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Abstract

In this article, we present a framework to model and to use knowledge provided by experts for remote sensing image
interpretation of coastal area. The goal of this approach is to associate semantic to regions issued from the segmentation of
an image. The idea is to start with a raw description of the knowledge given by the expert on the different thematic object
classes present in the image. This knowledge is then decomposed and formalized to be usable during the classification
process. A first interpretation of the image is computed through an ontology with spectral information about the classes.
Then, a set of Knowledge Functions (KFs) are defined according to the description of the expert’s knowledge. These
KFs are then used to check the consistency of the spectral interpretation and to detect potentially mislabeled regions.
The interpretation of these regions is revised in an iterative process to produce a more accurate final result. Experiments
on remote sensing images of a coastal zone of Normandy, France are presented to show the relevance of the method.
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1. Introduction

Image interpretation consists in extracting the mean-
ing from data issued from a scene. It means structure the
data, identify the different objects composing the image,
understand their spatial organization and build a descrip-
tion of the scene. Consequently, the image interpretation
task needs and uses a lot of a priori knowledge:

� on the scene and on the objects ;

� on the relations between these objects ;

� on the domain of application.

This a priori knowledge is often known by the expert
who wants to interpret the image but the challenge is to
find a way to transfer it to the machine. This problem is
also known as the semantic gap which can be defined as the
difficulty to link the information extracted from the data
(often as numerical values) and knowledge provided by the
experts (often provided as free-speech description). With
the development of Very High Spatial Resolution (VHSR)
imagery, fully manual interpretations are not possible any
more. In order to help the experts in interpreting the

∗Corresponding author
Email addresses: germain.forestier@uha.fr (Germain

Forestier), wemmert@unistra.fr (Cécdric Wemmert),
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images, efficient tools have to be developed. To achieve
good results, these tools need to use all the knowledge
available for the interpretation task.

This need for knowledge formalization led the researchers
to propose new approaches which can leverage from the in-
formation provided by the experts. These knowledge-based
approaches are more and more ubiquitous and represent
the future of image interpretation [1, 2, 3]. The challenge
is to represent the knowledge at different levels (e.g. ob-
jects, scene, domain, etc.) and to translate it into seman-
tics. The advent of the object-oriented paradigm, which
consists in the segmentation of the image before the inter-
pretation, speeded up the development of the knowledge-
based approaches. Indeed, this paradigm provides a new
frame of reasoning as the expert can directly provide the
knowledge he experiences in the real life on the geograph-
ical objects.

In this article, we present a framework to represent
the knowledge of the expert about objects in an image.
It is based on the knowledge representation presented in
[4] which models the object classes to find in the image
as a hierarchy of classes. The contribution of this paper
is twofold. First, we extend this representation by decom-
posing the expert knowledge into several Knowledge Func-
tions (KFs). Second, we improve this representation with
new type of expert knowledge: spatial relations between
objects. Indeed, different kinds of knowledge have been
acquired from coastal remote sensing image interpretation
experts. From this knowledge, we proposed a represen-
tation using KFs to model the different acquired knowl-
edge. While these KFs are relatively simple, experiments
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on coastal image interpretation revealed their usefulness
to accurately represent the expert knowledge. This modu-
lar approach allows the method to use very heterogeneous
knowledge (e.g. spectral, spatial, contextual, etc.) in an
unifying way.

The article is organized as follows. First, an overview
of related knowledge-based image interpretation methods
is introduced in Section 2. Our approach of knowledge
representation is then presented in Section 3. Section 4
shows an experimental evaluation of the developed method
on coastal remote sensing image. Finally, conclusions are
drawn in Section 5.

2. Related work

With the first object-oriented analysis methods appear-
ing in the 1990’s, techniques such as the use of knowledge
based systems and artificial neural networks came up to
offer much potential for the extraction of geographical in-
formation from remote sensing imagery. For example, [5]
proposed an integrated approach leveraging from both GIS
information and remote sensing. Thematic object data are
used to improve the classification accuracy by defining spe-
cific a priori probabilities for each object. The same kind
of idea is developed in [6], where the authors exposed a
methodology of data integration of remotely-sensed raster
data with vector data. In [7], the authors present how ob-
ject classification and aggregation hierarchies can be used
to describe relationships between terrain objects. They
also show that the categorization of the different types of
object can be partly based on these hierarchies.

In more recent years, different propositions were intro-
duced to leverage from expert knowledge in remote sensing
image classification. We can cite [8] who proposed to in-
tegrate image processing, digital elevation data and field
knowledge or [9] who developed a system called geoAIDA,
which uses semantic network to model a priori knowledge
about the scene, sensors and operators. Using structural
knowledge was also considered to improve the classification
of remote sensing image. In [10], a first pixel-based classi-
fication is computed. Then, the class affected to the pixel
can be altered according to information about the shape
of and the spatial relations between the regions that are
to be determined. [11] proposed a specialized approach
using a context-sensitive Bayesian network for semantic
inference of segmented scenes. The regions’ remote sens-
ing related semantic classes are inferred in a multistage
process based on their spectral and textural characteris-
tics as well as the semantics of adjacent regions. Another
system presented by [12] is composed of a content-based
multimodal Geospatial Information Retrieval and Index-
ing System (GeoIRIS) which includes automatic feature
extraction, visual content mining from large-scale image
databases, and high-dimensional database indexing for fast
retrieval. Facing the difficulty of the of modeling of expert
knowledge, [13] presented a clear list of the specific chal-

lenges of the geoscience and geography fields for knowledge
representation.

In order to improve image interpretation, several dif-
ferent systems, approaches and platforms have been pro-
posed. [14] developed a GIS-based neuro-fuzzy procedure
to integrate knowledge and data in landslide susceptibil-
ity mapping. It employs a fuzzy inference system (FIS) to
model expert knowledge, and an artificial neural network
(ANN) to identify non-linear behavior and generalize his-
torical data to the entire region. The results of the FIS are
averaged with the intensity values of existing landslides,
and then used as outputs to train the ANN. Alternatively,
[2] proposed a system for the annotation of large satellite
images using semantic classes defined by the user. This
annotation task combines a step of supervised classifica-
tion and the integration of the spatial information. Given
a training set of images for each class, learning is based on
the latent Dirichlet allocation (LDA) model.

The use of ontologies to represent the semantics of
geoscience domain knowledge was introduced by [15] who
proposed a GIS architecture that enables geographic in-
formation integration in a flexible way based on its se-
mantic value and regardless of its representation. More
recently, [16] developed a collection of ontologies using the
web ontology language (OWL) that include both orthogo-
nal classes (space, time, Earth realms, physical quantities,
etc.) and integrative science knowledge classes (phenom-
ena, events, etc.). Their article describes how to build a
knowledge base for geosciences and related classes using
ontologies. In [17], the authors analyze and compare the
most widely referred proposals of geographic information
integration, focusing on those using ontologies as semantic
tools to represent the sources, and to facilitate the inte-
gration process. [18] describe an information model for
a geospatial knowledge infrastructure that uses ontologies
to represent these semantic details, including knowledge
about domain classes, the scientific elements of the re-
source (analysis methods, theories and scientific processes)
and web services. This semantic information can be used
to enable more intelligent search over scientific resources,
and to support new ways to infer and visualize scientific
knowledge.

In this paper, we propose a recognition method based
on an ontology, which has been developed by experts of the
domain. In order to give a semantic meaning to the ob-
jects, we use the matching process between an object and
the classes of the ontology developed in [4]. This method
is extended and generalized by introducing a new kind
of knowledge about the spatial relationships between geo-
graphical objects. Moreover, we choose another domain of
application (coastal area analysis), to show that, in con-
trast to several related work, our method is generic and
can easily be extended by defining new types of knowl-
edge functions.
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Figure 1: Flowchart describing the different steps of the approach.

3. Description of the method

In this section, we describe the method we developed
for image interpretation using knowledge and semantics.
In Fig. 1, we present the different steps of the approach.
The first step is the segmentation of the image in order
to produce a set of regions. In a second step, an initial
labeling of the regions is carried out using an ontology
composed of a hierarchy of classes. This ontology contains
for each class, a set of information about the spectral prop-
erties of the classes and allows us to make some hypothesis
about the semantic of the regions. In a third step, addi-
tional knowledge provided by the expert are translated in
KFs. They are then used for a consistency checking on the
hypothesis provided by the ontology containing the spec-
tral information. The hypothesis are therefore modified to
improve the consistency of the scene (i.e. the labeling of
the regions and the KFs). This process iterates while the
consistency of the scene increases.

If R is the set regions issued from the segmentation
of an input image, the aim of the method is to find the
best class for each region r (∈ R) according to the spec-
tral information stored in the ontology and the knowledge
defined in the KFs. We assume that R is a partition of
the image, so that there no holes or overlaps between the
regions. Another strategy could consist in creating the
regions by using the knowledge as proposed in [19] or [20].

3.1. Initial labeling

To be able to use the knowledge defined by the expert
about the classes, we have to compute an initial labeling
of the regions of R. Indeed, the knowledge we want to
describe can only be manipulated if an initial semantic is

present. For example if you want to check if it is consistent
to have a building region surrounded by water regions you
need a first proposition of the semantic (building, water,
etc.) of the different regions.

In order to produce this initial labeling we defined an
ontology of coastal objects (see Fig. 2). This ontology
is a hierarchy of classes, which can be seen as classes of
objects, corresponding to the geographical objects the ex-
pert wants to detect in the images. Each class is described
by a set of attributes corresponding to the range of ac-
cepted values for a given spectral band. This knowledge
have been acquired thanks to the experience of the geog-
rapher expert on the spectral reflectance of the different
object, by manual observation and using machine learning
tools [21]. These ranges of values are not as accurate as a
supervised classifier but the idea is not to have a perfect
labeling but a first labeling. This first labeling will then
be improved through a refinement step using the other
knowledge of the expert about the different objects.

To calculate this first labeling we used the procedure
exposed in [4]. The method is based on a matching score
defined as a linear combination of local similarity mea-
sures. First, the complete path starting from the root of
the ontology and ending at the studied class is computed.
Then, for each class of the path, the local similarity mea-
sure is calculated, by comparing the features of a region
with the specific attributes of the class. Finally, an al-
gorithm is proposed to traverse the ontology to find the
best class(es) according to the matching score for a re-
gion. After the step of ontology based object recognition,
each region r of R has a set of hypothesis with a score
value (si) associated to each hypothetical class (ci).

Let C be the set of classes present in the ontology (i.e.
corresponding to the leaf classes of the hierarchy). It is
possible to define the set of hypothetical classes for a region
r as:

H(r) = {(ci, si)| ci ∈ C, si ∈ [0; 1], 1 ≤ i ≤ card(C), si ≥ si+1}
(1)

where ci is the label of the class and si the score of the
region for this class. The exact definition and calculation
procedure of si is presented in details in [4].

The best hypothesis class for a region r is then defined
as:

B(r) = (c, s) | @ si > s ∀(ci, si) ∈ H(r) (2)

It means that C forms a thematic partition of the set of
all identified objects, i.e. each object is assigned to exactly
one class of C: the best hypothesis B(r). The example
below presents a possible list of hypothesis for a region.

Example 1 Example of a set of hypothesis for a re-
gion r: H(r) = {(Field, 0.716), (Wooded area, 0.670), (Salt
meadow, 0.533), (Dune, 0.427), (Pond, 0.307), (Building,
0.087), (Slikke, 0.020), (Beach, 0.001)} and B(r) = (Field,
0.716). These values were computed by comparing the
features of the region and the characteristics of the classes
[4].
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Figure 2: The ontology presenting the different coastal objects.

3.2. Additional knowledge acquisition

Along with the definition of the ontology using only
the spectral information, the expert has also produced a
set of raw knowledge that he knows about different coastal
objects. The Tab. 1 presents the different observations for
each class. From these different information an extended
model of the ontology has been defined (see Fig. 3). This
knowledge has been acquired by interview amongst geog-
rapher experts and illustrates the consensual observation
made on the different classes.

3.3. Representation of the knowledge

Each KF takes a region r as input and evaluates the
concordance between the knowledge described by this KF
and the properties of the region. A fuzzy value v (∈ [0; 1])
is computed to quantify the concordance between the re-
gion and the knowledge defined in the function. Conse-
quently, all the KFs have the same prototype (KF : r →
v (∈ [0; 1])) to be easily used and combined. Furthermore,
each KF comes with a weight w (∈ [0; 1]) which is set
according to the importance and the confidence of the ex-
pert on the knowledge represented by this KF (the default
value is set to 1). The weights can be difficult to select and
are specific to a certain type of application. For example,
according to the context of the scene (e.g. urban area,
coastal area, etc.), certain types of knowledge are more
useful to identify specific object classes. For example, it is
difficult to use knowledge on the elevation in urban area
due to many artifacts (e.g. bridge, cars, etc.). On the con-
trary, this knowledge is interesting in coastal area where
the landscape is generally simple. The weights are gener-
ally adjusted by the expert using a trial-error approach,
or by using optimization approach [19].

The set F is composed of different KFs built to rep-
resent the knowledge of the expert. Each of these KFs
represents one part of the knowledge of the expert. This
decomposition in KFs allows the user to define different
kinds of knowledge about the classes. Furthermore, some
classes could have more detailed knowledge and conse-
quently more or less KFs defined on them.

In the following, we detail the definition of different
KFs which have been created according to the knowledge
expressed by domain experts on coastal objects (see Tab.
1). The set of functions F = {O,S, E ,N ,D} describes the
different kinds of knowledge that we have extracted from
the raw knowledge:

� O(r) returns the score associated to the best ontol-
ogy hypothesis.

� S(r) evaluates the correspondence between the knowl-
edge on the shape of a class and a region.

� E(r) evaluates the correspondence between the knowl-
edge on the elevation of a class and a region.

� N (r) evaluates the correspondence with the knowl-
edge of the potential classes in the neighborhood of
a region.

� D(r) evaluates the correspondence between the knowl-
edge about distance to other classes of a region.

3.3.1. Definition of the function O
The function O(r) returns the score of the best ontol-

ogy hypothesis amongst H(r). It is defined as:

O(r) = s | (c, s) = B(r) (3)

Example 2 Using the Example 1, the best ontology
hypothesis function returns: O(r) = 0.716 as B(r) =(vegetation,
0.716).

3.3.2. Definition of the function S
The function S(r) is used to check if the region has the

expected shape according to the best ontology hypothesis
for this region. For example, for the region where the best
hypothesis is building, we have to check that the shape is
compact (see Table 1). The notion of shape is very difficult
to represent and a discussion has been carried out with
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Figure 3: The ontology of coastal objects extended with expert knowledge (only a part of the knowledge is represented for visual convenience).
Dotted arrows represent the two new types of relations between the classes: to a distance of and direct neighbor of.

the expert to formalize their knowledge into a computer
usable form. For each shape information, a shape index
has been selected. For each shape index an interval of
accepted values for this index has been chosen according to
the knowledge of the shape of the class. Tab. 2 summarizes
the different shape indexes and related accepted values for
these indexes. To check if a class hypothesis is consistent
with the shape information, we computed a fuzzy value
using a simple membership function. The Fig.4 presents
an example of the functions defined using the range of
accepted values of the elongation (a) and size (b).

3.3.3. Definition of the function E
The function E(r) checks if the elevation of the region

is correct according to the best hypothesis class of the
region. The knowledge in Tab. 1 gives two different kinds
of information: a knowledge about the average elevation
for the class and a knowledge about the lack of variation
in the elevation of the region. Consequently, two functions
were defined to check these constraints.

To check if the region matches with the elevation con-

straint for a class, we computed the mean µ
(r)
e and stan-

dard deviation σ
(r)
e of the elevation of the region. In order

to verify if the elevation matches with the knowledge of ex-
pected average elevation, we compared the mean elevation
to the threshold defined by the expert:

E(r) =

{
1 if µ

(r)
e (≤ or ≥) elevationthreshold

0 else
(4)

(a) Membership function for the elongation.

(b) Membership function for the size.

Figure 4: Example of two functions used to compare the shape of a
region and the knowledge of the expert.
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Table 1: Raw knowledge about the different coastal classes of object.

Classes Knowledge

Mineral

Building
Neighbors: Wooded area, Pond
Compact form

Slikke Neighbors: Salt meadow, Channel, Sea, Beach

Beach
Neighbors: Slikke, Sea
Linear form

Vegetation

Dune
Neighbors: Beach
Elevation > 5m
Altitude variation (±5m)

Salt meadow

Neighbors: Slikke
Distance to the sea: [5; 6]m
Distance to a channel: [5; 6]m
Elevation < 5m
No altitude variation

Wooded area
Neighbors: Building, Field
Surface: [100; 200]m2

Field
Distance to the sea: [15; 20]m
Rectangular form

Water

Pond
Neighbors: Salt meadow, Wooded area, Building
Surface: [100; 200]m2

Sea Neighbors: Slikke, Beach, Channel, Salt meadow

Channel
Neighbors: Slikke
Linear form

Table 2: Shape index selected to represent expert knowledge.

Concept Shape Shape index

Building compact shape elongation ∈ [0.5, 0.6]

Beach linear shape elongation ∈ [0.8, 0.9]

Field rectangular form Miller index ∈ [0.7, 0.9]

Pond size constraint size ∈ [100, 200]

Wooded area size constraint size ∈ [100, 200]

A second function is defined to check the constraint of
the lack of variation in the elevation of the region:

E(r) =

{
1 if σ

(r)
e ≤ elevationthreshold

0 else
(5)

3.3.4. Definition of the function N
The neighbors information is more and more interest-

ing in object oriented image analysis. As we deal with
objects, a strong knowledge about neighboring objects if
often available but rarely used. The aim of this function
is to compute a value according to the neighbors of each
region to check and quantify if the region is immersed in
a possible context according to expert knowledge. For ex-
ample, if we find a building region surrounded by water
regions, we might have detected an error. This function is
defined to represent this knowledge and to takes advantage
of it.

According to the best hypothesis of the regions of the
set of regions surrounding the region r (N(r)) (i.e. regions

region r (field)

N(r, salt meadow) = 61%

N(r, dune) = 12%

N(r, slikke) = 27%

Figure 5: Example of computation of the neighborhood of a region.
The regions directly adjacent to the region r are considered as in
its neighborhood. The percentages are defined as the ratio of the
number of the pixel of each region over the sum of the number of
pixels of all the regions in the neighborhood of r. This information
is used to evaluate if the neighborhood of a region is coherent.

topologically adjacent to the region r), a value quantifying
the presence of a class in the neighborhood of the studied
region is computed as:

N(r, c) =
1∑

ri∈N(r)

card(ri)
·

∑
ri∈N(r)
c=ci

(ci,si)=B(ri)

card(ri) (6)

with card(r) the cardinality (i.e. the number of pixels)
of the region r.

The function N is computed for each class surrounding
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the region r. The Tab. 3 illustrates the possible neigh-
boring classes which have been derived from Tab. 1. In
this table, the + symbol means that the two classes can
be neighbors, while a − symbol means the contrary. Using
this information, we computed a value which quantifies if
the neighboring regions of a a given region are in concor-
dance with the expert knowledge:

N (r) =

∑
ri∈N(r) N(ri) · neighbor(r, ri)∑

ri∈N(r) neighbor(r, ri)
(7)

with neighbor a function which return 1 or 0 respectively
for + or − according to the table 3.

Example 3: In Fig. 5, N (r) would be equals to zero
as the regions belonging to the neighborhood of r (Field)
are: Slikke, Salt meadow and Dune and according to Tab.
5, the regions of these object classes should not be in the
neighborhood of a field. Consequently, the object class
affected to this region has an important chance to be re-
vised.

3.3.5. Definition of the function D
The function D(r) is a function checking the consis-

tency of the region according to the distance to an another
object class. It starts from the region r and iteratively
checks the class affected to the neighbors of r (i.e. N(r)).
If a region t, belonging to the requested object class, is
found by checking a predefined number of iterations of the
neighbors, the distance between r and t is evaluated. This
distance is computed as a pixel path between the centers
of the bounding boxes of the two regions. This distance in
pixel is then converted in meter using the spatial resolu-
tion of the image. This distance in meter is then compared
to the knowledge in the Tab. 1 as a fuzzy matching similar
to the one used for shape evaluation (see Fig. 4).

3.4. Evaluation of the result according to the knowledge

Now that we have defined a set of KFs we can use
them to improve the quality of the initial labeling. It is
important to remember that the aim of the first step is to
generate a set of hypothesis for each region according to
spectral information within the ontology. Then, for each
region, we use the KFs defined for the best hypothesis of
each region to evaluate the consistency of this hypothesis
according to the context of the region. Indeed, each KF
is not interesting for all the classes of the ontology. The
Tab. 4 summarizes the different KFs defined according to
the classes of the ontology.

To efficiently used the knowledge, we have to check for
each region, if the hypothesis proposed by the ontology is
consistent with the KFs defined by the experts. For this,

a local function of knowledge agreement (L(r)) is defined,
computing the concordance between a region r and the
subset of KFs (F (r) ⊆ F) which are available for the best

hypothetical class of the region r:

L(r) =
1∑

f∈F(r)

w(f)
·
∑

f∈F(r)

(f(r) · w(f)) (8)

Then, the global function of knowledge agreement (G(r))
is defined computing the function L(r) on all the regions
of a segmentation:

G(R) =
1

card(R)
·
∑
r∈R

L(r) (9)

3.5. Modification of the result according to the knowledge

Now that we are able to evaluate the agreement of a
region with the available knowledge we can use this infor-
mation to detect potential errors in the interpretation. We
defined an iterative algorithm whose steps are described in
the following pseudo code:

Algorithm 1 Algorithm for evaluation of consistency of
the scene

1: compute G(R)
2: find the region rmin with the min(L(r)) among R
3: switch the class affected to the region rmin to the
next hypothesis according to the set of hypothesis of
this region
4: evaluate the relevance of this modification by recom-
puting G(R)
5: if G(R) increases go to 2
6: else go to 2 and ignore current rmin in the next se-
lection step
6: if all regions have been considered without improve-
ment, exit.

The goal is to find at each step the region which min-
imize L(r). This region is consequently the region having
the lower agreement with expert knowledge according to
the class of the ontology affected to this region. Thus, in
this step, we use the formalized knowledge to detect po-
tentially mislabeled regions. Once the region minimizing
L(r) identified, the class affected to the region is switched
to the next potential class according to the set of hypothe-
sis given by the ontology (see Eq. 1). The process iterates
until G(R) does not increase anymore, which ensures its
termination. It might be interesting to check individu-
ally for each region if the concordance with the knowledge
functions increases. However, the switch from one class to
another affects also other regions of the result. For exam-
ple, if we change the class of a region, the computation
of the knowledge function of the regions surrounding this
region can be modified. Consequently, even if checking
locally the evolution of L(r) is interesting, a global evalu-
ation of G(R) is needed to assess globally the results ac-
cording to local modifications. As this algorithm consists
in simple iterations, it does not guarantee the convergence
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Table 3: Knowledge about the neighborhood of the class of objects derived from expert knowledge of Tab. 1.

Building Slikke Beach Dune Salt m. Wood. Field Pond Sea Channel
Building - - - - + - + - -

Slikke - + - + - - - + +
Beach - + + - - - - + -
Dune - - + - - - - - -

Salt m. - + - - - - + + -
Wood. + - - - - + + - -
Field - - - - - + - - -
Pond + - - - - + - - -
Sea - + + - + - - - +

Channel - + - - - - - - +

Table 4: KFs defined according to the different classes.

Class KFs
Building {O, N , S}
Slikke {O, N}
Beach {O, N , S}
Dune {O, N , E}
Salt meadow {O, N , E , D}
Wooded area {O, N , S}
Field {O, D, S}
Pond {O, N , S}
Sea {O, N}
Channel {O, N , S}

to a globally optimal but only to a local optimal (i.e. it
is a greedy algorithm). This could be improved by using
an optimization algorithm, as a genetic algorithm. Note
that the algorithm is deterministic and provides always
the same results according to an initial labeling using the
ontology. Consequently, this approach is stable and exper-
iments can be re-run without effort.

4. Experiments

In this section, we present experiments to illustrate
the framework presented in the previous sections. Coastal
landscapes are severely affected by environmental and so-
cial pressures. Their long term development is controlled
by both physical and anthropogenic factors, which spatial
dynamics and interactions may be analyzed by Earth Ob-
servation data. The Mont-Saint-Michel Bay (Normandy,
France) is the European coastal system experiencing the
highest tidal range (approximately 15m) because of its ge-
ological, geomorphological and hydrodynamical contexts
at the estuary of the Couesnon, Sée and Sélune rivers. It
is also an important touristic place with the location of
the Mont-Saint-Michel Abbey, and an invaluable ecosys-
tem of wetlands forming a transition between the sea and
the land. These reasons make of this place an important
area of study where the use of very high resolution imagery
can play an important role. In these experiments, we used

a Quickbird image acquired in 2006 having a resolution of
0.7m/pixel. We extracted an area which presents all the
interesting thematic classes we wanted to identify. Fig. 6
(a) presents an extract the area (400x650 pixels).

We used the eCognition1 software to obtain a segmen-
tation of this image. Note that even if the method is to
some extend dependent of the quality of the segmentation,
another segmentation could have been used. The segmen-
tation used in this experiment is presented on the figure
6 (b). We also possess for this area a LIDAR information
which has been used to evaluate the elevation knowledge
provided by the expert. An elevation map is presented on
figure 6 (c) (the brighter, the higher). A groundtruth map
have been provided by geographer expert for this area and
is presented on Fig. 6 (d). This map presents the eight
most important thematic classes present in this image:
Slikke, Beach, Dune, Field, Vegetation, Water, Building,
Salt meadow. Note that the Water class is the association
of the classes Sea, Channel and Pond because the expert
has not made any difference on these classes in this image.

After the segmentation step, we used our ontology stor-
ing the spectral information to obtain a first labeling of the
area. Fig. 6 (e) presents the result of this first labeling.
One can see that the results are interesting but a lot of
small mislabeled regions are visually identifiable (for ex-
ample the red building area in the middle of the slikke).
We used this first labeling as the input of our iterative
coherency checking approach. We used the KFs defined
previously in the paper to evaluate the coherency of this
labeling. The results at the end of the iterations is pre-
sented on the figure 6 (f). In this experiment, 84 iterations
have been carried out. In order to evaluate the quality of
this interpretation, we used the groundtruth provided by
the expert to compute confusion matrices and the Kappa
coefficient. Tab. 5 and Tab. 6 presents respectively the
confusion matrix of the result before and after the applica-
tion of the KFs. The Kappa value before the application
of the KFs was equal to 0.776. The application the KFs
allowed us to increase this value to 0.887. This good result
highlights the benefit of using the knowledge of the expert

1http://www.ecognition.com/
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(a) The raw image. (b) The segmentation of the
image (border of the region
are highlighted in blank).

(c) The elevation map (the
brighter, the higher)

(d) The groundtruth pro-
vided by the expert.

(e) The result before the ap-
plication of the KFs.

(f) The result after the ap-
plication of the KFs.

X Slikke

X Beach

X Dune

X Field

X Wooden area

X Water

X Building

X Salt meadow

Figure 6: Images presenting several informations about the image used in the experiments on the Mont-Saint-Michel Bay, France captured
with Quickbird (0.7m/pixel).

to improve image interpretation. Most of the remaining
errors are due to the quality of the segmentation which
stays a really decisive point in the interpretation process.

Of course, there is no interest of formalizing and using
expert knowledge if the initial classification and labeling
provide very accurate results. If the expert is able to bring
many samples on each class, supervised classification could
give relevant results. However, the aim of this paper is to
show how expert knowledge can be modeled and used to
increase the accuracy of a classification calculated without
enough samples and of insufficient quality. Moreover, as
we propose to use a simple initial classification based on
intervals of values and not on samples from the image, this
classifier can be used on many different images, without
having to provide new samples from each image.

5. Conclusion

In this paper, we have presented a framework for knowledge-
based image interpretation of coastal images. This ap-
proach uses an ontology of coastal objects to affect a se-
mantic to the regions extracted from a segmentation. This
semantic is then refined using Knowledge Functions (KFs).
These KFs have been designed to translate the knowledge
of the expert about coastal objects. They are used to check
the consistency of the semantic given to the region using
the ontology. An experiment on an image of the Normandy
coast (France) highlighted the benefits of the approach.

The main contribution of the paper is to present a for-
malization of the knowledge of the expert. We wanted to
highlight that modeling and using expert knowledge could
help improving the interpretation results. This method
can only provide interesting results, if the initial labeling
is not perfect. If the expert possesses a method to directly
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Table 5: Confusion matrix before the application of the KFs

Slikke Beach Dune Field Wood. Water Building Salt meadow
Slikke 85133 111 1054 0 0 12714 9356 15
Beach 163 4201 775 0 0 0 2989 0
Dune 99 19 46347 13744 820 356 1319 1333
Field 223 0 3595 35096 3017 21 0 625
Wood. 0 0 1171 1932 5986 225 94 1005
Water 1003 0 35 12 190 7698 0 0

Building 892 254 1046 172 4 110 1753 185
Salt meadow 463 0 2364 1568 1101 39 58 10360

Table 6: Confusion matrix after the application of the KFs

Slikke Beach Dune Field Wood. Water Building Salt meadow
Slikke 95435 751 130 0 0 10909 219 939
Beach 1076 5092 644 119 0 0 1183 14
Dune 325 245 53084 8438 820 356 709 60
Field 223 0 3484 34984 3017 21 0 848
Wood. 0 0 2185 1415 5986 225 94 508
Water 1003 0 22 12 190 7698 0 13

Building 892 254 573 492 4 110 1505 586
Salt meadow 468 9 1057 49 0 39 44 14287

obtain good results, our approach is not interesting any-
more. However, we carried out discussions with geogra-
pher experts and they have shown a strong interest in our
method. Indeed, our method only uses simple knowledge
and does not require direct examples, which are generally
difficult to select in object-based classification. Moreover,
a classifier can easily be created and used on different im-
ages without selecting new examples on each image. Using
shapes and relationships between regions has been already
explored (e.g. eCognition software). However, it is often
difficult to link expert knowledge expressed in free speech
and computer programs. In this paper, we explained how
we used expert knowledge, and make it actionable to use
for automatic image interpretation.

In future work, we plan to develop the ontology and
to enhance it with more knowledge. For the moment, the
ontology and the KFs are store separately. We would like
to formally describe the knowledge represented by the KFs
inside the ontology. We also plan to develop an OWL-DL
version of the ontology to use a reasoner to automatically
discover mislabeled regions. Furthermore, we also would
like to evaluate the benefit of using an optimization ap-
proach in the step of consistency checking. Indeed, the
current iterative algorithm does not ensure the discovery
of a global maximum. However, as the search space might
be huge (the number of region × the number of classes),
meta-heuristic approaches might be considered. We are
also considering increasing the interaction with the expert
during the interpretation of the image and request feed-
back on the decision of the method in order to guide the
process.
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