Φ),
we have: ν′(f) = ν(f) and ν′(g) = ν(g), therefore: ν′(fg) = ν′(f) + ν′(g) = ν(f) + ν(g) = ν(fg). By
1) this implies ν′(fg) = ν′(r(f, g)) and Φ is a key polynomial for ν′. Since the restrictions of ν and ν′

to Kd−1[χ] are equal, it follows that Φ is also a key polynomial for ν. Now, for f , g in Kd−1[χ] we have
ν(r(f, g)) = ν′(r(f, g)) ≤ ν′(q(f, g)·Φ) < ν(q(f, g)·Φ). Hence Φ is a strict key polynomial for ν.

3) First we prove that for every f , g in Kd−1[χ] with deg(f) + deg(g) < [K[χ] : K] and h ∈ K[χ]
such that deg(h) < [K[χ] :K]− d we have: ν′(fg + hΦ) = min(ν′(fg), ν′(hΦ)). If ν′(fg) 6= ν′(hΦ), then
the result is trivial. Assume that ν′(fg) = ν′(hΦ), and let q = q(f, g), r = r(f, g). Since Φ is a key
polynomial for ν′, we have ν′(fg) = ν′(r). Hence ν′(fg+hΦ) ≥ ν′(r). Note that fg+hΦ = (q+h)Φ + r,
hence by 1) it follows: ν′(fg + hΦ) = ν(fg + hΦ). Now, ν(fg) = ν′(fg) = ν′(hΦ) < ν(hΦ), hence
ν(fg + hΦ) = ν(fg) = ν′(fg) = min(ν′(fg), ν′(hΦ)). By 2) ⇒ 3) of Proposition 3.11 and Remark 3.18,
we have ν′ = ν′Φ. Now, since ν′ and ν coincide on Kd[χ] we have ν′Φ = νΦ,ν′(Φ). �

Remark 3.32. It follows from Lemma 3.31 that if ν is a valuation on K(χ), then every p-m valuation
ν′ ≤ ν, ν′ 6= ν, which coincide on K with ν, can be written as ν′ = νΦ,ν′(Φ) where Φ is a monic polynomial
of minimal degree such that ν′(Φ) < ν(Φ).

Lemma 3.33. Let ν be a p-m valuation on K(χ), Φ be a key polynomial for ν and Φ′ be a monic
polynomial such that d = deg(Φ) < deg(Φ′) = d′.
1) If ν(Φ′) = νΦ(Φ′), then Φ′ is not strict key polynomial for ν.
2) Assume that νΦ = ν on Kd′−1[χ]. Then, Φ′ is a strict key polynomial for ν if, and only if, ν(Φ′) >
νΦ(Φ′).

Proof. 1) Write Φ′ as Φ′ = fmΦm + · · · + f1Φ + f0, with f0, . . . , fm in Kd−1[χ]. By the definition of
νΦ, we have ν(Φ′) = νΦ(Φ′) = min(f0, f1Φ, . . . , fmΦm). Let f = fmΦm−1 + · · · + f1 and g = Φ. Then
qΦ′(f, g) = 1, rΦ′(f, g) = −f0, and ν(qΦ′(f, g)Φ′) = ν(Φ′) = min(ν(rΦ′(f, g)), ν(fg)) ≤ ν(fg). This
proves that Φ′ is not a strict key polynomial.

2) ⇐ follows from Lemma 3.31, ⇒ follows from 1). �

Proposition 3.34. Let d be a positive integer, ν be a p-m valuation on K[χ].
1) If ν = νΦ for some monic polynomial Φ, then there is no strict key degree greater than d.
2) If d is a separate key degree such that there is no strict key degree greater than d, and Φ is a key
polynomial of degree d, with ν(Φ) = max(ν(χd −Kd−1[χ])), then ν = νΦ.
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Proof. 1) Follows from Lemma 3.33.
2) By Lemma 3.28, ν and νΦ coincide on Kd[χ]. Now, by Lemma 3.33, ν = νΦ on K[χ]. �

Remark 3.35. Let ν be a multiplicative valuation on K(χ). If the irrational rank of νK(χ) over νK
is 1, or the transcendence degree of K(χ)ν over Kν is 1 (in other words, if Abhyankar’s inequality is an
equality), then there is a finite number of strict key degrees, and ν = νΦ for some key polynomial Φ.

Proof. Note that in this case χ is transcendental. Abhyankar’s inequality states that the transcendence
degree of K(χ)|K is at least equal to the product of the transcendence degree of (K(χ))ν |Kν by the
irrational rank of ν(K[χ])|νK. Assume that the irrational rank of νK(χ) over νK is 1. Let d be the
smallest integer such that there exists a monic polynomial Φ of degree d such that ν(Φ) is not rational over
νK. If d = 1, then we know that Φ is a strict key polynomial. Otherwise, clearly, ν(Φ) 6= ν(χd) = dν(χ).
If ν(Φ) < ν(χd), then ν(χd−Φ) = ν(Φ), with deg(χd−Φ) < d: a contradiction (since d is minimal). Hence
ν(Φ) > ν(χd). Then ν(Φ) = max ν(χd−Kd−1[χ]). Let f , g in Kd−1[χ] with deg(f) + deg(g) < [K[χ] :K]
and q = q(f, g), r = r(f, g). Since d is minimal, we have: ν(r) 6= ν(qΦ) and ν(qΦ) 6= ν(f)+ν(g) = ν(fg).
It follows that ν(fg) = ν(r) < ν(qΦ) (the other cases lead to a contradiction). So Φ is a strict key
polynomial for ν. Now, the elements ν(Φk) = kν(Φ) are pairwise non-congruent modulo νKd−1[χ]. In
the same way as in Proposition 2.10, this implies that the family (Φk) is separate over Kd−1[χ]. Therefore,
ν = νΦ. Now, by 1) of Proposition 3.34, if d′ > d, then d is not a strict key degree.

Now, assume that the transcendence degree of K(χ)ν over Kν is 1. Let Φ be a polynomial such that
ν(Φ) = 0. If inν(Φ) is algebraic over Gν(K), then by Lemma 2.20 inν(Φ) is algebraic over Kν (the
converse is trivial). Consequently, inν(Φ) is transcendental over Kν if, and only if, it transcendental
over Gν(K). In particular, if the transcendence degree of K(χ) over K is 1, then there is Φ in K[χ]
such that inν(Φ) is transcendental over Gν(K). Let d be the smallest integer such that there exists a
polynomial Φ of degree d such that inν(Φ) is transcendental over Gν(K). Without loss of generality
we can assume that Φ is a monic polynomial. Let f , g in Kd−1[χ], q = qΦ(f, g), r = rΦ(f, g). We
have: inν(fg) = inν(qΦ) ⇔ 0 = inν(fg) − inν(qΦ) ⇔ ν(fg − qΦ) > min(ν(fg), ν(qΦ)) ⇔ ν(r) >
min(ν(fg), ν(qΦ)). Now, inν(fg) = inν(f)inν(g) is algebraic over Gν(K). Hence inν(fg) 6= inν(qΦ),
which is transcendental over Gν(K). It follows that ν(r) ≤ min(ν(fg), ν(qΦ)). This proves that Φ is a
key polynomial. Let f0, . . . , fn in Kd−1[χ]. By hypothesis, inν(f0), . . . , inν(fn) are algebraic over Gν(K).
Hence inν(fn)inν(Φ)n + · · ·+ inν(f0) 6= 0. It follows that ν(f0 + · · ·+ fnΦn) = min(ν(f0), · · · , ν(fnΦn)).
This proves that the sequence (Φn) is separate over Kd−1[χ]. Therefore, ν = νΦ. By 1) of Proposition
3.34, if d′ > d, then d is not a strict key degree. �

The following two theorems characterize the successor of a strict key degree.

Theorem 3.36. Let ν be a p-m valuation on K(χ), d be an immediate key degree, and let (Φi) be a
sequence of strict key polynomials of degree d such that the sequence (ν(Φi)) is increasing and cofinal in
ν(χd −Kd−1[χ]). Then.
1) The sequence (νΦi

) converges to ν on Kd[χ] in the sense that for every f ∈ Kd[χ] the sequence (νΦi
(f))

is eventually equal to ν(f).
2) Let d′ be the smallest degree (if any) such that there exists a monic polynomial Φ′ of degree d′ satisfying
νΦi

(Φ′) < ν(Φ′) for every i. Then, Φ′ is a strict key polynomial and d′ is the next strict key degree.
3) The extension (Kd′−1[χ]|Kd−1[χ], ν) is immediate.

Proof. 1) The family (νΦi
) is increasing, and for every f ∈ K[χ] we have νΦi

(f) ≤ ν(f). Assume that f
is a polynomial of degree d. Without loss of generality we can assume that f is monic. Since the sequence
(ν(Φi)) is cofinal in ν(χd −Kd−1[χ]), there is an i such that ν(Φi) > ν(f). Now, for every i such that
ν(Φi) > ν(f) we have ν(f − Φi) = ν(f), and νΦi

(f) = min(ν(Φi), ν(f − Φi)) = ν(f).
2) Let f , g in Kd′−1[χ] with deg(f) + deg(g) < [K[χ] : K] and q = qΦ′(f, g), r = rΦ′(f, g). By

hypothesis there exists i such that νΦi
(f) = ν(f), νΦi

(g) = ν(g), νΦi
(q) = ν(q) and νΦi

(r) = ν(r). Then
ν(qΦ′ + r) = ν(fg) = ν(f) + ν(g) = νΦi

(f) + νΦi
(g) = νΦi

(fg) = νΦi
(qΦ′ + r), with ν(qΦ′) > νΦi

(qΦ′).
Assume that ν(qΦ′) ≤ ν(r). Hence νΦi

(qΦ′) < ν(r) = νΦi
(r), and ν(fg) = νΦi

(fg) = νΦi
(qΦ′) <

ν(qΦ′) = min(ν(qΦ′), ν(r)) ≤ ν(fg): a contradiction. Hence ν(qΦ′) > ν(r), which proves that Φ′ is a
strict key polynomial for ν. Let f be a monic polynomial of degree d′′ < d′. Then, there exists i such
that ν(f) = νΦi

(f). By Lemma 3.33 1), f is not a strict key polynomial.
3) Let f be a monic polynomial of degree n, d < n ≤ d′−1. We show that ν(f) is not the maximum of

ν(χn−Kn−1[χ]). It will follow by Proposition 1.7 that the extension (Kd′−1[χ]|Kd−1[χ], ν) is immediate.
Let Φi be a key polynomial of degree d such that ν(f) = νΦi

(f), and let f be written as f = fkΦki +
· · ·+ f1Φi + f0, where f0, f1, . . . , fk belong to Kd−1[χ], fk is monic, and deg(fk) + kd = n. Then ν(f) =
min(ν(fkΦki ), . . . , ν(f1Φi), ν(f0)). Assume that ν(f0) > ν(f). Then ν(f) = min(ν(fkΦki ), . . . , ν(f1Φi)).
Let Φj be a key polynomial of degree d such that ν(Φj) > ν(Φi), and set g = fkΦkj + · · · + f1Φj . Then

g is a monic polynomial of degree n, and ν(g) ≥ νΦj
(g) = min(ν(fkΦkj ), . . . , ν(f1Φj)) > ν(f). Now,

assume that ν(f0) = ν(f). Then ν(f − f0) ≥ ν(f0). If ν(f − f0) > ν(f0), then we can let g = f − f0. If
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ν(f − f0) = ν(f0) = ν(f), then we let Φj be a key polynomial of degree d such that ν(Φj) > ν(Φi), and
g = fkΦkj + · · ·+f1Φj . Then ν(g) ≥ νΦj

(g) = min(ν(fkΦkj ), . . . , ν(f1Φj)) > min(ν(fkΦki ), . . . , ν(f1Φi)) =
ν(f). �

Theorem 3.37. Let ν be a p-m valuation on K(χ), d be a strict separate key degree, Φ be a monic
polynomial of degree d such that ν(Φ) is the maximum of ν(χd −Kd−1[χ]). Let d′ be the next strict key
degree if it exists or d′ = [K[χ] :K] otherwise.
1) Φ is a strict key polynomial, and if d′ < [K[χ] :K], then d′ is the smallest degree such that there exists
a monic polynomial Φ′ of degree d′ with νΦ(Φ′) < ν(Φ′).
2) The restrictions of ν and νΦ to Kd′−1[χ] are equal.
3) The fraction d′/d is equal to [(Kd′−1[χ])ν : (Kd−1[χ])ν ] ·(ν(Kd′−1[χ]) : ν(Kd−1[χ])) (in particular d ≤
[K[χ] :K]/2).
4) If (Kd−1[χ]|K, ν) is separate, then (Kd′−1[χ]|K, ν) is separate.

Proof. 1) Since ν(Φ) is the maximum of ν(χd − Kd−1[χ]), by (2) of Proposition 3.26, Φ is a strict key
polynomial. By Lemma 3.33, if d′ < [K[χ] :K], then d′ is the smallest degree such that there exists a
monic polynomial Φ′ of degree d′ with νΦ(Φ′) < ν(Φ′).

2) Since νΦ ≤ ν, by 1) the restrictions of ν and νΦ to Kd′−1[χ] are equal.
3) By Lemma 3.4 inν(Φ) /∈ Gν(K(χ)). If inν(Φ) is transcendental over the graded algebra generated

by Gν(Kd−1[χ]), then χ is transcendental over K. It follows that [K(χ) :K] is infinite, and in the same
way as in the proof of Remark 3.35 the family (Φn) is separate over Kd−1[χ] and ν = νΦ. So, d′ = ∞.
The dimension of the Gν(K)-module Gν(K(χ)) is also infinite, so [(Kd′−1[χ])ν : (Kd−1[χ])ν ]·(ν(Kd′−1[χ]) :
ν(Kd−1[χ])) is infinite. Assume that inν(Φ) is algebraic over Gν(Kd−1[χ]), and that Gν(Kd−1[χ]) is a
graded algebra (by Remark 3.8 this holds if d ≤ [K[χ] :K]/2). Let Xn + inν(fn−1)Xn−1 + · · ·+ inν(f0)
be its irreducible polynomial, whith f0, . . . , fn−1 in Kd−1[χ] and ν(f0) = · · · = ν(fn−1Φn−1) = ν(Φn), as
in Lemma 2.20. Note that dn < [K[χ] :K], since, in K[χ], Φn is a polynomial of degree less than [K[χ] :
K]. By minimality of n, this implies that inν(1), inν(Φ), . . . , inν(Φn−1) are linearely independent over
Gν(Kd−1[χ]). We saw in Subsection 2.3 that this is equivalent to saying that the sequence 1,Φ, . . . ,Φn−1

is separate over Kd−1[χ]. Since νΦ(Φn + fn−1Φn−1 + · · ·+ f0) = min(ν(Φn), ν(fn−1Φn−1), · · · , ν(f0)) <
ν(Φn + fn−1Φn−1 + · · · + f0), we have d′ = dn. This also shows that the group Gν(Kd′−1[χ]) is equal
to Gν(Kd−1[χ])(inν(Φ)), so it is a subalgebra of Gν(K(χ)). In particular, (Kd−1[χ])ν is a subfield of
(K[χ])ν and νKd−1[χ] is a subgroup of ν(χ). Now, this also proves that (inν(1), inν(Φ), . . . , inν(Φ)n−1)
is a basis of the Gν(Kd−1[χ])-module Gν(Kd′−1[χ]). Hence its dimension is n. Since this dimension is
also equal to [(Kd′−1[χ])ν : (Kd−1[χ])ν ]·(ν(Kd′−1[χ]) :ν(Kd−1[χ])), the result follows.

If [K[χ] :K] is infinite, then by Remark 3.8 for, every strict key degree d, Gν(Kd−1[χ]) is a graded
algebra. We assume that [K[χ] :K] is finite and we show by induction that, for every strict key degree
d, Gν(Kd−1[χ]) is a graded algebra. If d = 1, then Gν(Kd−1[χ]) = Gν(K) and the result is trivial.
Now, assume that d ≥ 1, that Gν(Kd−1[χ]) is a graded algebra and that d is not the greatest key
degree. Let d′ be the next strict key degree. If d is immediate, then, by Theorem 3.36 3), The extension
(Kd′−1[χ]|Kd−1[χ], ν) is immediate. Hence Gν(Kd′−1[χ]) = Gν(Kd−1[χ]) is an algebra. We assume that
d is a separate key degree, and we let Φ be a monic polynomial of degree d such that ν(Φ) is the maximum
of ν(χd−Kd−1[χ]). We already proved above that Gν(Kd′−1[χ]) = Gν(Kd−1[χ])(inν(Φ)) is a subalgebra
of Gν(K(χ)).

4) By Proposition 2.19, it is sufficient to show that for every integer n ≤ d′− 1, ν(χn−Kn−1[χ]) has a
maximum. Let f = fkΦk + · · ·+ f1Φ + f0 ∈ χn −Kn−1[χ], where f0, f1, . . . , fk belong to Kd−1[χ], fk is
monic, and deg(fk) + kd = n. Then ν(f) = min(ν(fkΦk), . . . , ν(f1Φ), ν(f0)) ≤ ν(fkΦk). Let j = n− dk
be the degree of fk and g ∈ χj −Kj−1[χ] be such that ν(g) is the maximum of ν(χj −Kj−1[χ]). Then
ν(f) ≤ ν(gΦk), which proves that ν(gΦk) is the maximum of ν(χn −Kn−1[χ]). �

Remark 3.38. In the proof of 3) of Theorem 3.37 we showed that, for every strict key degree d,
Gν(Kd−1[χ]) is a graded algebra. So, Remark 3.8 2) remains true without the restriction d ≤ [K[χ] :K]/2.
Furthermore, if d is a separate strict key degree, then d ≤ [K[χ] :K]/2. It follows that the field KΦ of
Notation 3.5 is defined (where Φ is a monic polynomial of degree d such that ν(Φ) is the maximum of
ν(χd −Kd−1[χ])). Note that the graded algebra Gν(Kd′−1[χ]) is greater than Gν(Kd−1[χ]) if, and only
if, d is a strict separate key degree.

We deduce a characterization of valuational key degrees.

Proposition 3.39. Let ν be a p-m valuation on K[χ] and d be a positive integer such that 1 ≤ d ≤ [K(χ) :
K]/2. Then, d is a valuational key degree if, and only if, νKd−1[χ] is a group and νKd[χ] 6= νKd−1[χ].
If this holds, then d is a strict key degree, and every monic polynomial Φ of degree d such that ν(Φ) is
the maximum of ν(χd − Kd−1[χ]) (which is equivalent to saying that ν(Φ) /∈ νKd−1[χ]) is a strict key
polynomial.
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Proof. ⇒ follows from the definition and Corollary 3.7. Assume that νKd−1[χ] is a group and νKd[χ] 6=
νKd−1[χ]. By hypothesis, there is a polynomial Φ of degree d such that ν(Φ) /∈ νKd−1[χ]. Since
νKd−1[χ] is a group, by dividing Φ by an element of K we can assume that Φ is a monic polynomial.
Let f ∈ Kd−1[χ]. Then ν(f) 6= ν(Φ). Hence ν(Φ− f) = min(ν(Φ), ν(f)) ≤ ν(Φ). Consequently, ν(Φ) is
the maximum of ν(χd −Kd−1[χ]).

Let f , g in Kd−1[χ], q = qΦ(f, g) and r = rΦ(f, g). Since ν(qΦ) /∈ νKd−1[χ], we have that ν(qΦ) 6= ν(r).
Hence ν(fg) = min(ν(qΦ), ν(r)). Now, since νKd−1[χ] is a group, ν(fg) = ν(f) + ν(g) ∈ νKd−1[χ].
Hence ν(fg) 6= ν(qΦ). So, ν(qΦ) > ν(r). This proves that d is a strict key polynomial. Since ν(φ) is the
maximum of ν(χd −Kd−1[χ]), d is a separate key degree. �

Corollary 3.40. Let ν be a p-m valuation on K[χ] and d be a positive integer. Assume that νKd−1[χ] is
a group and let d′ be the smallest integer such that νKd′ [χ] 6= νKd−1[χ] (if any). Then d′ is a valuational
key degree. In particular, the smallest degree d such that νKd[χ] 6= νK (if any) is a valuational strict key
degree.

Now we show that if d is a strict key degree such that χd is limit over Kd−1[χ], then d is the greatest
strict key degree.

Proposition 3.41. Let d ≥ 2, ν′ ≤ ν be p-m valuations on K[χ]. Assume that χd is limit over
(Kd−1[χ], ν), that the restrictions of ν and ν′ to Kd−1[χ] are equal, and that there exists a monic poly-
nomial Φ of degree d such that ν′(Φ) < ν(Φ). Let (Φi) be a sequence of monic polynomials of degree d
such that the sequence (ν(Φi)) is increasing and cofinal in νK[χ], and ν(Φ) < ν(Φi). Then.
1) d is an immediate key degree for ν, Φ is a key polynomial for ν and ν′, and ν′ = ν′Φ.
2) The Φi’s are strict key polynomials for ν, and for every f ∈ K[χ] the sequence (νΦi(f)) is eventually
equal to ν(f).
3) The extension (K[χ]|Kd−1[χ], ν) is dense.
4) There is no strict key degree greater than d.

Proof. 1) By Lemma 3.31, Φ is a key polynomial for ν′, ν′ = ν′Φ, and Φ is a strict key polynomial for ν.
Hence d is a strict key degree for ν. Since ν(χd −Kd−1[χ]) = νK[χ], d is an immediate key degree.

2) Since deg(Φi − Φ) < d, we have ν(Φi − Φ) = ν′(Φi − Φ), and ν′(Φi) = ν′Φ(Φi) = ν′Φ(Φ + Φi − Φ) =
min(ν′(Φ), ν′(Φi −Φ)) = min(ν′(Φ), ν(Φi −Φ)) = min(ν′(Φ), ν(Φ)) = ν′(Φ) < ν(Φ) < ν(Φi). By Lemma
3.31, Φi is a strict key polynomial for ν. We have also: ν′ = ν′Φi

. Let f ∈ K[χ], k be the quotient of the
euclidean division of deg(f) by d, λ = ν′(f) − kν′(Φ), and i be such that ν(Φi) > max(ν(f) − λ, ν(f)).
Decompose f as f = fi,kΦki +· · ·+fi,1Φi+fi,0, where the fi,j ’s belong to Kd−1[χ]. Then ν′(f) = ν′Φi

(f) =

min(ν′(fi,jΦ
j
i )). Therefore, for every j we have: ν(fi,j) = ν′(fi,j) ≥ ν′(f)− jν′(Φi) ≥ ν′(f)− kν′(Φi) =

ν′(f)− kν′(Φ) = λ. Then for every j we have ν(fi,jΦ
j
i ) = ν(fi,j) + jν(Φi) > λ+ jmax(ν(f)− λ, ν(f)).

If j ≥ 1, then ν(fi,jΦ
j) > ν(f). It follows that ν(f) = ν(fi,0) = νΦi

(f). Since the sequence (νΦi
) is

increasing, this proves that the sequence (νΦi
(f)) is eventually equal to ν(f).

3) If ν(Φi) > max(ν(f)− λ, ν(f)), then

ν(f − fi,0) = ν

 k∑
j=1

fi,jΦ
j
i

 ≥ min
1≤j≤k

(ν(fi,j) + jν(Φi)) ≥ λ+ ν(Φi)

is cofinal in νK[χ], since the sequence (ν(Φi)) is. It follows that (K[χ]|Kd−1[χ], ν) is dense.
4) Let f be a monic polynomial of degree d′ > d. Then, there exists i such that ν(f) = νΦi(f). By

Lemma 3.33 1), f is not a strict key polynomial for ν. Hence d′ is not a strict key degree. �

Remark 3.42. Example 1.27 shows that in Proposition 3.41 we cannot take χd pseudo-limit over
(Kd−1[χ], ν) instead of χd limit over (Kd−1[χ], ν). Furthermore, in Example 1.27, 1 is an immediate
key degree, and the following key degree is d, which is a separate key degree. So, the immediate key
degrees are not necessarily greater than the separate ones.

3.6. Key polynomials and graded algebras of valuations. Let Φ be a strict key polynomial, and
d be its degree. We saw in Remark 3.8 (2) that Gν(Kd − 1)[χ]) is a subalgebra of Gν(K[χ]); trivially,
ν(Φ) is not the maximum of ν(χd −Kd−1[χ]) if, and only if, there is f ∈ Kd−1[χ] such that ν(Φ− f) >
ν(Φ). Now, ν(Φ − f) > ν(Φ) is equivalent to ν(Φ) = ν(f) = νΦ(Φ − f) < ν(Φ − f). Therefore, the
irreducible polynomial of inν(Φ) over Gν(Kd−1[χ]) has degree 1 if, and only if, ν(Φ) is not the maximum
of ν(χd −Kd−1[χ]).

Assume that ν(Φ) is the maximum of ν(χd − Kd−1[χ]) (so d is a separate strict key degree). By

Theorem 3.37, d divides the next strict key degree d′, and in the proof of this theorem we saw that d′

d is
the degree of the irreducible polynomial of inν(Φ) over Gν(Kd−1[χ]).

Assume that ν(Φ) < max ν(χd−Kd−1[χ]), and let X − inν(f) be its irreducible polynomial of inν(Φ)
over Gν(Kd−1[χ]), with f ∈ Kd−1[χ]. So, ν(Φ) < ν(Φ − f). We let Φ2 = Φ − f . If d is an immediate
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key degree, then in this way we can construct a sequence (Φi) of key polynomials such that the sequence
(ν(Φi)) is increasing.

In any case, for f = fnΦn + fn−1Φn−1 + · · ·+ f1Φ + f0, where f0, . . . , fn−1 belong to Kd−1[χ], set

SΦ(f) = {i ∈ {0, . . . , n} | ν(fi) + iν(Φ) = νΦ(f) = min(ν(fn) + nν(Φ), · · · , ν(f1) + ν(Φ), ν(f0))},

and inν,Φ(f)(X) =
∑

i∈SΦ(f)

inν(fi)X
i. Then, νΦ(f) < ν(f) ⇔ inν,Φ(f)(inν(Φ)) = 0. This in turn is

equivalent to saying that the irreducible polynomial of inν(Φ) over Gν(Kd−1[χ]) divides inν,Φ(f)(X).

With above notations, let g =
∑

i∈SΦ(f)

fiΦ
i. Then, νΦ(g) < ν(g), and we can say that g is ho-

mogeneous with respect to Φ. We have inν,Φ(g)(X) = inν,Φ(f)(X). Assume that ]νΦdk
(g), ν(g)[ is

nonempty and let γ ∈]νΦdk
(g), ν(g)[, hiΦ

i
dk

be a monomial of valuation γ, and h = g + hiΦ
i. Then,

inν,Φ(h)(inν(Φ)) = inν,Φ(f)(inν(Φ)), νΦ(h) = ν(f), and ν(h) = γ. If we let Φ′ be a lifting of the irre-
ducible polynomial of inν(Φ) over Gν(Kd−1[χ]), then Φ′ is a strict key polynomial of degree d′. Now, as
we showed above, a priori we can’t assume that ν(Φ′) is maximal, as required in Theorem 3.37.

If (K(χ)|K, ν) is an immediate extension, then Gν(K(χ)) = Gν(K). So we see that if Φ is an imme-
diate key polynomial, then its image inν(Φ) in Gν(K(χ)) is already in Gν(K). More generally, if Φ is an
immediate key polynomial of degree d, then inν(Φ) belongs to Gν(Kd−1[χ]).

Let dk1
< · · · < dki < · · · be the separate strict key degrees, and for every ki, Φdki

is a key

polynomial of degree dki such that ν(Φdki
) is the maximum of ν(χdki − Kdki

−1[χ]). We saw in the

proof of Proposition 3.37 3) that the family (inν(Φdki
)ej ), where 0 ≤ ej ≤

dki+1

dki
, is a basis of the

Gν(Kdki
−1[χ])-module Gν(Kd(ki+1)−1[χ]). Now, if dk is an immediate key degree, we also noticed

in the proof of Proposition 3.37 3) that Gν(Kdk−1[χ]) = Gν(Kd(k+1)−1[χ]). Assume that ki + 1 6=
k(i+1), i.e. ki + 1 is an immediate key degree. Then, we get by induction: Gν(Kd(ki+1)−1[χ]) =

Gν(Kd(ki+2)−1[χ]) = · · · = Gν(Kdk(i+1)
−1[χ]). Hence the family (inν(Φdki

)ej ), where 0 ≤ ej ≤
dki+1

dki
,

is a basis of the Gν(Kdki
−1[χ])-module Gν(Kdk(i+1)

−1[χ]). Therefore, the family (inν(Φe1dk1
· · ·Φeidki

)),

where 0 ≤ e1 ≤
dk1+1

dk1

, . . . , 0 ≤ ei ≤
dki+1

dki
, is a basis of the Gν(K)-module Gν(Kdki

−1(χ)). It follows

that the family of all inν(Φe1dk1
· · ·Φeidki

)’s is a basis of the Gν(K)-module Gν(K(χ)).

4. Approximations of valuations of K(χ)|K.

In the same way as S. MacLane and M. Vaquié, we define families of polynomials and associated
separate valuations in order to calculate the valuation of any element of K[χ]. We start with the case
of separate extensions. Next we will study immediate and dense extensions. Note that they require
properties of pseudo-Cauchy sequences of Subsection 1.3. Finally, we will turn to the general case.

4.1. Separate extensions.

Theorem 4.1. Let ν be a multiplicative valuation on K(χ), d ≥ 1 such that d < [K[χ] :K], and d1 <
· · · < dk be the sequence of strict key degrees which are at most equal to d. Then (Kd[χ]|K, ν) is separate
over K if, and only if, d1, . . . , dk are separate key degrees. Assume that this holds, and let Φd1

, . . . ,Φdk be
key polynomials associated to the key degrees d1, . . . , dk, with ν(Φi) = max(ν(χdi−Kdi−1[χ])) (1 ≤ i ≤ k).
Then the restrictions of ν and νΦd1

,...,Φdk
to Kd[χ] are equal.

Proof. By Proposition 2.19, if (Kd[χ],K, ν) is separate, then d1, . . . , dk are separate key degrees. Now,
assume that d1, . . . , dk are separate key degrees. By Theorem 3.37 2), the restrictions of ν and νΦ1

to
Kd2−1[χ] are equal. This is equivalent to saying that (1,Φ, . . . ,Φd2−1) is a separate K-basis of Kd2−1[χ].
It follows by induction and by Theorem 3.37 4) that (Kd[χ]|K, ν) is separate. By Theorem 3.37 2),
for every j, 1 ≤ j ≤ k, the restrictions of ν and νΦj

to Kdj+1−1[χ] are equal. Hence by induction
ν = νΦ1,...,Φk

. �

Remark 4.2. Let (K(χ)|K, ν) be a separate algebraic extension of valued fields. Then the valuation ν
is determined by its restriction to K and by the couples (Φ1, ν(Φ1)), . . . , (Φk, ν(Φk), . . . ).

Theorem 4.1 holds for example if (K, ν) is maximal (see Proposition 2.14). It also holds if χ is algebraic
over K and (K, ν) is henselian with residue characteristic 0 (see Theorem 2.15).
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4.2. Immediate and dense extensions. If χ is pseudo-limit over (K, ν), then defining a pseudo-Cauchy
sequence (xi) with pseudo-limit χ is equivalent to defining a sequence of key polynomials Φi = χ − xi
such that the sequence (ν(Φi)) is increasing and cofinal in ν(χ−K[χ]). So, the key polynomials can be
seen as generalizations of the pseudo-Cauchy sequences, as noted M. Vaquié in [V 07]. In this subsection
we deepen the links between these two notions.

Theorem 4.3. Let (K(χ)|K, ν) be an extension of valued fields and (xi) be a pseudo-Cauchy sequence
without pseudo-limit in K and which pseudo-converges to χ. For every i we set Φi = χ− xi.
1) If (xi) is of transcendental type, then (K(χ)|K, ν) is immediate, χ is transcendental over K and 1 is
the unique key degree. For every i and f ∈ K[χ], we have: ν(f) = νΦi(f)⇔ νΦi(f) = νΦi+1(f).
2) Assume that (K(χ)|K, ν) is immediate, that (xi) is of algebraic type, and let d be the degree of its
irreducible polynomial.
a) If d = [K[χ] :K], then 1 is the unique key degree.
b) Otherwise, d is the second key degree.
c) In any case, for every i ≥ 1 and f ∈ Kd−1[χ], we have: ν(f) = νΦi(f)⇔ νΦi(f) = νΦi+1(f).

Proof. If (xi) is of transcendental type, then, by Remark 1.20, χ is transcendental, and we deduce
from Lemma 1.22 that (K(χ)|K, ν) is immediate. We now assume that the extension (K(χ)|K, ν) is
immediate. Let f(X) ∈ K[X] (the ring of formal polynomials). In the same way as in Proposition 1.12,
we let f(X) = (X − xi)nf(n)(xi) + · · ·+ (X − xi)f(1)(xi) + f(xi) be the Taylor expansion of f(X). Then
f(χ) = (χ − xi)nf(n)(xi) + · · · + (χ − xi)f(1)(xi) + f(xi). Hence νΦi

(f(χ)) = min((n − 1)ν(χ − xi) +
ν(f(n−1)(xi)), . . . , ν(χ − xi) + ν(f(1)(xi)), ν(f(xi))). Since the sequences (ν(f(j)(xi))) are increasing or
eventually constant, the sequences (ν((χ−xi)nf(n)(xi))), . . . , (ν((χ−xi)f(1)(xi))) are increasing. Hence,
if (ν(f(xi)) is eventually equal to ν(f(χ)), then νΦi(f(χ)) is eventually equal to ν(f(xi)) = ν(f(χ)).
Furthermore, if the minimum of (n − 1)ν(χ − xi) + ν(f(n−1)(xi)), . . . , ν(χ − xi) + ν(f(1)(xi)), ν(f(xi))
is not ν(f(xi)), then νΦi+1(f) > νΦi(f). If the minimum is ν(f(xi)), then at the next step it will be
ν(f(xi+1)). It follows: νΦi(f) = ν(f)⇔ νΦi(f) = νΦi+1(f). This proves 1), 2) a) and 2) c).

2) b) In the same way as above, if n < d, then νΦi
(f(χ)) is eventually equal to ν(f(χ)). So, the second

key degree is at least equal to d. Now, let g(X) be the irreducible polynomial of the sequence (xi). Since
the sequence (ν(g(xi))) is increasing, the sequence (νΦi

(g(χ))) is increasing. It follows that, for every i,
νΦi(g(χ)) < ν(g(χ)). By Theorem 3.36 2), d is the second key degree. �

Corollary 4.4. Assume that (K, ν) is algebraically maximal and that χ is pseudo-limit over (K, ν). Then
1 is the unique key degree.

Proof. Let (xi) be a pseudo-Cauchy sequence without pseudo-limit in K and which pseudo-converges to
χ. By Proposition 1.24 (xi) is of transcendental type. We conclude by Theorem 4.3 1). �

Now, we turn to dense extensions. Recall that by Proposition 1.11 saying that (K(χ)|K, ν) is a dense
extension is equivalent to saying that χ is limit over (K, ν).

Lemma 4.5. Let (K(χ)|K, ν) be a dense extension of valued fields and (xi) be a pseudo-Cauchy sequence
without pseudo-limit in K and which pseudo-converges to χ. Then (xi) is of algebraic type over (K, ν)
if, and only if, χ is algebraic over K. If this holds, then the irreducible polynomial of the sequence (xi)
over (K, ν) is equal to the irreducible polynomial of χ over K.

Proof. Assume that χ is algebraic over K and let f be its irreducible polynomial. We let f(x) =
(xi−χ)nf(n)(χ) + · · ·+ (xi−χ)f(1)(χ) be the Taylor expansion of f(xi). Since f(X) is not constant, one
of the f(j)(χ), 1 ≤ j ≤ n, is different from 0. Then

ν(f(xi)) ≥ min
1≤j≤n

ν((xi − χ)jf(j)(χ)) = min
1≤j≤n

jν(xi − χ) + ν(f(j)(χ))

which is cofinal in νK. Hence (xi) is of algebraic type over (K, ν).
Assume that (xi) is of algebraic type over (K, ν), let g be the irreducible polynomial of the sequence

(xi) over (K, ν) and g(χ) = (χ− xi)dg(d)(xi) + · · ·+ (χ− xi)g(1)(xi) + g(xi) be the Taylor expansion of
g(χ). By hypothesis, the sequences (g(d)(xi)), . . . , (g(1)(xi)) are eventually constant and (ν(χ − xi)) is
cofinal in νK. Hence (ν(g(χ) − g(xi))) is cofinal in νK. Since (ν(g(xi))) is increasing, it follows that
g(χ) = 0. Indeed, otherwise (ν(g(χ)− g(xi))) is eventually equal to ν(g(χ)): a contradiction. Hence, χ is
algebraic over K, and its irreducible polynomial divides g. Now, g is irreducible, hence g is the irreducible
polynomial of χ. �

Theorem 4.6. Let (K(χ)|K, ν) be a dense extension of valued fields. Then 1 is the unique key degree.

Proof. Let (xi) be a pseudo-Cauchy sequence without pseudo-limit in K and which pseudo-converges to
χ. If χ is transcendental over K, then by Lemma 4.5 (xi) is of transcendental type. Now, by Theorem
4.3 1), 1 is the unique key degree. Assume that χ is algebraic over K. By Lemma 4.5, (xi) is of algebraic
type and the degree of the irreducible polynomial of the sequence (xi) is [K(χ) :K]. Hence by Theorem
4.3 2) a), 1 is the unique key degree. �
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Proposition 4.7. Assume that χ is separable algebraic over K and let ν be an archimedean valuation
on the Galois extension L generated by K(χ) such that (L|K, ν) is immediate and defectless. We let
(xi) be a pseudo-Cauchy sequence of K, without a pseudo-limit in (K, ν) and with pseudo-limit χ. For
every i we set Φi = χ − xi. Then ν is the limit of the sequence of separate p-m valuations νΦi

. For
f ∈ K[χ], the sequence νΦi(f) is eventually equal to ν(f). Furthermore, νΦi(f) = ν(f) if, and only if,
νΦi(f) = νΦi+1(f).

Proof. Since (K(χ)|K, ν) is archimedean, immediate and defectless, it is dense (see Theorem 1.10). Now
the result follows from Theorems 4.6 and 4.3. �

Theorem 4.8. Assume that ν is an archimedean valuation on K(χ) and that every algebraic extension
of (K, ν) is Galois and defectless. We assume that χ is pseudo-limit over (K, ν) and we let (xi) be a
pseudo-Cauchy sequence of (K, ν) without limit in (K, ν) and which pseudo-converges to χ. For every i
we set Φi = χ− xi. Let f ∈ K[χ]. Then the sequence (ν(f(xi))) is eventually equal to ν(f(χ)), and for
every i we have: ν(f) = νΦi

(f)⇔ νΦi
(f) = νΦi+1

(f).

Proof. If (xi) is of transcendental type, then this follows from Theorem 4.3 1). Assume that (xi) is of
algebraic type and let g(X) be its irreducible polynomial over (K, ν). Let y be a root of g in any algebraic
extension of K. By Proposition 1.21, ν extends to K(y) in such a way that (K(y)|K, ν) is immediate.
By hypothesis, (K(y)|K, ν) is Galois and defectless. Hence by Theorem 1.10 (K(y)|K, ν) is dense, so the
sequence (ν(y − xi)) is cofinal in νK. Now, for every i we have ν(y − xi) = ν(xi+1 − xi) = ν(χ − xi).
It follows that χ is limit over (K, ν). Now, by Proposition 1.11, the extension (K(χ)|K, ν) is dense. So,
the result follows from Proposition 4.7. Note that by Lemma 4.5, χ is algebraic over K, and g, is its
irreducible polynomial. �

The condition that every algebraic extension of (K, ν) is Galois and defectless holds if the residue
characteristic is 0. Now, it can hold for other fields, for example the fields which are called tame. For
more details see the online book [FVK].

4.3. General case.

Definition 4.9. Let ν be a p-m valuation on K(χ), 1 = d1 < d2 < · · · < dk < · · · be the sequence of
strict key degrees of ν. Let F be a family of strict key polynomials which satisfies the following properties
for every k ≥ 1.
If dk is a separate key degree, then F contains exactly one strict key polynomial Φdk of degree dk, and
ν(Φdk) = max(ν(χdk −Kdk−1[χ])). For notational convenience, for every integer m we set Φdk,m = Φdk .
If dk is an immediate key degree, then the strict key polynomials of degree dk of F form a sequence
(Φdk,m) such that the sequence (ν(Φdk,m)) is increasing, cofinal in ν(χdk −Kdk−1[χ]).
Then we say that F is a defining family of key polynomials for ν.

Remark 4.10. For every p-m valuation on K[χ] there exists a defining family of key polynomials.

Theorem 4.11. Let ν be a p-m valuation on K(χ), 1 = d1 < d2 < · · · < dk < · · · be the sequence of strict
key degres of ν and F be a defining family of key polynomials for ν. If dk is a separate key degree, then we
let Φdk be the unique strict key polynomial of degree dk in F , and for every integer m we set Φdk,m = Φdk .
If dk is an immediate key degree, then we let (Φdk,m) be the sequence of strict key polynomial of degree

dk in F such that the sequence (ν(Φdk,m)) is increasing and cofinal in ν(χdk −Kdk−1[χ]).
For every k, m1, . . . ,mk, we let ν(m1,...,mk) = νΦd1,m1

,...,Φdk,mk
(see Notations 3.16 and Remark 3.25).

Then ν is the supremum of the family (ν(m1,...,mk)) of separate K-module valuations. For every f , ν(f)
is the maximum of the family (ν(m1,...,mk)(f)), and there are infinitely many (m1, . . . ,mk)’s such that
(ν(m1,...,mk)(f)) = ν(f).

Proof. Note that, for every k, m1, . . . ,mk, we have ν(m1,...,mk) ≤ ν. Let f ∈ K[χ] and dk be the
greatest key degree such that the degree of f is at least equal to dk. By Theorems 3.37 and 3.36,
there exists mk such that ν(f) = νΦdk,mk

(f). Furthermore, since the family (νΦdk,mk
) is increasing, we

have m′k ≥ mk ⇒ νΦdk,mk
(f) = ν(f). Let f = fjΦ

j
dk,mk

+ · · · + f1Φdk,mk
+ f0, where f0, f1, . . . , fj

belong to Kdk−1[χ]. We know that there is some mk−1 such that ν(f0) = νΦdk−1,mk−1
(f0), . . . , ν(fj) =

νΦdk−1,mk−1
(fj). Then, ν(f) = νΦdk−1,mk−1

,Φdk,mk
(f). So by induction we get a k-uple (m1, . . . ,mk) such

that ν(f) = ν(m1,...,mk)(f).
Now, we can do the same construction with any m′k ≥ mk, which proves that there are infinitely many

such k-uples. �

Remark 4.12. Let d be the degree of f and d1 < · · · < dk be the sequence of strict key degrees which
are at most equal to d. If d1, . . . , dk are separate key degrees, then ν(m1,...,mk) = ν(m′1,...,m

′
k) for every

k-uples (m1, . . . ,mk) and (m′1, . . . ,m
′
k). Hence, in fact all the K-module valuations ν(m1,...,mk) are equal.

Note that the restrictions of ν and ν(m1,...,mk) to Kd[χ] are equal. Now, if at least one of d1, . . . , dk is
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an immediate key degree, then there are indeed infinitely many distinct K-module valuations ν(m1,...,mk)

such that ν(m1,...,mk)(f) = ν(f).

In order to get an algorithm for calculating ν(f), for any f ∈ K[χ], by means of the valuations
ν(m1,...,mk), we need a criterion to know whether some ν(m1,...,mk)(f) is the maximum of the family
(ν(m1,...,mk)(f)). If the extension is separate, or dense, we saw in Subsection 4.1 and 4.2 that this
criterion exists. Now, the dense case can be generalized, as shows the following proposition.

Proposition 4.13. With the same hypothesis as in Theorem 4.11, assume that there is one immediate
key degree dk. Then, there is an algorithm for calculating ν(f), for any f ∈ K[χ].

Proof. By Theorem 4.1 the restrictions of ν and νΦd1
,...,Φdk−1

to Kdk−1[χ] are equal. By 2) of Theorem

3.36, for every f ∈ Kdk+1−1[χ] there is an integer m such that ν(f) = νΦdk,m
(f). Now, since the sequence

(νΦdk,m
) is increasing, the family (νΦdk,m

(f)) is eventually equal to ν(f). Hence νΦdk,m
(f) = ν(f) if,

and only if, νΦdk,m
(f) = νΦdk,m+1

(f). Now, since the restrictions of ν and νΦd1
,...,Φdk−1

to Kdk−1[χ] are

equal, νΦdk,m
= νΦd1

,...,Φdk−1
,Φdk,m

. For j > k, there is only one strict key polynomial Φdj of degree dj
in the family, and for every f of degree in {dj , . . . , dj+1 − 1} we have νΦdj

(f) = ν(f). Hence we can

follow in the same way as in the proof of Theorem 4.11. The algorithm is the following: we let dn be
the greatest key degree which is at most equal to the degree of f . We compute νΦd1,m,...,Φdn,m

(f) until

νΦd1,m,...,Φdn,m
(f) = νΦd1,m−1,...,Φdn,m−1

(f) holds. �

Now, in general, a priorim′1 ≥ m1, . . . ,m
′
k ≥ mk and ν(m1,...,mk)(f) = ν(f) does not imply ν(m′1,...,m

′
k)(f)

= ν(f). So we cannot get a similar criterion.

In the case of a discrete archimedean valuation (in other words, νK ' Z), every increasing sequence
of νK is cofinal. Hence, if ν(χd −Kd−1[χ]) has no maximal element, then it is cofinal. Therefore, χd is
limit over Kd−1[χ] and by Proposition 3.41 (K[χ]|Kd−1[χ], ν) is dense and d is the greatest key degree.
Consequently, the first strict key degrees are separate and there is at most one immediate strict key
degree. So, as we noted above, there exists an algorithm for calculating ν(f), for every f ∈ K[χ]. This
is the case studied by S. MacLane ([ML 36a] and [ML 36b]).

Now, Theorems 3.36 and 3.37 show that, given the key polynomials associated to a strict key degree,
we can define the next key degree. So, we can construct key polynomials by induction on the degrees. We
get a construction similar to the construction of M. Vaquié in [V 07]. Now, in Theorem 4.11 the definition
of the key polynomials of a given key degree is independent from the key polynomials of preceding key
degrees. We will not go into the details of the constructions of families of key polynomials of [HOS 07]
and [V 07], because it is not the purpose of this paper and it would take up too much space. We will
only note some aspects related to previous studies. However, we will use the construction of [HOS 07] in
an example at the end of next section.

In the case of a strict separate key degree d, M. Vaquié takes a monic polynomial Φ such that ν(Φ)
is maximal in ν(χd −Kd−1[χ]). In the immediate case, he takes a sequence of monic polynomials such
that the sequence of their valuations is cofinal in ν(χd −Kd−1[χ]). So, our construction of the strict key
polynomials is the same as the construction of M. Vaquié.

The construction of [HOS 07] can be seen as a kind of algorithm for building the key polynomials by
induction. The first key polynomial is 1, the second is χ. For a polynomial h(X) = xnX

n+ · · ·+x1X+x0

in K[X] let

S = {i ∈ {0, . . . , n} | ν(xi) + iν(χ) = νχ(h(χ)) = min(ν(xn) + nν(χ), · · · , ν(x1) + ν(χ), ν(x0))}

and inν,χ(h)(X) be the polynomial
∑
i∈S

inν(xi)X
i. So that inν,χ(h)(inν(χ)) is a homogeneous element of

Gν(K) (i.e. all its non zero monomials belong to the same (K(χ))γ,ν). They take a monic polynomial
h(X) such that ν(h(χ)) > νχ(h(χ)) = min(nν(χ), ν(xn−1) + (n − 1)ν(χ), · · · , ν(x1) + ν(χ), ν(x0)) (for
example the irreducible polynomial of χ over K, if χ is algebraic over K). Then inν,χ(h)(inν(χ)) = 0 in
Gν(K). They decompose inν,χ(h)(X) into irreducible factors and they take the irreducible polynomial
of inν(χ) over Gν(K), which is one of the irreducible factors of inν,χ(h)(X). They let Φ2(χ) ∈ K[χ] be a
homogeneous polynomial such that inν,χ(Φ2)(X) is this irreducible polynomial. Note that they require
that the separate key polynomials be homogeneous.

Let f ∈ K[χ], d1, . . . , dn be the strict key degrees which are at most equal to deg(f), and for every dj
let Φdj be a strict key polynomial of degree dj . We saw that νΦd1

,...,Φdn
(f) is obtained by writing f as a

linear combination of the elements of the basis generated by Φd1 , . . . ,Φdn . Such a linear combination is
called a standard expansion in [HOS 07].

5. Decomposition, inertia and ramification fields.

Immediate, residual and valuational key degrees appear in the study of strict key degrees. Now, the
decomposition field, the inertia field and the ramification field carry interesting informations on algebraic
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extensions of valued fields. The decomposition field can be seen as an immediate step, the inertia field as
a residual step and the ramification field as a valuational step. Now, we will see in some examples that,
in general, the degrees of the polynomials generating those subfields and the key degrees are not related.

5.1. Definitions. First we recall the definitions and properties of the decomposition, inertia and rami-
fication fields (see for example [E 72] Chapters 15, 19, 20, 21 or [Bo 59]). We let (L|K, ν) be a normal
extension of valued fields, A be the valuation ring of (L, ν) and G be the group of K-automorphisms of
L. If the characteristic of Kν is 0, then we let p = 1. Otherwise, p is the characteristic of Kν . If the
characteristic of K is 0, then we let p′ = 1. Otherwise, we let p′ = p.

We denote by Kins the fixed field of G. Then, νKins is a p′ extension of νK, and (Kins)ν |Kν is purely
inseparable.

The decomposition group of (L|K, ν) is GZ = {σ ∈ G | ν ◦ σ = ν}. It is a closed subgroup of G.
The fixed field KZ of GZ is called the decomposition field of (L|K, ν). The extension L|KZ is a Galois
extension, (KZ |Kins, ν) is immediate, and the number of extensions of ν|K to KZ is equal to the number
of extensions of ν|K to L.

The inertia group of (L|K, ν) is GT = {σ ∈ G | ∀x ∈ A ν(σ(x) − x) > 0}. It is a closed subgroup of
G and a normal closed subgroup of GZ . The fixed field KT of GT is called the inertia field of (L|K, ν).
The extensions L|KT and KT |KZ are Galois extensions, νKT = νKZ , (KT )ν is the separable closure
of (KZ)ν , (KT )ν |(KZ)ν is a Galois extension and its Galois group Gal((KT )ν |(KZ)ν) is isomorphic to
Gal(KT |KZ).

The ramification group of (L|K, ν) is GV = {σ ∈ G | ∀x ∈ A\{0} ν(σ(x)/x − 1) > 0}. It is a normal
closed subgroup of GT and of GZ . The fixed field KV of GV is called the ramification field of (L|K, ν).
The extensions L|KV and KV |KT are Galois extensions, Gal(KV |KT ) is abelian, νKV is a p-free exten-
sion of νKT , (KV )ν = (KT )ν and Lν |(KV )ν is purely inseparable.

Now, we assume that L|K is a finite Galois extension. Hence Kins = K and there is a primitive element
χ such that L = K(χ). Denote by f(X) the irreducible polynomial of χ over K. Since all the exten-
sions are separable, there exist polynomials g1(X), g2(X) and g3(X) in K[X] such that KZ = K(g1(χ)),
KT = K(g2(χ)) and KV = K(g3(χ)). For i ∈ {1, 2, 3} let hi(X) be the irreducible polynomial of gi(χ)
over K. Then hi(gi(χ)) = 0, hence f(X) divides hi◦gi(X). Now, the degree of hi(X) is [K(χ) :K(gi(χ))],
and the degree of f(X) is [K(χ) :K] = [K(χ) :K(gi(χ))][K(gi(χ)) :K]. Hence the degree of gi(X) is at
least equal to [K(gi(χ)) :K]. Since every subspace of the vector space K(χ) contains a basis of polyno-
mials whose degrees are pairwise distinct, K(gi(χ)) contains a polynomial g(χ) such that the degree of
gi(X) is at most equal to [K(χ) :K]− [K(gi(χ)) :K] + 1. In particular, KZ contains a monic polynomial
g(χ) such that the degree d of g(X) is at most equal to |G| − (|G|/|GZ |) + 1, where |G| denotes the
cardinality of G. Note that in some cases, every non constant polynomial in K(gi(χ)) has degree at
least equal to [K(χ) : K] − [K(gi(χ)) : K] + 1, as shows the example below. Now, assume that νK is
archimedean and (KZ |K, ν) is defectless. Then, by Theorem 1.10, ν(g1(χ) −K) = νK. It follows that
νK ⊂ ν(χd1 −Kd1−1[χ]), where d1 is the degree of g1. Hence ν(χd1 −Kd1−1[χ]) is cofinal in νK(χ). This
proves that ν(χd1 −Kd1−1[χ]) is eventually equal to νK(χ).

5.2. Example. We study the decomposition, inertia and ramification fields, and the strict key degrees
in an example (the author thanks Bruno Deschamps for suggesting this Galois extension). Let K = Q,
the field of rational numbers, j be the complex number with positive imaginary part such that j3 = 1,
and χ = j + 3

√
2. Then, Q(χ) = Q(j, 3

√
2), Q(χ)|Q is a Galois extension, its Galois group G is isomorphic

to the group S3 of the permutations of a set of three elements. It is generated by the transposition τ
which sends j+ 3

√
2 to j2 + 3

√
2 and the cycle σ which sends j+ 3

√
2 to j+ j 3

√
2. Then, σ ◦σ, σ ◦τ and τ ◦σ

send j + 3
√

2 respectively to j + j2 3
√

2, j2 + j 3
√

2 and j2 + j2 3
√

2. The subfield Q(j) of Q(χ) is the fixed
field of the normal subgroup generated by σ. Hence Q(j)|Q is a Galois extensions and [Q(j) : Q] = 2.

The fixed field of the subgroup generated by τ is Q( 3
√

2). Since this subgroup is not normal, Q( 3
√

2)|Q is

not a Galois extension. We have: [Q( 3
√

2) :Q] = 3.
In order to show that every non constant polynomial in Q(j) has degree 5, we start with calculations.

The family (1, j, 3
√

2, j 3
√

2, 3
√

4, j 3
√

4) is a Q basis of Q(χ). In this basis, we have

1 = 1, χ = j +
3
√

2, χ2 = −1− j + 2j
3
√

2 +
3
√

4, χ3 = 3− 3
3
√

2− 3j
3
√

2 + 3j
3
√

4,

χ4 = 9j + 6
3
√

2− 6
3
√

4− 6j
3
√

4, χ5 = −21− 21j + 15j
3
√

2 + 12
3
√

4 and χ6 = 45− 36
3
√

2− 36j
3
√

2 + 27j
3
√

4.

So, in the basis (1, j, 3
√

2, j 3
√

2, 3
√

4, j 3
√

4) the polynomial g(χ) = a0+a1χ+a2χ
2+a3χ

3+a4χ
4+a5χ

5+a6χ
6

can be written as

g(χ) = a0 − a2 + 3a3 − 21a5 + 45a6 + j(a1 − a2 + 9a4 − 21a5) +
3
√

2(a1 − 3a3 + 6a4 − 36a6)

+j
3
√

2(2a2 − 3a3 + 15a5 − 36a6) +
3
√

4(a2 − 6a4 + 12a5) + j
3
√

4(3a3 − 6a4 + 27a6).

By setting a6 = 0, calculations show that there is no non constant polynomial g(X) of degree less than 5
such that g(χ) ∈ Q(j). In fact the Q vector space Q(j) is generated by 1 and 2χ5 + 3χ4 + 6χ3 − 6χ2. In
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a similar way, we show that Q( 3
√

2) is generated by 1, χ4 + 2χ3 + 3χ2 + 12χ and 2χ5 − 15χ2 + 27χ. The

number 3
√

2 is in the Q-vector space generated by 1 and 2χ5 + 3χ4 + 6χ3 + 3χ2 + 63χ.
By setting a6 = 1 and g(χ) = 0, we get the irreducible polynomial of χ over Q: f(X) = X6 + 3X5 +

6X4 + 3X3 + 9X + 9.
Now, we study three valuations on Q(χ).

5.2.1. The 2-adic valuation. We assume that Q is equipped with the 2-adic valuation ν2, which is defined
in the following way. We write every positive integer n as n = ε0 + ε1 ·2 + ε2 ·22 + · · · + εk ·2k, where
ε0, ε1, . . . , εk belong to {0, 1}, and we let ν2(n) be the least i such that εi = 1. We let ν2(−n) = ν2(n),
ν2(0) =∞ and if q 6= 0, then ν2(n/q) = ν2(n)− ν2(q). The valuation group is Z, and the residue field is
the field F2 with two elements.
• Since 3

√
2 is a root of the polynomial X3 − 2, we have 3ν2( 3

√
2) = ν2(( 3

√
2)3) = ν2(2) = 1, hence

ν2( 3
√

2) = 1
3 . Therefore 3 divides (ν2Q(χ) :ν2Q).

• The element j is a root of X2 + X + 1, hence 0 = ν2(1) = ν2(j + j2) = ν2(j) + ν2(1 + j). One can
see that this implies ν2(j) = 0. It follows that jν2 is a root of X2 + X + 1ν2 , which has no root in F2.
Hence jν2

/∈ Qν2
. Therefore 2 divides [Q(χ)ν2

:Qν2
].

• Since (ν2Q(χ) :ν2Q)·[Q(χ)ν2
:Qν2

] divides [Q(χ) :Q] = 6, we have (ν2Q(χ) :ν2Q) = 3, [Q(χ)ν2
:Qν2

] =
2, (ν2Q(χ) : ν2Q)·[Q(χ)ν2

:Qν2
] = [Q(χ) :Q]. Hence the extension is separate. By Proposition 2.10, the

basis (1, j, 3
√

2, j 3
√

2, 3
√

4, j 3
√

4) is separate.
• Since the extension (Q(χ)|Q, ν2) is separate, we have Q(χ)Z = Q.
• The extension Q(χ)ν2 |Qν2 is separable since the polynomial X2 +X+1 is. It follows that [(Q(χ)T )ν2 :

Qν2
] = 2. Since [Q(χ)T : Q] = [(Q(χ)T )ν2

: Qν2
], we have KT = Q(j). Hence the inertia group GT is

generated by σ.
• Now, (ν2(Q(χ)) :ν2Q) = 3 6= 2, so the extension ν2(Q(χ))|ν2Q is 2-free. Hence Q(χ)V = Q(χ), and

GV is the identity group.

Key degrees. We show that 1 is a residual strict key degree, that 2 is a residual key degree, and that
they are the only key degrees. We use the algorithm of [HOS 07]. The image in the graded algebra of
the irreducible polynomial f(X) = X6 + 3X5 + 6X4 + 3X3 + 9X + 9 of χ over Q is 10,ν2

X6 + 10,ν2
X5 +

11,ν2X
4 + 10,ν2X

3 + 10,ν2X + 10,ν2 . Since we consider homogeneous polynomials and ν2(χ) = 0, we can
consider the polynomial of F2[X]: X6 +X5 +X3 +X + 1ν2

= (X2 +X + 1ν2
)3, where X2 +X + 1ν2

is
irreducible since it has no root in F2. In particular χν2

is not in F2. By Proposition 2.10, the basis 1, χ

of Q1[χ] is separate. Hence the maximum of ν2(χ − Q) is ν2(χ) = 0. We let Φ1 = χ. Note that 1 is a
residual strict key degree.
• The polynomial Φ2(X) is a lifting of the polynomial X2 + X + 1ν2 of F2[X]. Now, by letting

g(X) = X2 + X + 1 ∈ Q[X], we have a0 = a1 = a2 = 1 in above notations. Hence ν2

(
χ2 + χ+ 1

)
=

ν2( 3
√

2 + 2j 3
√

2 + 3
√

4) = 1
3 , which does not belong to Z. Hence 1

3 is the maximum of ν2(χ2 −Q1[χ]). By

Theorem 3.37, 2 is a strict key degree, and we see that it is a valuational key degree. We let Φ2 = χ2+χ+1;
Φ2 is a strict key polynomial of degree 2 with maximal valuation.
• Now, since ν2(j) = 0 < 1

3 = ν2( 3
√

2), we have χν2 = jν2 /∈ F2 = Qν2 . Furthermore, 0 = ν2(1),
1
3 = ν2(Φ2) and 2

3 = ν2(Φ2
2) are pairwise non-congruent modulo Z = ν2Q. Hence, by Proposition

2.10, the basis (1,Φ1,Φ2,Φ1Φ2,Φ
2
2,Φ1Φ2

2) is separate. We deduce that the maximum of χ3 − Q2[χ] is
1
3 = ν2(Φ1Φ2), the maximum of χ4−Q3[χ] is 2

3 = ν2(Φ2
2), and the maximum of χ5−Q4[χ] is 2

3 = ν2(Φ1Φ2
2).

Hence, by Theorem 3.37, 3, 4, 5 are not strict key degrees.

5.2.2. The 3-adic valuation. The 3-adic valuation ν3 is defined in the same way as ν2. The residue field
is F3, the valuation group is Z.
• In F3 we have X2 +X + 1ν3

= (X − 1ν3
)2 and X3 − 2ν3

= X3 + 1ν3
= (X + 1ν3

)3. Hence jν3
= 1ν3

and 3
√

2ν3
= 2ν3 = (−1)ν3 . It follows that ν3(j) = 0, ν3( 3

√
2) = 0, ν3(j − 1) > 0 and ν3( 3

√
2 + 1) > 0.

• In order to calculate ν3(j − 1), we see that X2 +X + 1 = 0⇔ (X − 1)2 = −3X. Hence 2ν3(j − 1) =
ν2((j − 1)2) = ν(−3j) = 1. Therefore, ν3(j − 1) = 1

2 .

• Turning to ν3( 3
√

2 + 1), we have X3 − 2 = 0 ⇔ (X + 1)3 = −3(X2 + X + 1). Since ν3( 3
√

2 + 1) >

0 = ν3(( 3
√

2)2), we have ν3(( 3
√

2)2 + 3
√

2 + 1) = 0. Hence 3ν3( 3
√

2 + 1) = ν3(( 3
√

2 + 1)3) = ν3(−3(( 3
√

2)2 +
3
√

2 + 1)) = 1. Therefore, ν3( 3
√

2 + 1) = 1
3 .

• Consequently, ν3Q(χ) contains the subroup generated by 1
2 and 1

3 , which is the subgroup generated

by 1
6 . Hence [Q(χ) : Q] = 6 divides (ν3Q(χ) : ν3Q), which in turn divides [Q(χ) : Q]. Therefore,

[Q(χ) :Q] = (ν3Q(χ) :ν3Q), ν3Q(χ) = 1
6Z, and the extension (Q(χ)|Q, ν3) is separate.

• It follows that Q(χ)Z = Q.
• Since (Q(χ))ν3 = Qν3 , we have Q(χ)T = Q.
• Now, since [Q(χ)V :Q(χ)T ] is 3-free and [Q(χ) :Q(χ)V ] is a 3-extension, we have Q(χ)V = Q(j).

Key degrees. We show that the strict key degrees are 1 and 3, and that they are valuational
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ones. We have ν3(j − 1) = 3
6 , ν3( 3

√
2 + 1) = 2

6 , ν3(( 3
√

2 + 1)( 3
√

2 + 1)) = 4
6 , ν3((j − 1)( 3

√
2 + 1)) = 5

6 ,

ν3((j − 1)( 3
√

2 + 1)( 3
√

2 + 1) = 7
6 , hence, by Proposition 2.10, the basis (1, j − 1, 3

√
2 + 1, ( 3

√
2 + 1)2, (j −

1)( 3
√

2 + 1), (j−1)( 3
√

2 + 1)2) is separate. Now, ν3(χ) = ν3(j+ 3
√

2) = ν3(j−1 + 3
√

2 + 1) = 1
3 /∈ Z. Hence,

ν(χ) is the maximum of ν(χ−Q). The strict key degree 1 is a valuational one. We set Φ1 = χ.
• Since the family 1,Φ1,Φ

2
1 is separate, we get that the maximum of ν3(χ2−Q1[χ]) is 2

3 = ν3(Φ2
1). So

2 is not a strict key degree.
• In order to find the next key degree, we can note that 0 = f(χ) = χ6 +3χ5 +6χ4 +3χ3 +9χ+9, with

ν2(χ6) = 6
3 , ν2(3χ5) = 8

3 ν2(6χ4) = 7
3 , ν2(3χ3) = 6

3 , ν2(9χ) 7
3 , ν2(9) = 6

3 . Hence: ν2

(
χ6 + 3χ3 + 9

)
> 6

3 .

We can factorize the image of the polynomial X6 + 3X3 + 33 in the graded algebra. Here, we prefer to
deduce directly the polynomial of degree 3 the valuation of which is the maximum of ν3(χ3 − Q2[χ]).
Note that, for a, b, c in Q, ν3(aΦ2

1 + bΦ1 + c) belongs to 1
3Z. An element of χ3 −Q2[χ] can be written as

Φ3
1 + aΦ2

1 + bΦ1 + c, with a, b, c in Q, and Φ1 = χ = (j − 1) + ( 3
√

2 + 1). Now,

Φ2
1 = (j − 1)2 + 2(j − 1)(

3
√

2 + 1) + (
3
√

2 + 1)2 = −3− 3(j − 1) + 2(j − 1)(
3
√

2 + 1) + (
3
√

2 + 1)2, and

Φ3
1 = −3(j−1)−3(j−1)2+2(j−1)2(

3
√

2+1)+(j−1)(
3
√

2+1)2−3(
3
√

2+1)−3(j−1)(
3
√

2+1)+2(j−1)(
3
√

2+1)2

+(
3
√

2 + 1)3 = 12 + 6(j − 1)− 12(
3
√

2 + 1)− 9(j − 1)(
3
√

2 + 1) + 3(
3
√

2 + 1)2 + 3(j − 1)(
3
√

2 + 1)2.

Hence Φ3
1 + aΦ2

1 + bΦ1 + c = c− 3a+ 12 + (6− 3a+ b)(j − 1) + (b− 12)(
3
√

2 + 1)

+(2a− 9)(j − 1)(
3
√

2 + 1) + (a+ 3)(
3
√

2 + 1)2 + 3(j − 1)(
3
√

2 + 1)2,

with ν3(j − 1) = 1
2 = 3

6 , ν3( 3
√

2 + 1) = 1
3 = 2

6 , ν3(( 3
√

2 + 1)2) = 2
3 = 4

6 , ν3((j − 1)( 3
√

2 + 1)) = 5
6 ,

ν3((j− 1)( 3
√

2 + 1)2) = 7
6 . Since this basis is separate, the valuation of Φ3 +aΦ2 + bΦ + c is the minimum

of the valuation of the components. Note that if the maximum does not belong to 1
3Z, then it is 5

6 , 11
6 or 13

6 .

By setting a = 6, b = 12, c = 6, we get the minimum of ∞, ∞, ∞, 11
6 , 20

6 , 13
6 . So it is 11

6 , which does not

belong to 1
3Z. Now, for any a, b, c in Q, Φ3

1+aΦ2
1+bΦ1+c = Φ3

1+6Φ2
1+12Φ1+6+(a−6)Φ2

1+(b−12)Φ1+c−6,

with ν3((a − 6)Φ2
1 + (b − 12)Φ1 + c − 6) ∈ 1

3Z, and ν3(Φ3
1 + 6Φ2

1 + 12Φ1 + 6) = 11
6 /∈ 1

3Z. Consequently,

ν3(Φ3
1 + aΦ2

1 + bΦ1 + c) = min(ν3(Φ3
1 + 6Φ2

1 + 12Φ1 + 6), ν3((a− 6)Φ2
1 + (b− 12)Φ1 + c− 6)). Therefore,

11
6 is the maximum of ν3(χ3 −Q2[χ]). We let Φ2 = Φ3

1 + 6Φ2
1 + 12Φ1 + 6. The next strict key degree is

3, and it is a valuational one.
• Now, by Proposition 2.10, the basis (1,Φ1,Φ

2
1,Φ2,Φ1Φ2,Φ

2
1Φ2) is separate, hence there is no strict

key degree greater than 3.

5.2.3. The 5-adic valuation. In order to study a p-adic valuation where p does not divide [Q(χ) :Q], we
look at ν5.
• The polynomial X2 + X + 1ν5

has no root in F5, hence jν5
does not belong to Qν5

, and 2 divides
[Q(χ)ν5

:Qν5
].

• The class 3ν5 is the unique root of the polynomial X3−2ν5 in F5. The derivate polynomial is 3ν5X
2,

and, in F5, 3ν532
ν5

= 2ν5 6= 0ν5 .

• From general properties of valuations it follows that the extension (Q( 3
√

2)|Q, ν5) is immediate, and

that there are three extensions of (ν5)|Q to Q( 3
√

2) (since the number of extensions of (ν5)|Q to Q(χ)
divides [Q(χ) : Q]/[(Q(χ))ν5

: Qν5
] ≤ 3, this number is 3, and [(Q(χ))ν5

: Qν5
] = 2). Now, one can see

this fact. In F5, jν5
is a root of the polynomial X2 +X + 1ν5

, and it also satisfies j3
ν5

= 1ν5
. In F5(jν5

),

X3 − 2ν5
= (X − 3ν5

)(X − (3j)ν5
)(X − (3j2)ν5

), and, in Q, X3 − 2 = (X − 3
√

2)(X − j 3
√

2)(X − j2 3
√

2).

Now, we can let 3
√

2 be a lifting of any of the residual roots 3, (3j)ν5
, (3j2)ν5

. So we get three different
extensions of ν5.
• We let 3

√
2 be a lifting of 3, and we calculate ν5( 3

√
2 − 3). Since jν5 and j2

ν5
do not belong to F5,

(3j)ν5
and (3j2)ν5

are different from 3ν5
= ( 3
√

2)ν5
. It follows that ν5( 3

√
2−3j) = ν5( 3

√
2−3j2) = 0. Now,

in Q, (X − 3)(X − 3j)(X − 3j2) = X3 − 3(1 + j + j2)X2 − 3(1 + j + j2)X − 27 = X3 − 2 − 25. Hence

ν5( 3
√

2− 3) = ν5(( 3
√

2− 3)( 3
√

2− 3j)( 3
√

2− 3j2)) = ν5(−25) = 2.

• Since [Q(χ)ν5
:Qν5

] = 2, we deduce that [Q(χ)Z :Q] = 3, and Q(χ)Z = Q( 3
√

2). Therefore the group
GZ is generated by the transposition τ .
• Now, it follows that Q(χ)T = Q(χ), so GT and GV are equal to the identity group.

Key degrees. We show that 1 is a residual strict key degree, that 2 is an immediate key degree, and
that they are the only key degrees. We have ( 3

√
2)ν5

= 3ν5
, and jν5

/∈ F5 = Qν5
. Hence for every a ∈ Q

with ν5(a) ≥ 0 we have (a+ 3
√

2)ν5 6= jν5 . So ν5(χ+ a) = ν5(j + 3
√

2 + a) = 0. Hence 0 is the maximum
of ν(χ−Q). We can let Φ1 = χ. Note that 1 is a residual strict key degree.

• Since (Q( 3
√

2)|Q, ν5) is immediate, 3
√

2 is pseudo-limit of a pseudo-Cauchy sequence (xn) of Q, and
3
√

4 is pseudo-limit of a pseudo-Cauchy sequence (yn) of Q. Since ν5Q = Z is archimedean and discrete,
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the values ν5( 3
√

2 − xn) and ν5( 3
√

4 − yn) are cofinal in Z. An element of χ2 − Q1[χ] can be written as
χ2 + aχ+ b, with a, b in Q. Calculations show that

χ2 + aχ+ b = 2j

(
3
√

2 +
a− 1

2

)
+ a

(
3
√

2 +
a− 1

2

)
+

3
√

4 + b− a
(
a− 1

2

)
− 1.

By letting a = 1−2xn and b = xn(2xn−1)+1−yn, we have χ2 +aχ+ b = 2j( 3
√

2−xn)+(1−2xn)( 3
√

2−
xn) + 3

√
4− yn, and the valuations of this sequence are cofinal in Z. Consequently, ν(χ2 −Q1[χ]) = Z, 2

is a strict immediate key degree, and there is no strict key degree greater than 2. For every integer n we
let Φ2,n = χ2 + (1− 2xn)χ+ xn(2xn − 1) + 1− yn.
• In order to find the sequence (xn), in the same way as in [HOS 07] we proceed by induction and by

lifting polynomials of the graded algebra. By properties of p-adic valuations (see for example [La 65, p.

306]), since ν5( 3
√

2) ≥ 0, xn can be written in a unique way as xn = a0 + a1 ·5 + a2 ·52 + · · · + am ·5m,
where, m ≥ n and for 0 ≤ k ≤ m, ak ∈ {0, 1, 2, 3, 4}. For notational convenience, we let m = n,

that is, if an = 0, then xn = xn−1. Since
3
√

2 =

+∞∑
k=0

ak ·5k, for every n we have
3
√

2− xn =

+∞∑
k=n+1

ak ·5k.

So, for every n, ( 3
√

2 − xn)n+1,ν5
= (an+1 · 5n+1)n+1,ν5

. As ( 3
√

2)ν5
= 3ν5

, we have x0 = a0 = 3.

Since the irreducible polynomial of 3
√

2 over Q is X3 − 2, the irreducible polynomial of 3
√

2 − xn is
(X + xn)3 − 2 = X3 + 3xnX

2 + 3x2
nX + x3

n − 2. Let n ∈ N and m be the smallest integer such that

m > n and am 6= 0. Then ν5( 3
√

2 − xn) = m and ν5(xn) = 0, it follows: ν5(( 3
√

2 − xn)3) = 3m >

ν5(3xn( 3
√

2 − xn)2) = 2m > ν5(3x2
n( 3
√

2 − xn)) = m. Hence m = ν5(3x2
n( 3
√

2 − xn)) = ν5(x3
n − 2), and

ν5(3x2
n( 3
√

2− xn) + (x3
n − 2)) > m.

For every n ≥ 2, xn is congruent to 3 modulo 5. Hence 3x2
n is congruent to 2. The inverse of 2 modulo

5 is 3. Hence (an+1 ·5n+1)n+1,ν5
= 3(−(x3

n − 2))n+1,ν5
= 2(x3

n − 2)n+1,ν5
. We deduce by induction all

the an and xn. We have x0 = 3, 2(33 − 2) = 50. Since ν5(50) = 2, we have a1 = 0. So x1 = x0 = 3,
x2 = 3 + a2 ·52. Now, 2(x3

1 − 2) = 2 ·52, hence a2 = 2, and x2 = 53. We have 533 − 2 = 1191 ·53.
So (x3

2 − 2)3,ν5
= (1191 ·53)3,ν5

= (53)3,ν5
. Therefore, a3 = 2. Now, x3

3 − 2 = (53 + 2 ·53)3 − 2 =
533 +6·532·53 +12·53·56 +8·59−2 = 533−2+6·532·53 +12·53·56 +8·59 = 1191·53 +16854·53 +12·53·56 +8·59

= 18045·53 + 12·53·56 + 8·59 = 3609·54 + 12·53·56 + 8·59. So (x3
3 − 2)4,ν5

= (3609·54)4,ν5
= (4·54)4,ν5

.
Hence (a4·54)4,ν5 = (3·4·54)4,ν5 = (2·54)4,ν5 . Hence a4 = 2. In this way, by induction one can get any xn.

5.2.4. The 2-adic valuation with an other generator. We come back to ν2, by taking the generator Y =
2χ+1 of Q(χ) instead of χ. Its irreducible polynomial over Q is h(X) = X6+9X4−32X3+27X2−293. In
the same way as above, we can consider its image in F2[X]: X6 +X4 +X2 +1ν2 = (X3 +X2 +X+1ν2)2 =
(X + 1ν2

)6. So, Yν2
= 1ν2

belongs to F2. We let Φ1,1(Y) = Y. Since the irreducible poynomial of Yν2

over F2 has degree 1, the second key polynomial has degree 1, and it is a lifting of X + 1ν2
. We can

take Φ1,2(Y) = Y − 1. Then Φ1,2(Y) = 2χ, and ν2(Φ1,2(Y)) = 1 is the maximum of ν2(Y − Q). The
irreducible polynomial of the image of Φ1,2(Y) in the graded algebra is X2 + 11,ν2X + 12,ν2 . Indeed,
ν2

(
Φ2

1,2 + 2Φ1,2 + 22
)

= ν2

(
22χ2 + 22χ+ 22

)
= 2 + ν2

(
χ2 + χ+ 1

)
> 2 = ν2

(
Φ2

1,2

)
= ν2 (2Φ1,2) =

ν2

(
22
)
. Hence Φ2,1 is a lifting of X2 + 11,ν2

X + 12,ν2
. We can take Φ2,1 = Φ2

1,2 + 2Φ1,2 + 22. In the same
way as above, the algorithm stops because ν2 (Φ1,2,Φ2,1) = ν2.
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