
HAL Id: hal-01875943
https://hal.science/hal-01875943v2

Submitted on 4 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulating rare events: Hawkes process applied to
Twitter

Yassine El Maazouz, Mohammed Amine Bennouna

To cite this version:
Yassine El Maazouz, Mohammed Amine Bennouna. Simulating rare events: Hawkes process applied
to Twitter. [Research Report] Ecole polytechnique X. 2018. �hal-01875943v2�

https://hal.science/hal-01875943v2
https://hal.archives-ouvertes.fr

SNA course project

Simulating rare events
Hawkes process applied to Twitter

Authors

Y. El Maazouz & M. A. Bennouna

Supervisors

I. Kortchemski F. Benaych-Georges
S. De Marco M. Bompaire

E. Gobet G. Fort

04 June 2018

Contents

1 Simulating Hawkes process 2
1.1 Simulating with a superposition of Poisson process . 2

1.1.1 Thinning simple algorithm . 2
1.1.2 Improving the algorithm . 4

1.2 Ogata Algorithm . 5
1.3 Numba and C++ . 6

2 Theoretical results 6
2.1 Different behaviours . 6

2.1.1 defective case :αβ < 1 . 6

2.1.2 excessive case: α
β > 1 . 7

2.2 On the values of the expect value and the variance for the defective case 8

3 Self excitation with features 8
3.1 Model . 8
3.2 Expected value and variance of the process with features . 9
3.3 Improving the model . 10

4 Estimation of rare events probability 10
4.1 Estimation method . 10
4.2 Confidence intervals: . 11
4.3 Primary tests . 12
4.4 Examples: . 14

5 Estimating parameters by likelihood maximisation 18

1

Abstract

Hawkes processes are an interesting class of stochastic processes used in many areas ranging from
high frequency trading to earth earthquake modelling. In this article we present the modelling of
tweets’ arrival times with Hawkes processes, and discuss two methods to simulate theses processes.
We suggest a modification of Hawkes process to capture the presence of features that influence the
messages. We then present some theoretical results on Hawkes processes with exponential decay, and
apply Importance sampling and Monte-Carlo variance reduction techniques to estimate the proba-
bility of rare events. A typical application would be to estimate the probability of a tweet-apocalypse
or other rare event estimation on Hawkes processes.

1 Simulating Hawkes process

1.1 Simulating with a superposition of Poisson process

1.1.1 Thinning simple algorithm

A Hawkes point process [3] is a self-excitation point process (Nt)t≥0 that has a density
λ(t) =λ0 +∑

g (t − ti)1ti<t where (ti)i≥1 are jump times of (Nt)t≥0 and g a decreasing function on R+.

A first approach to simulate such a process in an interval [0,T], with T a fixed time horizon, is to simu-
late a superposition of several Poisson processes as follow:

We generate a first generation of jump times {t (0)
i : i ≥ 1} as an independent Poisson pro-

cess of intensity λ0

Π0 = {t 0
i : i ≥ 1} ∼ PP (λ0)

We generate the k-th generation of jump times {t k
i : i ≥ 1} as an independent Poisson pro-

cess of intensity
∑

g (t − t (k−1)
i)1t (k−1)

i <t :

Πk = {t k
i : i ≥ 1} ∼ PP (

∑
g (t − t (k−1)

i).1t (k−1)
i <t)

The Hawkes process correspond to a superposition of (Πi)i≥1 which is:

Π=∪i≥1Πi

In order to do that, we need to simulate inhomogeneous Poisson processes (i.e with variable intensity
in time). We chose to use in a first approach Thinning algorithm.

Thinning algorithm consist of finding an upper bound λ̄ of the density λ, simulating jump times with

an inhomogenious Poisson process PP (λ̄∗T) and to keep every jump time ti with probability λ(ti)
λ̄

.

The following figures illustrates some simulation results.

2

Figure 1: Thinning algorithm with λ̄= maxλ(t)

For an excitation function: g (t) =αe−βt 1t≥0 :

(figure for T = 100., λ0 = 1 ,α= 1 et β= 1, simulation cost: 0.651 seconds)

Figure 2: Simulating Hawkes processes

3

Figure 3: Number of tweets per second

1.1.2 Improving the algorithm

One of the problems we face with this simulation method is the simulation time that increase fast for
big values of T and for some sets of α and β. We would like to be able to simulate Hawkes process for a
day duration (86400 seconds), we need therefor to improve the algorithm.

Is this first algorithm, the acceptance rate of the generated points is very low as shows the figure 1. This
is caused by the choice of λ̄ that is far from being optimal.

In order to improve the acceptance rate and thus to reduce the simulation time, we chose λ̄ as a step
function (figure 4). With this method, the acceptance rate is much higher (0.77 now and 0.47 before)
and the algorithm is faster.

Figure 4: Thinning sample algorithm with λ̄ as a step function

4

(T = 100., λ0 = 1 ,α= 1 et β= 1, Simulation time: 0.224 seconds)

Figure 5: Hawkes process simulation with λ̄ as a step function

Figure 6: Number of tweets per second.

1.2 Ogata Algorithm

In spite of λ̄ improvement, the previous algorithm takes too much time for values of T around a day.
Therefore we explored other methods in literature and chose to implement Ogata algorithm [2].

Ogata algorithm is considerably faster than Thining algorithm. The choice of λ̄ is optimized in every
new point’s simulation, the acceptance rate is therefore higher. Avoiding the layer simulation improves
the speed as well.

Another considerable optimization is the use of the exponential propriety. We can compute more effi-
cientlyλ(s) with the recurrence relation: λ(s) =λ0+e−βw (λ̄−λ0) an λ̄=λ(s)+α1s=ti+1 , where ti is the last

5

Algorithm 1 Ogata algorithm for excitation g (x) =αe−βx in [0,T]

Input: α, β, T , λ0

Initialize JUMPTIMES := JT = ;, CURRENTINSTANT:= s = 0, n = 0;
while s<T do do

Set λ̄=λ(s+) =λ0 +∑
τ∈JTαe−β(s−τ)

Generate jumpGapWidth:= w ∼ E (λ̄);
s = s +w ; # Next candidate
Generate D ∼ uniform(0,1);
if D λ̄≤λ(s) =λ0 +∑

τ∈JTαe−β(s−τ) then # Accept with probability λ(s)/λ̄
n = n +1; # Update number of points
tn = s;
JT= JT∪ {tn}; # Add the n-th point to JUMPTIMES

end if
end while
if tn ≤ T then

return {tk }k=1,2,...,n

else
return {tk }k=1,2,...,n−1

end if

selected jump time. This optimization is only possible when using an excitation function in exponential
form.

All the results that follow in this article are obtained using Ogata algorithm.

1.3 Numba and C++

In order to boost our program’s performances, we have rewritten our code in C++ and compared the
performances to those of python. Naturally the C++ code executed way faster than python but it was not
as fast as we hoped for.

Our supervisors then advised us to use a module in python called numba to accelerate python code
execution.

When coding is Python, using the decorator jit from the library Numba it translates Python functions to
optimized machine code at runtime. This method proved to be faster than our C++ code.

2 Theoretical results

To chose the right simulation parameters in our work, we need theoretical results on the behaviour of
NT .

2.1 Different behaviours

We noticed during the prior simulations two different behaviours of Nt depending on the values of α
and β. This behavior splits into to two different cases: defective case (αβ < 1) and excessive case (αβ > 1)

with a critical case (αβ = 1) in between.

2.1.1 defective case :αβ < 1

The expected value of NT is finite and we have the following results [4]:

E(λ(t)) =λ∞+ (λ0 −λ∞)(1−e−(β−α)t)

6

E(Nt) =λ∞t + λ0 −λ∞
β−α (1−e−(β−α)t)

where

λ∞ = βλ0

β−α = λ0

1− α
β

For big values of T :

E(λ(T))
T→∞−−−−→λ∞

E(NT)
T→∞−−−−→λ∞T = λ0

1− α
β

T (1)

Var(NT)
T−→∞−−−−→ β2λ∞

(β−α)2 T = λ0

(1− α
β)3 T

The proof of this result is similar to the proof presented section 4.2.

Figure 7: Simulation of the defective case α
β < 1, T = 100

2.1.2 excessive case: α
β > 1

The process diverges exponentially fast [4]:

λ(t) →∞

Nt →∞

For a set of parameters with α
β > 1, the simulation diverges fast or don’t have time to end. The values that

the first algorithm gives for each layer were increasing fast in the earliest generations. and the values of
NT are much bigger than the defective case.

7

Figure 8: Simulation of the excessive case α
β > 1, T = 100

2.2 On the values of the expect value and the variance for the defective case

We notice that σ(Nt) ∝p
T and E(Nt) ∝ T . Such a result can be expected given the simulations. The

evolution of NT for different scales of T suggest this proportionality (σ(Nt)
E(Nt) ∝ 1p

T
) :

T = 8000 T = 200

Figure 9: Comparing the spreading of trajectories for two values of T

3 Self excitation with features

3.1 Model

Tweets contain features (words, symbols, URLs ...). These features influence the number of tweets
caused directly or indirectly by the original tweet. To take feature’s effect into account, we modified
Ogata code to change the way previous tweets influence future tweets generation.

Every tweet has now a feature selected from a finite set F of features. In a first simple model, a feature
is attributed randomly to a generated tweet with a probability distribution π on F .

To model the influence of these features, we modified the excitation, as suggested in [5], by multiplying
the excitation function by a coefficient depending on the feature of the tweet. A tweet having a fea-
ture f ∈ F has therefore the following excitation function: g (t , f) = γ(f)αexp(−βt) where γ(f) is the
coefficient specific to the feature f .

8

Thus, the excitation intensity with features take the following form:

λ(t) =λ0 +
∑

ti≤t
γ(fti)αe−β(t−ti)

where fti is the feature corresponding to the tweet at time ti .

3.2 Expected value and variance of the process with features

The form of our initial model suggest and intuitive expression of the expected value and the variance of
NT :

E(NT) = λ0

1−Eπ(γ)αβ
T

Var(NT) = λ0

(1−Eπ(γ)αβ)3 T

The numerical results are close to these values. The proof of the initial model can be adapted to the one
with features.

Proposition 3.1 For a Hawkes process with features, E(NT) depend on the value of n = ∫ ∞
0 Eπ(γ)g (s)d s =

Eπ(γ)αβ .
if n > 1, E(NT) →∞
if n < 1, E(NT) = λ0

1−Eπ(γ) α
β

T

Proof

The proof is inspired by the case of 1.

e(t) := E(λ(t)) = E
(
λ0 +

∫ t

0
γ(fs)g (t − s)d N (s)

)
=λ0 +

∫ t

0
g (t − s)E(γ(fs)d N (s))

γs and d N (s) are independent is our model, therefore:

e(t) =λ0 +
∫ t

0
g (t − s)Eπ(γ)E(d N (s)) (2)

Noting F (s)the knowledge of the events before time s,

λ(s) = E(d N (s)|F (s))

d s

By taking the expected value of this expression,

e(t) = E
(E(d N (s)|F (s))

d s

)
= E(d N (s))

d s

We inject this result in the expression 2 and we obtain:

e(t) =λ0 +
∫ t

0
g (t − s)Eπ(γ)e(s)d s =λ0 +

∫ t

0
e(t − s)Eπ(γ)g (s)d s

Thus, e(t) obey to a convolution equation e = λ0 + e ∗Eπ(γ)g . This equation’s solution depends on the
value of n = ∫ ∞

0 Eπ(γ)g (s)d s = Eπ(γ)αβ [4].

9

excessive case: Eπ(γ)αβ > 1

The number of tweets diverges exponentially. We could expect this result given the model without fea-
tures: the number of tweets diverges when α

β > 1.

Figure 10: Simulation with features Eπ(γ)αβ > 1

defective case: Eπ(γ)α
β
< 1

The number of tweets expected value is finite: E(NT) = λ0
1−Eπ(γ) α

β
T This expression is similar to the one

without features with α←αEπ(γ).

Figure 11: Simulation with features Eπ(γ)αβ < 1

3.3 Improving the model

We can modify our simple features model to better capture the real impact of features of the tweets. A
possibility would be that the distribution of features allocation depends on the past with a function g :

π(fn+1| f1, .., fn , t1, ..tn+1) = g (fn+1, ..., f1, t1, ..tn+1)

4 Estimation of rare events probability

4.1 Estimation method

We wish to estimate the probability P (NT > a) for high values of a (to estimate the probability of a tweet-
apocalypse in a period of time T for example).

10

We have chosen importance sampling methods in order to accelerate the convergence of our estimator
and because such methods are easier to implement. For this we are using the likely-hood in Ogata’s
article [2], where P0 represents the probability distribution of a standard Poisson process:

dP

dP0
= exp

(∫ T

0
logλ(t)d Nt +

∫ T

0
(1−λ(t))d t

)
For a set of parameters θ1 = (T,λ0,1,α1,β1) we denote by P1 the probability distribution associated to
the Hawkes process with parameter θ1. To estimate the probability P1(NT > a) we operate a probability
change P1 → P2 for a parameter θ2 = (T,λ0,2,α2,β2), the choice of the parameter θ2 will be discussed
later on.

Ogata’s article gives the likelihood of this probability change:

dP1

dP2
= dP1

dP0
.
dP0

dP2
= dP1

dP0
/

dP2

dP0

dP1

dP2
= exp

(∫ T

0
log

λ1(t)

λ2(t)
d Nt +

∫ T

0
(λ2(t)−λ1(t))d t

)
For our model, the log-likelihood is:

log
(dP1

dP2

)
=L (T,λ0,1,α1,β1)−L (T,λ0,2,α2,β2)

where:

L (T,λ0,α,β) =
NT∑
i=1

log(λi)+T (1−λ0)−
NT∑
i=1

α

β
(1−e−β(T−ti))

We can then estimate the probability by simulating Hawkes processes with the parameter θ2:

EP1

(
1NT >a

)= EP2

(
1NT >a

dP1

dP2

)
The law of large numbers then allows us to build two estimators for the probability P1(NT ≥ a).

Let L be the likelihoods dP1/dP2 and M an integer≥ 1, And let (N (k)
T)1≤k≤M , (V (k))1≤k≤M be independent

realizations (or copies) of (NT) and V we can then build two estimator of P1(NT ≥ a) by considering:

uM = 1

M

M∑
k=1

1N (k)
T ≥a

vM = 1

M

M∑
k=1

1N (k)
T ≥aV (k)

where the instants ti are simulated with probability distributionP1 for the estimator uM (called the naive
Monte-Carlo estimator) and with probability distributionP2 for the estimator vM (called the importance
sampling estimator).

4.2 Confidence intervals:

Let’s consider: µ :=P1(NT ≥ a), σu =√
Var1(1NT ≥a) et σv =√

Var2(1NT ≥aV).

With the Centrale Limite theorem:

p
M

σu
(uM −µ)

Loi−−−−−→
M→+∞

N (0,1)

11

p
M

σv
(vM −µ)

Loi−−−−−→
M→+∞

N (0,1)

Then, if we can calculate the two variances σu
2 and σv

2 we can get asymptotic confidence intervals for
our estimators.

However, we do not have an exact formula that allows us to calculate these variances, and by the way if
such a formula existed we would have been able to calculate µ from from the expression of σu

2.

To overcome this difficulty we can replace the two standards deviations σu and σv with their respective
estimators σu,M and σv,M where:

σ2
u,M = 1

M

M∑
k=1

1N (k)
T

− (1

M

M∑
k=1

1N (k)
T

)2

σ2
v,M = 1

M

M∑
k=1

(1N (k)
T

V (k))2 − (1

M

M∑
k=1

1N (k)
T

V (k))2

Let q1−α/2 be the quantile of order 1−α/2 of a standard Normal distribution. We then write the two
asymptotic confidence interval as follows:

Iu,M = [uM − q1−α/2p
M

σu,M ;uM + q1−α/2p
M

σu,M]

Iv,M = [vM − q1−α/2p
M

σv,M ; vM + q1−α/2p
M

σv,M]

4.3 Primary tests

The primary calculations of the likelihood almost always gave us 0.0. We had to explore many possibil-
ities to understand the source of this problem. It was either an implementation error of a bad choice of
parameters. And at first we had no quantification of the likelihood and we had no idea of what to expect
as a result by changing the parameters.

As a first test we verified that the following condition is satisfied by our simulations:

EP2

(dP1

dP2

)
= 1 (3)

This test helped discover some errors in our code and gave us an idea on the performance of our imple-
mentation.

After making the necessary correction to our code the results when estimating EP2

(
dP1
dP2

)
were reasonable

(between 0. and 1.5 with 104 simulations).

The fact that the results are not always close to 1 is normal. Actually we are simulating a random variable
that is of type (t1, t2, ..., tNT) with E(NT) ∼ 400. It is then comprehensible that our naive Monte Carlo es-

timator of EP2

(
dP1
dP2

)
does not perform well with 104 because we need a number of simulations of around

n ×NT to get good estimation results. After we used Numba in python to accelerate the execution of our
code we have been able to get satisfying results for this condition.

Let θ1 = (T,λ0,1,α1,β1) be a set of parameters, and µ1 = EP1 (NT) et σ2
1 = VarP1 (NT) (for which we have

a formula). Remember that the objective is to estimate the probabilities of events P(X > a) where a is
given (a is a large number for rare events) with using a probability change to accelerate the convergence
of the estimator. We must the choose the right parameter θ2 = (T,λ0,2,α2,β2) for the probability change
in order to get a good acceleration.

By simulating a sample of NT and plotting a histogram of it’s values, we have noticed that it’s distribution
is close to a normal distribution.

12

Figure 12: Approximating the distribution of NT with a Gaussian.

To have an idea of the probability value to expect, we chose the value of a as a quantile of a N (µ1,σ2
1) of

order 1−10−m (the value of probability to excpect then is of order 10−m).

For the parameter θ2 = (T,λ0,2,α2,β2) we chose the following settings:

1. µ2 = a: This choice allows us to center the distribution P2 arround a to have a 50-50 chance of
going over the barrier a with the second probability distribution P2.

2. α2 = α1, β2 = β1: We have noticed that by choosing a parameter setting the changes the ratio :
α
β the likelihood is always too small and the effects on E(NT) are considerable when compared to

changing only the parameter λ̄0. The reason behind that is that by changing that ratio the nature
of trajectories changes as well in such a way that the probability distribution P2 does not resemble
at all to P1 because the likelihood depends on the entire trajectory of instants ti and not just the
final value NT ie: by changing α for example we change the entire form of λ(t). Using the result of
section 3 we chose: λ0,2 = µ2

T (1− α1
β1

).

We have also tried to operate the probability change by changing the parameter α and adapting
µ2 et σ2 but that proved to be less efficient.

Figure 13: Probability change by centring.

Remarks:
Our code is also compatible with the model with features. the results obtained in this case were similar.
In our implementation we also took into consideration the tweet-fatures. The estimator in this case was
equally efficient.

13

4.4 Examples:

Let θ1 = (T = 1000,λ0,1 = 1,α1 = 0.3,β1 = 1).

We recall the results obtained in section 3 for the expectation and variance of NT (with (Nt) generated
under the probability distribution Pθ1) for large values of T , T →+∞:

E(NT) ' λ0,1

1− α1
β1

T

Var(Nt) ' λ0,1

(1− α1
β1

)3
T

In the following examples we estimate the probability Pθ1 (NT > a) where a is chosen to be the quantile
of order 10−m of the normal distribution approximating that of NT .

Importance sampling when changing λ0 :

The following results were obtained with M ×n estimations of NT to build the confidence intervals. As
for the boxPlots, we represented n values of our estimators where each estimator value is computed with
M simulations of NT .

For m = 2 (probability of order 10−2)

Estimation results for M = 100 and n = 100:

Naive MonteCarlo Importance Sampling
Estimated Values 0.0103 0.01074
Confidence interval 95% [0.00832;0.01227] [0.01034;0.01074]
Relative Error 0.3842 0.02356

Figure 14: BoxPlot for n = 100 values of estimators uM and vM .

14

Notice that even for a proibability of order 10−2, which is not considered to be a rare event, the Naive
Monte-Carlo estimator is less efficient compared to the importance sampling estimator (less relative
error and narrower confidence interval).

We can enhance the performance of the estimator by simply increasing simulations number M .

For M = 1000 and n = 100, we get the following results:

Naive MonteCarlo Importance Sampling
Estimated Values 0.01102 0.01058
Confidence interval 95% [0.01037;0.11743] [0.010455;0.010704]
Relative Error 0.11743 0.02356

Figure 15: BoxPlot for n = 100 values of uM and vM .

For m = 7 (probability of order 10−7):

The importance sampling method becomes way more interesting.

for M=1000 and n = 100:

Naive MonteCarlo Importance Sampling
Estimated Values 0.0 3.253×10−7

Confidence interval 95% [3.167×10−7;3.758×10−7]
Relative Error 0.0527

Notice that the naive Monte-Carlo estimator does not converge quickly enough to give us a meaningful
estimation of the probability we are estimating (which is too small: 10−7). This is because we are simu-
lating only M = 1000 = 103 times the variable NT when we do need around 107 simulations to reasonable
results which is quite a lot. Importance sampling estimator allows a good estimation of the probability
value with a median of around 3,3.10−7 and a relative error of 0.05. This estimator already gives good
results for only 103 simulations.

Importance sampling by changingα :

15

Figure 16: BoxPlot for n = 100 values with two estimators uM and vM .

We can also operate a probability change by changing α of the process to have a distribution centered
on the threshold a (Here, the threshold is a quantile of a Gaussian distribution that approaches or initial
distribution). The form on NT variance shows that it’s increasing in α. We can therefore change the
parametersα and λ0 to have a distribution centered on a and a small variance as shown in the following
figure:

Figure 17: Probability changing.

By reducing NT variance, we expect to reduce the variance of NT 1NT >a and therefore the confidence
interval. We will first attempt to do it by changing α only.

For the set of parameters θ1 considered, and to estimate a probability of order 10−7, we have the follow-
ing result with changing only α:

For M = 1000 and n = 100:

Naive MonteCarlo Importance Sampling
Estimated Values 0.0 3.1452×10−7

Confidence interval 95% [2.88294×10−7;3.40765×10−7]
Relative Error 0.16

16

Figure 18: BoxPlot for n = 100 values with two estimators uM and vM , changing only α.

We notice that the values in this case are more scattered compared to the case where we only change λ0

(relative error : 0.16 compared to 0.052).

This result can be expected as the variance of NT is bigger in the case of changingα. The dependency of
V ar (NT) in α is as α3.

For the set of parameters θ = (86400,1,0.3,1), and a threshold a = 127268 and M = 10000.

Naive MonteCarlo Importance Sampling
Estimated Values 0.0 1.6831×10−14

Confidence interval 95% [1.57849×10−14;1.78783×10−14]
Relative Error 0.12

17

Figure 19: BoxPlot for n = 10 values with two estimators uM and vM .

5 Estimating parameters by likelihood maximisation

To make our results usable in real life, we need to estimate real values of λ0, α and β. In oder to do that,
we used a maximum likelihood estimator λ̂0n , α̂n , β̂n .For real data (ti)1≤i≤n respresenting tweets times
in a day, we want to maximize the log-likelihood:

L (T,λ0,α,β) =
n∑

i=1
log(λi)+T (1−λ0)−

n∑
i=1

α

β
(1−e−β(T−ti))

Its partial deviates are the following:

∂L

∂λ0
=

n∑
i=1

1

λi
−T

∂L

∂α
=

n∑
i=1

1

λi

λi −λ0

α
−

n∑
i=1

1

β
(1−e−β(T−ti))

∂L

∂β
=−

n∑
i=1

α

λi

∑
j<i

(ti − t j)e−β(ti−t j) − α

β

n∑
i=1

(
− 1

β
(1−e−β(T−ti))+ (T − ti)e−β(T−ti)

)

For an optimized calculus of the gradient, we note: ui =∑
j<i (ti −t j)e−β(ti−t j),and we compute ui by the

induction relation:

v0 = u0 = 0

vi+1 = e−βδi (vi +1)

ui+1 = ui e−βδi +δi vi+1

where δi = ti+1 − ti .

We use the function fmin_tnc of module scipy.optimize that takes into argument a function and its
gradient to compute the minimum.

18

For a simulated process with parametersλ0 = 1.2,α= 0.6, β= 0.8, we obtained the following results with
mean on 100 values for T = 100, T = 1000 and with a single value for T = 86400:

T λ0 α β

100 1.383 0.593 0.858
1000 1.243 0.598 0.806

86400* 1.178 0.605 0.800
Real values 1.2 0.6 0.8

We conclude that we have a satisfying accuracy for our estimator. We can therefore use it for real data
on tweets if we have a machine that can handle the huge size of the data: 5900 tweets per second! Nev-
ertheless, if we had access to the data, we can change the time unit and use our estimator for a total time
of 1 second with a regular computer.

References

[1] Hawkes Processes, Patrick J. Laub, Thomas Taimre, Philip K. Pollett, July 13, 2015

[2] Y. Ogata. On lewis’ simulation method for point processes. Information Theory, IEEE Transactions
on, 27(1) :23–31, 1981.

[3] A.G.Hawkes. Spectraofsomeself-excitingandmutuallyexciting point processes. Biometrika, 58(1)
:83–95, 1971.

[4] Queues Driven by Hawkes Processes, Andrew Daw, Jamol Pender, Cornell University, May 10, 2018

[5] A. Simma and M.I. Jordan. Modeling events with cascades of Poisson processes. arXiv preprint arXiv
:1203.3516, 2012.

19

	Simulating Hawkes process
	Simulating with a superposition of Poisson process
	Thinning simple algorithm
	Improving the algorithm

	Ogata Algorithm
	Numba and C++

	Theoretical results
	Different behaviours
	defective case : < 1
	excessive case: > 1

	On the values of the expect value and the variance for the defective case

	Self excitation with features
	Model
	Expected value and variance of the process with features
	Improving the model

	Estimation of rare events probability
	Estimation method
	Confidence intervals:
	Primary tests
	Examples:

	Estimating parameters by likelihood maximisation

