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Abstract

The aim of collaborative clustering is to make different clustering methods collaborate, in order to reach at
an agreement on the partitioning of a common dataset. As different clustering methods can produce different
partitioning of the same dataset, finding a consensual clustering from these results is often a hard task. The
collaboration aims to make the methods agree on the partitioning through a refinement of their results. This
process tends to make the results more similar. In this paper, after the introduction of the collaboration
process, we present different ways to integrate background knowledge into it. Indeed, in recent years, the
integration of background knowledge in clustering algorithms has been the subject of a lot of interest. This
integration often leads to an improvement of the quality of the results. We discuss how such integration in
the collaborative process is beneficial and we present experiments in which background knowledge is used
to guide collaboration.
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knowledge-guided clustering
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1. Introduction

Clustering is an important machine learning tool for discovering hidden patterns, structures and rela-
tionships between data objects in an unsupervised way. It has been widely used in pattern recognition
fields, mainly to classify groups of measurements or observations. It finds applications in bioinformatics,
information retrieval, medicine, image analysis or financial markets, to structure information and discover
hidden knowledge.

Over the last fifty years, a huge number of new clustering algorithms have been developed, and existing
methods have been modified and improved [1, 2, 3, 4, 5]. This abundance of methods can be explained
by the ill-posed nature of clustering. Indeed, each clustering algorithm is biased by the objective function
used to build the clusters. Consequently, different methods can, from the same data, produce very different
clustering results. Furthermore, even the same algorithm can produce different results, according to its
parameters and initialization. A relatively recent approach to circumvent the problem is based on the idea
that the information offered by different sources and different clustering, are complementary [6]. Thus, the
combination of different clusterings may increase their efficiency and accuracy. A single classification is
produced from results of methods having different points of view: each individual clustering opinion is used
to find a consensual decision. Each decision can be processed from a different source or media.

In the same way, we address the problem of the collaboration between different clustering methods.
Collaboration is a process where two or more actors work together to achieve a common goal by sharing
knowledge. In our collaborative clustering method, called Samarah, different clustering methods work
together to reach an agreement on their clustering. Each clustering modifies its results according to all the
other clusterings until all the clusterings proposed by the different methods are strongly similar. Thus, they
can be more easily unified, for example, through a voting algorithm.
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Different studies showed that this method provides interesting results on artificial data sets and on real
life problems. However, a lot of work is currently focusing on integrating background knowledge into the
clustering process. This work highlights the benefits of knowledge integration into this process by showing
that the use of such knowledge to drive the process leads to more accurate results. The aim of this paper is to
present an extension of Samarah, which takes into account background knowledge during the collaboration
of the methods. The background knowledge is used to drive the collaboration between the clustering methods
and allows an improvement of the final results.

To evaluate benefits of using the collaborative clustering method Samarah with (and without) back-
ground knowledge integration, we used classical approaches based on quality indexes and a more recent
approach called cascade evaluation. Cascade evaluation [7] is a new approach to evaluate the quality and
the interest of clustering results. The method is based on the enrichment of a set of labeled datasets by
the results of clusterings, and the use of a supervised method to evaluate the benefit of adding such new
information to the data sets.

The cascade evaluation of the Samarah method highlights that collaboration increases the quality of the
refined results in both cases: with and without the use of background knowledge during the collaboration

This paper is organized as follows. First, we describe work related to our approach (Section 2). In
particular, we introduce clustering methods using background knowledge (Section 2.4). Section 3 describes
the collaborative clustering method Samarah and presents the knowledge integration into it. Then, in
Section 4, after a brief introduction to cascade evaluation principles, the evaluations of the collaborative
clustering on various datasets from the UCI repository are detailed and discussed. Finally conclusions and
perspectives are drawn in Section 5.

2. Related works

In recent years, a lot of work has focused on the use of multiple clusterings to improve the unsupervised
classification process. Indeed, many different algorithms exist and may provide different results from the
same dataset. Consequently, it is often difficult to design a single algorithm whose results reflect what users
need and expect. To cope with this problem, the ensemble clustering approaches (Section 2.1) consist in
designing function which summuarize several clustering into a single one. The aim is to find the average
partition which is the most similar to all the results of the ensemble. However, the ensemble clustering me-
thods only focus on the creation of the consensus and do not modify or create new partitions. Consequently,
they consider that the initial provided partititions are the only ones necessary.

Alternatively, the multiobjective approaches (Section 2.2) see the clustering process as an optimization
of different objectives. In this methods, a vast amount of different clustering results are explored, and the
ones which best match the objectives are keept. A genetic algorithm is generaly used and new clusterings
are created by mixing different results together. However, the objective use in the optimization are not
always the objetive of the algorithm used to create the initial partation, and thus induce a new bias.

In the fuzzy collaborative clustering approaches (Section 2.3), the fuzzy c-means alogrithm is use to
cluster different views of the data in a collaborative way. This work only focuses on the fuzzy c-means
algorithm which limits its use. However, its prodive strong theorical basis which better highlight the benefit
of the collaboration in specific environement.

The use of different clusterings result often require a strong implication of the user, as there is a lot of
parameter to choose. To reduce the need of the user and improve the quality of the results, a lot of work has
also focused on the use of background knowledge (Section 2.4). Background knowlegde has many different
representations like a set of labeled patterns, link between patterns, the number of expected clusters, the
expected size of the clusters, etc.

2.1. Ensemble clustering

The aim of ensemble clustering is to generate multiple clusterings and to merge them to produce a final
consensus clustering. The initial clusterings are generally generated by applying different algorithms, using
different parameters of the same algorithm, or by random sampling of the dataset. Ensemble clustering is
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often used to improve the accuracy of the data clustering or to find complex shaped clusters. Indeed, using
multiple clusterings allows ensemble clustering algorithms to better grasp the underlying distribution of the
data space.

Strehl et al. [8] formulated the consensus clustering as the partition that maximize the shared information
among the ensemble of initial clusterings. This information is measured through the Average Normalized
Mutual Information (ANMI) which uses the information theory framework. Three different clustering en-
semble strategies based on graph theory are presented : Cluster-based Similarity Partitioning Algorithm
(CSPA), Hyper Graph Partitioning Algorithm (HGPA), and Meta Clustering Algorithm (MCLA). Further
work reveals that these approaches are sensitive to cluster sizes and seek only for balanced-size clusters (i.e.
all the clusters tend to have the same number of data objects).

Another approach, called evidence accumulation, is presented by Fred et al. [9]. The main idea is to
produce a co-association matrix from the different initial clusterings. This matrix gives the information
of the number of times that two data objects have been put together in the same cluster. A hierarchical
clustering is then used, using the co-association matrix as a distance matrix, to cluster the objects into the
final partition. Various approaches using the co-association matrix have been presented in the literature
and seem to outperform the graph based methods.

Topchy et al. [10] described how to create a new feature space from an ensemble clustering by interpreting
the multiple clusterings as a new set of categorical features. The Kmeans algorithm is applied on this new
standardized feature space using a category utility function to evaluate the quality of the consensus. Topchy
et al. [11] also demonstrated the efficiency of combining partitions generated by weak clustering algorithms
that use data projections and random data splits.

Hadjitodorov et al. [12] presented an evaluation of different heuristics to produce the initial set of
clusterings. The most often selected heuristics were random feature extraction, random feature selection
and random number of clusters assigned to each member of the ensemble.

Ayad and Kamel [13] present a cumulative voting method to come to a consensus from partitions with a
variable number of clusters. They described several cumulative vote weighting schemes and corresponding
algorithms, to compute an empirical probability distribution summarizing the partitions. The empirical
study shows the efficiency of the method compared to others consensus clustering algorithms.

More voting methods are given by Nguyen et al. [14]. Three iterative algorithms are presented: Iterative
Voting Consensus (IVC), Iterative Probabilistic Voting Consensus (IPVC) and Iterative Pairwise Consensus
(IPC). These algorithms use a feature map built from the set of base clusterings and apply an EM-like
consensus clustering.

To directly address the correspondence problem (among the clusters of different clusterings) in combining
multiple clusterings, Zhang et al. [15] introduced a new framework based on soft correspondence. The
proposed algorithm provides a consensus clustering method as well as correspondence matrices that give the
relations between the clusterings of the ensemble.

Hu et al. [16] proposed a method which uses Markov random fields and maximum likelihood estimation
to define a metric distance between clusterings. They present two combining methods based on this new
similarity to find a consensus.

More recently, Pedrycz et al. [17] proposed a consensus-driven fuzzy clustering method. The authors
consider the proximity matrices induced by the corresponding partition matrices. An optimization scheme
is presented in detail along with a way of forming a pertinent criterion. This criterion governs an intensity
of collaboration to guide the process of consensus formation.

The ensemble clustering approaches do not generally address the problem of the generation of the initial
results, and the algorithms used to create the initial results are not used in the combination process. Con-
sequently, ensemble clustering approaches introduce a new bias, relative to the objective function chosen
when merging the different clusterings.

2.2. Multiobjective clustering

The aim of multiobjective clustering is to optimize simultaneously several clustering criteria. The idea is
to have a better grasp of the notion of cluster by explicitly defining them with different objective functions.
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Algorithms are able to produce a set of trade-off solutions between the different objectives. These solutions
correspond to different compromises of the objectives used.

Thus, the method mock (Multi-Objective Clustering with automatic K-determination) [18] uses two
objectives: the first one is to maximize the compactness of the clusters, and the second one their connectivity.
A multiobjective evolutionary algorithm is used to optimize these two criteria simultaneously. The method
uses a Pareto based approach [19] which consists in selecting the non-dominated solutions of the Pareto
front. At the end of the evolution, the solutions on the Pareto front are the set of solutions provided by the
algorithm. A heuristic is then used to select the best potential solution by using the number of clusters of the
solutions on the front. In [20], the authors present how to integrate background knowledge through a third
objective optimization which uses a subset of labeled samples. This semisupervised version outperformed
the solution without background knowledge.

Faceli et al. [21] described the multiobjective method called mocle (Multi-Objective Clustering En-
semble) which integrates the same objective function (maximization of compactness and connexity of the
clusters) as mock. But a special crossover operator which uses ensemble clustering techniques is added:
the purpose of the mocle method is to produce a set of solutions which are a trade-off of the different
objectives, while the mock method produces a single solution.

Law et al. [22] proposed a method which uses different clustering methods using different objectives.
The final result is produced by selecting clusters among the results proposed by the different methods. A
resampling method is used to estimate the quality of the clusters.

A semisupervised extension of mocle has also been proposed recently [23]. The prior knowledge about
a known structure of the data is integrated by means of an additional objective function that takes external
information into account. The new objective aims at creating pure clustering according to known object
class label. The objective is optimized along with the previous one on the data and the use of background
knowlege improved the result of the method.

An evolutionary version of the Kmeans algorithm is used by [24], driven by a semisupervised objective.
This objective is a weighted sum of the mean squared error (MSE) and the purity of the clusters according
to a subset of available samples. Different criteria are investigated to quantify this purity.

In [22], the authors proposed a method which uses different clustering methods using different objectives.
The final result is produced by selecting clusters among the results proposed by the different methods. A
resampling method is used to estimate the quality of the clusters.

2.3. Fuzzy collaborative clustering

A fuzzy clustering architecture is introduced by Pedrycz et al. [25], in which several subsets of patterns
can be processed together to find a common structure to all of them. In this system, different subsets
of the initial data are processed independently. Then, each partition matrix is modified according to the
other matrices found: each result produced on a subset is modified according to results found on the other
subsets. Extensive experiments of the method are also proposed in [26] along with algorithmic details. An
application of this collaborative fuzzy clustering method to semantic web content analysis has be proposed
in [27]. The authors discuss of a collaborative proximity-based fuzzy clustering and show how this type of
clustering is used to discover a structure of web information in the spaces of semantics and data.

A fuzzy collaborative framework is also proposed [28], where rough sets are used to create a collaborative
paradigm in which several subsets of patterns are processed together to find a common structure. A clustering
algorithm is developed by integrating the advantages of both fuzzy sets and rough sets. A quantitative
analysis of the experimental results is also provided for synthetic and real-world data.

To tackle the problem of distributed data, [29] proposed a framework to cluster distributed classifier.
They show that clustering distributed classifiers as a pre-processing step for classifier combination enhances
the achieved performance of the ensemble.

2.4. Clustering with background knowledge

Many approaches have been investigated to use background knowledge to guide the clustering process.
In constrained clustering, knowledge is expressed as must-link and cannot-link constraints and is used to

guide the clustering process. A must-link constraint gives the information that two data objects should be in
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the same cluster, and cannot-link means the opposite. This kind of knowledge is sometimes easier to obtain
than a classical subset of labeled samples. Wagstaff et al. [30] presented a constrained version of the Kmeans
algorithm which uses such constraints to bias the assignment of the objects to the clusters. At each step, the
algorithm tries to agree with the constraints given by the user. These constraints can also be used to learn
a distance function biased by the knowledge about the links between the data objects [31]. The distance
between two data objects is reduced for a must-link and increased for a cannot-link. Huang et al. [32]
presented an active learning framework for semi-supervised document clustering with language modeling.
The approach uses a gain-directed document pair selection method to select cleverly the constraints. In
order to minimize the amount of constraints required, Griga et al. [33] defined an active mechanism for
the selection of candidate constraints. The active fuzzy constrained clustering method is presented and
evaluated on a ground truth image database to illustrate that the clustering can be significantly improved
with few constraints. Recent works on constrained clustering are focused on evaluating the utility (i.e the
potential interest) of a set of constraints [34, 35].

Kumar and Kummamuru [36] introduced another kind of knowledge through a clustering algorithm that
uses supervision in terms of relative comparisons, e.g. x is closer to y than to z. Experimental studies on
high-dimensional textual data sets demonstrated that the proposed algorithm achieved higher accuracy and
is more robust than similar algorithms using pairwise constraints (must-link and cannot-link) for supervision.

Klein et al. [37] allowed instance-level constraints (i.e. must-link, cannot-link) to have space level
inductive implications in order to improve the use of the constraints. This approach improved the results
of the previously studied constrained Kmeans algorithms and generally requires less constraints to obtain
the same accuracies.

Basu et al. [38] presented a pairwise constrained clustering framework as well as a new method for
actively selecting informative pairwise constraints, to get improved clustering performance. Experimental
and theoretical results confirm that this active querying of pairwise constraints significantly improves the
accuracy of clustering, when given a relatively small amount of supervision.

Another way to integrate background knowledge is to use a small set of labeled samples. Basu et al.
[39] used a set of samples to seed (i.e. to initialize) the clusters of the Kmeans algorithm. Two algorithms,
Seeded Kmeans and Constrained Kmeans, are presented. In the first one, the labeled samples are used
to initialize the clusters and the clusters are updated during the clustering process such as in the Kmeans
algorithm. In the second one, the labeled samples used during the initialization stay in their assigned cluster,
and only the unlabeled samples can change of cluster during the cluster affectation step of KMeans. The
choice between these two approaches must be done according to the knowledge about noise in the dataset.

To tackle the problem of incorporating partial background knowledge into clustering, when the labeled
samples have moderate overlapping features with the unlabeled data, Gao et al. [40] formulated a new
approach as a constrained optimization problem. The authors introduced two learning algorithms to solve
the problem, based on hard and fuzzy clustering methods. An empirical study shows that the proposed
algorithms improve the quality of clustering results despite a limited number of labeled samples.

Basu et al. [41] also proposed a probabilistic model for semisupervised clustering, based on Hidden
Markov Random Fields (HMRF), that provides a principled framework for incorporating supervision into
prototype-based clustering. Experimental results on several text data sets demonstrate the advantages of
this framework.

Another approach, called supervised clustering [42], uses the class information about the objects as an
additional feature, to build clusters with a high class-based purity. The goal of supervised clustering is
to identify class-uniform clusters having high probability densities. Supervised clustering is used to create
summaries of datasets and for enhancing existing classification algorithms.

Different kinds of background knowledge are introduced by Pedrycz et al. [43], namely partial supervision,
proximity-based guidance and uncertainty driven knowledge hints. The authors discuss about different ways
of exploiting and effectively incorporating these background knowledge (known as knowledge hints) in the
fuzzy c-means algorithm. In [44], Bouchachia and Pedrycz presented an extention of the fuzzy collaborative
clustering which takes into account background knowledge through labeled objects. One of the advantages
of the method is to take into account the classes splitted in several clusters. During the collaboration
step, the method identify if a class correspond to various clusters and add or remove clusters according
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to this information. More recentely, Pedrycz [45] presented some concepts and algorithms to collaborative
and knowledge-based fuzzy clustering. The fuzzy c-means algorithm (FCM) was used as an operational
model to explain the approach. Interesting linkages between information granularity, privacy and security of
data in collaborative clustering were also discussed. The problem of data privacy when clustering multiple
datasets was also recently discussed in [46]. An application of fuzzy clustering with partial knowledge to
organize and classify digital images is also proposed in [27]. The author present an operational frameork of
fuzzy clustering using the fuzzy c-means algorithm with an augemented objective function using background
knowledge. Experiments are carried out on collections of images composed of 2000 images.

In this Section, we presented different works on using multiple clusterings: ensemble clustering (Section
2.1), multi-objective clustering (Section 2.2) and collaborative fuzzy-clustering (Section 2.3). The ensemble
clustering approaches do not generally address the problem of the generation of the initial results, and
the algorithms used to create the initial results are not used in the combination process. Consequently,
ensemble clustering approaches introduce a new bias, relative to the objective function chosen when merging
the different clusterings. The same problem appears with multi-objective clustering approaches where the
optimized objectives are not the objectives of the methods used to generate the initial results. Collaborative
fuzzy-clustering offers strong theorical basis on collaborative clustering but is only developped for fuzzy
c-means which limit its use.

Finaly, we presented several work on the integration of background knowledge in clustering algorithm
(Section 2.4). Different kinds of representation of the knowledge and different kinds of integration exist.
However, every work claims that using background knowledge improves substancialy the results of clustering
algorithms. The challenge task is to design methods able to leverage different kinds of knowledge. We
prorpose such a method in the next section, where the collaborative clustering method Samarah is presented
along with the different ways to integrate background knowledge into it.

3. Knowledge-guided collaborative clustering

As seen in Section 2, many techniques for combining clusterings exist. Unfortunately, only a few of them
can handle the combination of clusterings having different numbers of clusters, because there is no obvious
correspondence between the clusters of the different results.

Moreover, the proposed methods almost always aim to build a consensus among an ensemble of partitions
or clusterings, without casting doubt on their quality. We think that a first step of collaboration of the
clustering method before the consensus computation can help to obtain better results.

Thus, we propose a method consisting of a collaborative clustering process, based on an automatic and
mutual refinement of several clustering results.

In this section, we first present the existing unsupervised collaborative clustering method called Sama-
rah. Then, we present how we integrate knowledge into this collaborative clustering process.

3.1. Collaborative process overview

Computing a consensual result from clustering results having different numbers of clusters is a difficult
task. This is mainly due to the lack of a trivial correspondence between the clusters of the different results.
To address this particular problem, we present a framework where different clustering methods work together,
in a collaborative way, to find an agreement about their proposals.

This collaborative process consists of an automatic and mutual refinement of the clustering results, until
all the results have almost the same number of clusters, and all the clusters are statistically similar with a
good internal quality. At the end of this process, as the results have comparable structures, it is possible to
define a correspondence function between the clusters, and to apply a unifying technique, such as a voting
method [47].

Before the description of the collaborative method, we introduce the correspondence function and the
similarity measure used in the system.

There is no problem to associate classes of different supervised classifications, as a common set of class
labels is given for all the classifications. Unfortunately, in the case of clustering, the results may not have a
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same number of clusters, and no information is available about the correspondence between different clusters
of different clusterings.

To address this problem, we have defined an intercluster correspondence function, which associates to
each cluster from a result, a cluster from each of the other results. This cluster, in each result, is called the
corresponding cluster.

Let R̆ = {Ri}1≤i≤m be the set of results given by the m different algorithms. Let {Cik}1≤k≤ni be the
clusters of the result Ri.

The corresponding cluster CC(Cik,Rj) of Cik in the result Rj , i 6= j, is defined as

CC
(
Cik,Rj

)
= arg max

Cjl ∈Rj

S
(
Cik, C

j
l

)
(1)

where S is the intercluster similarity which evaluates the similarity between two clusters of two different
results.

A large number of criteria exists to evaluate the similarity between two clustering results, like the Kappa
index [48] or the Rand index [49], and more recently the Jaccard index[50] or the Fowlkes-Mallows index
[51]. However, these criteria only give a global evaluation of the similarity between two partitions. In order
to find the most similar cluster of one result in another one, we have to use an index based on the similarity
between the two results and the similarity between each cluster of each result. To achieve this goal, we
introduced the intercluster similarity between two clusters of two different results, which takes into account
both aspects: the similarity through the confusion matrix between the two results (α in Eq.3), and the
distribution of the cluster into the clusters of the second result through a distribution coefficient (ρ in Eq.3).

The confusion matrix (or matching matrix) is commonly used to compare two partitions or clustering
results. The confusion matrix Ωi,j between two results Ri and Rj is a ni × nj matrix defined by:

Ωi,j =

 αi,j
1,1 . . . αi,j

1,nj

...

αi,j
ni,1

. . . αi,j
ni,nj

 where αi,j
k,l =

∣∣∣Cik⋂ Cjl ∣∣∣∣∣Cik∣∣ (2)

The intercluster similarity between two clusters Cik and Cjl is evaluated by observing their intersection
(Eq. 2) and by taking into account the distribution ρ (Eq. 4) of the cluster Cik in all the clusters of Rj as
follows:

S
(
Cik, C

j
l

)
= ρi,jk αj,i

l,k (3)

where

ρi,jk =

nj∑
r=1

(αi,j
k,r)2 (4)

The entire collaborative clustering process is broken down in three main phases:

1. Initial clusterings - Each method computes its result independently.

2. Results refinement - A phase of convergence of the results, which consists of conflict evaluations and
resolutions, is iterated as long as the quality of the results and their similarity increase:

(a) Detection of the conflicts, by evaluating the dissimilarities between couples of results;
(b) Local resolution of some conflicts;
(c) Global management of the local modifications in the global result (if they are relevant).

3. Consensus computation - The refined results are unified using a voting algorithm.

The entire algorithm of the method is detailed and explained in Algorithm 1.
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Algorithm 1 Collaborative clustering process

1: Let R̆ = {Ri}1≤i≤m be the initial set of clusterings

2: Let K̆ = conflicts(R̆) be the set of conflicts in R̆ as defined in Eq.5
3: Let R̆best := R̆ be the best temporary solution
4: Let K̆best := K̆ be the conflicts of the best temporary solution
5: while |K̆| ≥ 0 do
6: Ki,j

k := arg maxKr,s
l ∈K̆

CI (Kr,s
l )

7: R̆ := conflictResolution
(
R̆,Ki,j

k

)
(Alg.2)

8: if Γ(R̆) > Γ(R̆best) then
9: R̆best := R̆

10: K̆best := K̆ := conflicts(R̆)
11: bt := 0
12: else if R̆t+1 = R̆t then
13: K̆ := K̆ \ Ki,j

k

14: else
15: bt := bt+ 1
16: K̆ := K̆ \ Ki,j

k

17: if bt > |K̆| then
18: R̆ := R̆best

19: K̆ := K̆best \ Ki,j
k

20: end if
21: end if
22: end while
23: consensus computation

3.1.1. Initial clusterings

Each clustering method computes a clustering of the data using its initial parameters: all data objects
are grouped into different clusters. According to the base method selected, different parameters need to be
set.

3.1.2. Results refinement

(a) Detection of the conflicts - The detection of the conflicts consists in seeking in R̆ all the couples(
Cik,Rj

)
, i 6= j, such as S

(
Cik, CC

(
Cik,Rj

))
< 1, which means that the cluster Cik can not be exactly found

in the result Rj .
conflicts(R̆) =

{
(Cik,Rj) : i 6= j, S

(
Cik, CC

(
Cik,Rj

))
< 1
}

(5)

Each conflict Ki,j
k is identified by one cluster Cik and one result Rj . Its importance, CI

(
Ki,j

k

)
, is

computed according to the intercluster similarity:

CI
(
Ki,j

k

)
= 1− S

(
Cik, CC

(
Cik,Rj

))
(6)

(b) Local resolution of some conflicts - The conflict resolution algorithm is detailed precisly in
Algorithm 2.

The most important conflict (i.e. having the greatest conflict importance) is selected in the set of existing
conflicts according to the conflict importance coefficient (Eq. 6).
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The local resolution of a conflict Ki,j
k consists in applying an operator on each result involved in the

conflict, Ri and Rj , to try to improve their similarity. The operators which can be applied to a result are
the following:

� merging of clusters: some clusters are merged together,

� splitting of a cluster into subclusters: a clustering is applied to the objects of a cluster to produce
subclusters,

� reclustering of a group of objects: one cluster is removed and its objects are reclassified in all the other
existing clusters.

The operator to apply is chosen according to the number of clusters involved in the conflict, i.e. the number
of clusters such as S(Cik, C

j
l ) > pcr, where 0 ≤ pcr ≤ 1 is given by the user. The pcr parameter represents the

percentage above which the intersection between the two clusters is considered as significant. For example,
pcr = 0.2 means that if Cik ∪ C

j
l represents less than 20% of the objects of Cik, Cjl is not considered as a

significant representative of Cik.

However, the application of the two operators (each one on a different result) is not always relevant.
Indeed, it does not always increase the similarity of the results involved in the processed conflict. Moreover,
the iteration of the conflict resolutions step may lead to a trivial but consensual solution. For example,
the clusterings can converge towards a solution where all the results have only one cluster, including all the
objects to classify, or towards a solution where all the results have one cluster for each object. These two
solutions are not relevant and must be avoided.

So, we defined a criterion γ, called local similarity criterion, to evaluate the similarity between two results
and their quality. It is based on the intercluster similarity S (Eq. 3) and a quality criterion δ (detailed in
Section 3.2, Eq. 23 ). The criterion δ evaluates the quality of the clustering (e.g. inertia, number of clusters,
. . . ) to avoid that the method ends up with a trivial solution as those presented before:

γi,j =
1

2

(
ps.

(
1

ni

ni∑
k=1

ωi,j
k +

1

nj

nj∑
k=1

ωj,i
k

)
+ pq.

(
δi + δj

))
(7)

where

ωi,j
k = S

(
Cik, CC

(
Cik,Rj

))
(8)

and, pq and ps are given by the user (pq + ps = 1).

Let Ri′ (resp. Rj′) be the result Ri (resp. Rj) after having applied the operators. The local similarity
criterion is computed on each of the 4 couples of results: (Ri,Rj), (Ri′ ,Rj′), (Ri′ ,Rj), (Ri,Rj′). The best
couple is accepted as the local solution of the conflict.

(c) Global management of the local modifications - After the resolutions of the local conflicts,
a global application of the modifications proposed by the refinement step is decided if their application
improve the quality of the global result. The global agreement coefficient Γ is evaluated according to all the
local similarities between each couple of results as follows:

Γ =
1

m

m∑
i=1

Γi (9)

where

Γi =
1

m− 1

m∑
j=1
j 6=i

γi,j (10)

Three cases can occur:
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Algorithm 2 Conflict resolution

Require: R̆ the ensemble of clusterings
Require: Ki,j

k the conflict to solve

Ensure: R̆? = conflictResolution
(
R̆,Ki,j

k

)
the new ensemble after the resolution

let κ = {Cjl ,∀1 ≤ l ≤ nj : S(Cik, C
j
l ) > pcr}

if |κ| > 1 then
Ri′ = Ri \ {Cik} ∪ split(Cik, |κ|)
Rj′ = Rj \ κ ∪ merge(κ,Rj)

else
Ri′ = recluster(Ri \ {Cik})

end if
{Ri?,Rj?} = arg max γI,J for I ∈ {i, i′}, J ∈ {j, j′}
R̆? = R̆ \ {Ri,Rj} ∪ {Ri?,Rj?}

� The resolution step gives a better solution than all previous ones (line 8). In this case, the best
temporary solution is the one proposed by the conflict resolution step. As the global results have
changed, the conflicts list is recomputed (line 10).

� The resolution step proposes the same solution which means that no operators application is relevant
to solve this conflict (line 12). Then, the conflict is removed from the list and the algorithm iterates.

� If the solution proposed by the conflict resolution gives a worth global agreement coefficient, it is
accepted to avoid to fall in a local maximum (line 14). But, if no conflict resolution enables to find
a better solution (after having resolved the first half part of the conflicts list), all the results are
reinitialized to the best temporary solution (line 17).

The process is iterated until some conflicts still remain in the conflicts list (line 5).

3.1.3. Consensus computation

After the refinement step, all the results tend to have the same number of clusters, which should be
similar. Thus, in a final step, we use an original voting algorithm to compute a consensus result from the
different results. This multi-view voting algorithm enables to combine in one unique result, many different
clusterings that do not have necessarily the same number of clusters.

The basic idea is that for each object to cluster, each result Ri votes for the cluster it has found for this
object, Cik for example, and for its corresponding cluster CC(Cik,Rj) in each other result Rj . The maximum

of these values indicates the best cluster for the object, for example Cjl . It means that this object should be

in the cluster Cjl according to the opinion of the majority of the methods.
For each object p a voting matrix is computed as:

V(p) =
{

(vi1(p), . . . , vini
(p)), 1 ≤ i ≤ m

}
(11)

where

vik(p) =

m∑
j=1

vote(p, Cik,Rj) (12)

and

vote(p, Cik,Rm) =

 1 if (i = m and p ∈ Cik)
or p ∈ CC(Cik,Rm)

0 else
(13)
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The object p is then assigned to the cluster V̆, defined as:

V̆(p) = arg max
Cik

vik(p) (14)

3.2. Background knowledge integration

In this section we explain how we integrated background or domain knowledge into our collaborative
clustering process. The aim is to make the method able to deal with two types of constraints: class label-
based constraints and relationship between objects-based constraints (also called link-constraints). In class
label-based constraints, a small subset of labeled samples is available. The goal is to try to have only one
class represented in each cluster. In link-constraints, the goal is to respect the constraints provided on the
objects.

Firstly (Section 3.2.1) , we will see some examples of background knowledge integration present in the
literature and then (Section 3.2.2) we will see how we integrated it into the Samarah method.

3.2.1. Examples of knowledge integration

In the literature, different methods have already been proposed to take into account background know-
ledge. For example, to integrate link-constraints in the algorithm Pairwise Constrained K-means, Basu et
al. [41] defines the following objective function:

objpckm =

ni
k∑

j=1

dispersion(Cij) +
∑

(xi,xj)∈M[li 6= lj ]

+
∑

(xi,xj)∈C[li = lj ] (15)

where M is the set of must-link constraints and C is the set of cannot-link constraints. This objective
function includes a dispersion measure computed as the classical mean squared error (first term), but also
two other components (second and third terms) reflecting the agreement according to the sets of available
constraints (M and C). The functions [li 6= lj ] and [li = lj ] return 1 if the constraint between the couple of
objects (xi, yi) is respected, and 0 else.

An approach is proposed by Demiriz et al. [24] to integrate class label-based constraints. This method
uses a genetic algorithm to minimize an objective function, which is a geometric mean between cluster
dispersion and cluster impurity according to available samples. It is defined as:

objgen =

ni
k∑

j=1

(
α× dispersion(Cij) + β × impurity(Cij)

)
(16)

where the cluster dispersion is usually the mean squared error, and the cluster impurity is a measure of
the impurity of a cluster according to its composition of available labeled samples. This impurity measure is
low if all the known samples of a cluster are from the same class. On the contrary, the value increases as the
cluster contains objects from various classes (and the cluster will be considered as impure). This impurity
is evaluated thanks to the Gini index:

gini(Cik) = 1−
nc∑
l=0

(Pkl

nik

)2

(17)

where Pkl is the number of objects belonging to the lth class in the cluster Cik, and nik is the number of
objects in the cluster Cik. The weights α and β in Eq. 16 allow the user to choose if he prefers to give more
or less importance to the available knowledge.

In supervised clustering [42], a similar idea is used. A penalty measure is added to the impurity measure
to deal with the case of various number of clusters in the results and avoid results with very high or very
low number of clusters:
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objsc =

ni
k∑

j=1

(
α× impurity(Cij) + β × penalty(Cij)

)
(18)

where the impurity measure is defined by:

impurity(Cik) =
1

n

nc∑
l=0

l 6=cmax

Pkl (19)

where Pkl is the number of objects belonging to the lth class in the cluster Cik, nik is the number of objects
in the cluster Cik, and cmax is the most represented class in the cluster Cik

cmax = arg max
l

(Pkl) (20)

The penalty is defined as

penalty(Ck) =


√

nk−nc

n if nk ≥ nc

0 otherwise

(21)

where nc is the number of classes in the known samples. Here again, the weights α and β in Eq. 18 are
chosen by the user.

3.2.2. Knowledge integration in the Samarah method

In the Samarah method, during the refinement step, the local similarity criterion γi,j (Eq. 7) is used
to evaluate if the modifications of a couple of results is relevant. This criterion includes a quality criterion
δi which represents the quality of the result Ri. This criterion is used to balance the refinement step
between the similarity and the quality of the expected results. It is computed for two aspects of the results:
the internal and external qualities. The internal evaluation consists in evaluating the quality of the result
through a unsupervised measure. The external evaluation consists in evaluating the quality of a result
thanks to external knowledge, such as an estimation of the number of clusters, some labeled samples or
some constraints.

The previous version of Samarah already includes internal knowledge but only includes an estimation
of the number of clusters as external knowledge. To take into account more external knowledge, we have
extended the quality criterion by integrating an evaluation of the agreement of the results with different
kinds of constraints as follows:

δi =

Nc∑
c=1

qc(Ri)× pc (22)

where Nc is the number of constraints to respect, qc is the criterion used to evaluate the result according
to the c-th constraint (qc(.) ∈ [0, 1]) and pc is the relative importance given by the user to the c-th constraint
(p1 + p2 + · · ·+ pNc

= 1). By default, each constraint is given with a weight of 1
Nc

.
Thus, any constraint can be integrated in the process if it can be defined as a function taking its values

in [0, 1]. We described below some frequently encountered constraints that can be used.

Cluster quality-based constraints - These constraints are based on the intrinsic quality of the
clusters such as inertia or predictivity and also take into account the number of clusters. Indeed criterion
such as inertia or compacity need to be balanced with an evaluation of the number of clusters. An example
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of a criterion which includes quality of the clusters and the number of clusters is given below:

qqb(Ri) =
pi

ni

ni∑
k=1

τ ik (23)

where ni is the number of clusters of Ri, τ ik defines the internal quality of the k-th cluster and pi is the
external quality of the result. The internal quality of the k-th cluster is given as:

τ ik =

 0 if 1
ni
k

∑ni
k

l=1

d(xi
k,l,g

i
k)

d(xi
k,l,g

i)
> 1

1− 1
ni
k

∑ni
k

l=1

d(xi
k,l,g

i
k)

d(xi
k,l,g

i)
else

(24)

where nik is the cardinal of Cik, gik is the gravity center of Cik, gi is the gravity center of another cluster,
the closest from xik,l and d is the distance function. The measure is computed on each cluster to evaluate

the overall quality of the clustering result. To take into account the number of clusters ni, the criterion pi

is defined as:

pi =
nsup − ninf

|ni − ninf|+ |nsup − ni|
(25)

where [ninf, nsup] is given by the user, as the range of expected number of clusters.

Class label-based constraints - These constraints correspond to the case where a few sets of labeled
samples are available. To evaluate the agreement between results and such constraints, we can use any index
which enables us to evaluate the similarity between a clustering and a labeled classification (where all the
classes are known, and each object belongs to one of these classes). In our case, we only compare results
with a given partial partition R which represents the known labeled objects. In the implementation of the
Samarah method, we mainly used the Rand index [49] and another index known as WG agreement index
[52]. Information theoric measures could also be used [53].

The Rand index is a measure of the similarity between two data partitions defined by:

Rand(Ri,R) =
a+ b(

n
2

) (26)

where n is the number of objects to classify, a is the number of pairs of objects which are in the same cluster
in Ri and in the known result, and b is the number of pairs of objects which are not in the same cluster
in the proposed result Ri and in the known result Rj . The sum of these two measurements (a and b) can
been seen as the number of times that the two partitions are in agreement. This index takes values in [0, 1]:
1 indicates that the two partitions are identical. The defined constraint is:

qrand(Ri) = Rand(Ri,R) (27)

The WG agreement index is defined by

WG(Ri,R) =
1

n

ni∑
k=1

S
(
Ci

k,Rj
) ∣∣Ci

k

∣∣ (28)

where n is the number of objects to classify and Rj is the reference partition (e.g. labeled classification,
another clustering, etc.). This index takes values in [0, 1]: 1 indicates that all the objects in the clustering
Ri are well classified according to the class label of the objects in Rj . The defined constraint is:

qwg(Ri) = WG(Ri,R) (29)

Link-based constraints - These constraints correspond to the case where knowledge is expressed as
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must-link and cannot-link constraints between objects (see [30, 31]). In this case, the ratio of respected
constraints against violated constraints can easily be computed as

qlink(Ri) = 1
nr

nr∑
j=1

v(Ri, lj) (30)

where nr is the number of constraints between the objects, lj is a must-link or cannot-link constraint and
v(Ri, lj) = 1 if Ri respects the constraint lj , 0 otherwise.

Note that such constraints can be extracted from class-label constraints. For example, a must-link
constraint could be created for all the couples of objects belonging to the same cluster, and a cannot-link
constraint could be created for all the couples of objects belonging to different clusters.

3.3. Example

In this section, we present a simple example on a 2D dataset. The aim is to illustrate how the different
kinds of knowledge presented in the previous section can improve the collaboration between the clustering
methods. We used the 9-Diamonds dataset (Fig. 1) from [54] which is available for download on the website
of the machine learning group of the University of Houston 1.

We used the KMeans algorithm to cluster this dataset in various number of clusters ranging from 2 to
18 (9 being the actual number of cluster). Then we considered couple of clustering results and we computed
for each couple a value of agreement between the two clustering results. The goal is illustrate the search
space of the different possible solutions (i.e. couple of clustering results). In the followings figures (Fig. 2,
3, 4, 5) the higher the values are, the higher the agreement is. We illustrated here how different kinds of
knowlege can modify the shape of the search-space and consequently, help the collaboration.

The Fig. 2 presents the local agreement using only the similarity of the result (7). One can see that
using only the similarity creates several local minima in this search space as the results with a low number
of clusters are strongly similar. To reduce this problem, the knowledge of the range of expected number of
clusters can be used.

The Fig. 3 presents the local agreement using the similarity along with some knowledge about the
number of clusters (25) (i.e set here to [7; 11]). One can see that the search space leverages this information
and that the value for the number of cluster outsite the range are strongly reduced.

If some labeled patterns are available, a measure of quality of the clustering can be added to the evaluation
to guide the collaboration. This is illustrated on Fig. 4 where the WG index (29) is computed assuming 5%
of labeled objects. On can see that this information improves substantialy the shape of the search space.

Finaly, different kinds of knowledge can be used together as in Fig. 5 where the range of expected
number of clusters along with the knowlege of some labeled objets are used. The resulting search-space
is cleary easier to explore and contains less local minimas, the optimal solution (9 clusters) being strongly
highlighted.

4. Evaluation of the proposed method

4.1. Protocol of experiments

In this section, we present two evaluations of the method proposed in this paper. The aim of these
experiments is twofold. Firstly, we want to show the relevance of collaborative clustering to improve the
quality of a set of clustering results, thanks to our collaborative process. Secondly, we want to show the
interest in integrating background knowledge in this collaboration, to produce even better results.

Two kinds of experiment have been carried out:

1http://www.tlc2.uh.edu/dmmlg/
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Figure 1: 9-Diamonds dataset

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18 0

 2
 4

 6
 8

 10
 12

 14
 16

 18

 0

 0.2

 0.4

 0.6

 0.8

 1

G

Illustration of the search-space

#Clusters M1

#Clusters M2

G

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(a) I

 0

 5

 10

 15

 20  0

 5

 10

 15

 20

Illustration of the search-space

#Clusters M1

#Clusters M2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(b) II

Figure 2: The search-space using only the similarity.
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Figure 3: The search-space using the similarity and the range of expected number of clusters.
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Figure 4: The search-space using the knowlege of some labeled patterns.
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Figure 5: The search-space using the range of expected number of clusters and the knowledge of labeled patterns.

1. The first one consisted in the evaluation of the quality of a set of clustering results, first, without col-
laboration, then with collaboration, and finally, with collaboration integrating background knowledge.
Different classical quality indexes were used to evaluate the quality of these sets of clustering results.
The details of these experiments are described in Section 4.3.

2. The second one consisted in the evaluation using the Cascade Evaluation approach [7]. This approach
is based on the enrichment of a set of datasets by the clustering results, and the use of a supervised
method to evaluate the interest of adding such new information to the datasets. The details of these
experiments are described in Section 4.4.

For all the experiments with Samarah, we used the Kmeans algorithm [55] as base clustering method
(Section 3.1). Five methods were randomly initialized with a number of clusters randomly picked in [2; 10].
The refinement step was set up to find results with a number of clusters in [2; 10] (i.e. ninf = 2, nsup = 10
in Eq. 25).

To evaluate benefits of the background knowledge integration in the refinement step as presented in
Section 3.2, we randomly picked up 10% of the datasets as a subset of available samples. This subset was
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used to drive the refinement step through the quality evaluation of the results. The datasets used in both
the experiments are presented in the next section.

4.2. Data sets

Seven different datasets from the UCI machine learning repository [56] were used in the experiments:

1. Iris data set, which contains 3 classes of 50 instances, where each class refers to a type of iris plant;

2. Wine database, which contains 3 classes of wines, characterized by 13 chemicals attributes (178 in-
stances);

3. Ionosphere database, which consists in 351 information about 16 high-frequency antennas classified
into 2 classes;

4. Pima Indians Diabetes database, referred as Pima, which consists in 768 patients discriminated into
2 classes according to World Health Organization criteria;

5. Sonar, which has been used to learn to discriminate between sonar signals bounced off a metal cylinder
and those bounced off a roughly cylindrical rock (2 classes, 307 instances), using 60 real attributes
(each attribute represents the energy within a particular frequency band);

6. Vehicle data set, which contains 4 classes of 946 vehicles to classify given a set of 18 features extracted
from their silhouette at different angles;

7. Segment database, composed of 2500 instances of 3 × 3 regions extracted from 7 images of texture;
each region is characterized by 19 attributes.

4.3. Comparison using quality indexes

In this first experiment, we evaluated the quality of the sets of clustering results, without collaboration
(referred as ¬col), refined with collaboration (referred as col), and refined with collaboration using back-
ground knowledge (referred as kcol). We used six different quality indexes to evaluate the quality of each
set:

� the Rand index [49]

� the Jaccard index [50]

� the Falks-Mallow index [51]

� the Wemmert-Gançarski index [52]

� the F-Measure index [51]

� the Kappa index [48]

For each set of clusterings (¬col, col and kcol), the mean of the quality of each element of the set was
computed, to define the quality of the set. We carried out 100 runs computing at each run the set of initial
clusterings (with the parameters defined in Section 4.1) and the refined set through the collaborative process
and through the collaborative process using background knowledge. The evaluation of the results are given
in Table 1, where the values correspond to the means, the standard deviations and the maximum accurary
of the results on the 100 runs. On Fig. 6, we illustrate the results for the Rand index for all the experiments
and all the datasets.

As one can see, the quality of the refined set (col) is almost always better than the quality of the unrefined
set (¬col). Indeed, for each dataset the quality is better according to at least 5 out of the 6 quality indexes.
Furthermore, the quality of the sets provided by the collaboration process using background knowledge
(kcol) gives even better results.

All these results show, firstly, that the refinement step of our collaborative clustering method improve
the quality of the results, and secondly, that the use of background knowledge in the collaboration helps the
process to produce better results.
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Figure 6: Rand quality index for the three experiments (¬col, col and kcol) for all datasets
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Figure 7: Accuracies of cascade evaluation for all datasets

4.4. Comparison using cascade evaluation

The cascade evaluation [7] is a new approach to evaluate the quality and the interest of clustering results.
The method is based on the enrichment of a set of datasets by the results of clustering, and the use of a
supervised method to evaluate the interest of adding such new information to the datasets.

The method consists in evaluating and comparing the result of a supervised classifier when it is helped
or not by the information issued from a clustering. If the result of the classifier is improved by the infor-
mation added by the clustering, the authors assume that the clustering embeds a meaningful information.
Furthermore, different clustering results can be compared, the one improving the most the result according
to the classifier accuracy is consequently the one embedding the most interesting information.

We used this paradigm to conduct a cascade evaluation of the collaborative clustering. The aim of this
evaluation is to show the relevance of the refinement step presented above. We want to see if the refinement
improves the different results through the collaborative step. We are consequently interested to show that
the set of refined results contains a more accurate knowledge compared to the initial unrefined set of results.

To evaluate the benefits of using the information provided by our method in supervised algorithms, we
created different datasets from the initial one, and then we classified them with a supervised algorithm. Let
D be the initial dataset to classify : D = {oi}1≤i≤l where the object oi is characterized by the m attributes
A1(oi), . . . , Am(oi). Let Cj(oi) be the cluster of the object oi in the jth initial clustering result. Let Rj(oi)
be the cluster of the object oi in the jth refined clustering result. Let Kj(oi) be the cluster of the object oi
in the jth refined with knowledge clustering result. From each initial dataset D, three datasets were created
to integrate knowledge provided from the different clusterings:

� D1 = {O1
i }1≤i≤l

where O1
i = (A1(oi), . . . , Am(oi), C1(oi), . . . , Cn(oi))

� D2 = {O2
i }1≤i≤l

where O2
i = (A1(oi), . . . , Am(oi),R1(oi), . . . ,Rn(oi))

� D3 = {O3
i }1≤i≤l

where O3
i = (A1(oi), . . . , Am(oi),K1(oi), . . . ,Kn(oi))
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Table 1: Quality of the results of the different sets of results ¬col, col and kcol.
Rand Jacc FM WG F-M K

iris (¬col) 0.73 (±0.03) � 0.78 0.44 (±0.02) � 0.46 0.64 (±0.02) � 0.65 0.54 (±0.03) � 0.59 0.60 (±0.01) � 0.62 0.43 (±0.01) � 0.45
(col) 0.85 (±0.00) � 0.87 0.64 (±0.01) � 0.67 0.78 (±0.00) � 0.80 0.69 (±0.03) � 0.72 0.78 (±0.01) � 0.80 0.67 (±0.01) � 0.70
(kcol) 0.86 (±0.01) � 0.87 0.65 (±0.02) � 0.68 0.79 (±0.01) � 0.81 0.71 (±0.03) � 0.74 0.79 (±0.02) � 0.81 0.69 (±0.02) � 0.72

wine (¬col) 0.68 (±0.09) � 0.76 0.46 (±0.05) � 0.55 0.66 (±0.03) � 0.72 0.59 (±0.04) � 0.66 0.62 (±0.04) � 0.69 0.39 (±0.10) � 0.52
(col) 0.88 (±0.04) � 0.94 0.71 (±0.09) � 0.83 0.83 (±0.06) � 0.91 0.75 (±0.06) � 0.83 0.83 (±0.06) � 0.91 0.74 (±0.10) � 0.86
(kcol) 0.90 (±0.02) � 0.94 0.76 (±0.05) � 0.83 0.86 (±0.03) � 0.91 0.79 (±0.07) � 0.87 0.86 (±0.03) � 0.91 0.78 (±0.04) � 0.86

ionosphere (¬col) 0.56 (±0.01) � 0.58 0.34 (±0.03) � 0.38 0.53 (±0.03) � 0.57 0.30 (±0.03) � 0.32 0.50 (±0.04) � 0.55 0.14 (±0.02) � 0.16
(col) 0.59 (±0.03) � 0.61 0.34 (±0.08) � 0.41 0.53 (±0.07) � 0.59 0.21 (±0.05) � 0.28 0.50 (±0.09) � 0.58 0.20 (±0.04) � 0.23
(kcol) 0.59 (±0.01) � 0.60 0.37 (±0.03) � 0.39 0.55 (±0.02) � 0.57 0.22 (±0.03) � 0.26 0.54 (±0.03) � 0.56 0.21 (±0.02) � 0.22

pima (¬col) 0.48 (±0.00) � 0.49 0.22 (±0.02) � 0.25 0.38 (±0.02) � 0.41 0.17 (±0.01) � 0.18 0.35 (±0.03) � 0.39 0.40 (±0.01) � 0.41
(col) 0.49 (±0.00) � 0.50 0.29 (±0.00) � 0.30 0.46 (±0.00) � 0.46 0.20 (±0.01) � 0.21 0.45 (±0.01) � 0.46 0.37 (±0.00) � 0.38
(kcol) 0.50 (±0.00) � 0.50 0.29 (±0.01) � 0.30 0.46 (±0.01) � 0.47 0.20 (±0.01) � 0.20 0.45 (±0.01) � 0.46 0.37 (±0.00) � 0.38

sonar (¬col) 0.51 (±0.01) � 0.52 0.25 (±0.04) � 0.27 0.41 (±0.04) � 0.47 0.22 (±0.04) � 0.29 0.39 (±0.05) � 0.45 0.02 (±0.01) � 0.04
(col) 0.51 (±0.00) � 0.51 0.26 (±0.02) � 0.28 0.42 (±0.02) � 0.44 0.20 (±0.01) � 0.021 0.41 (±0.02) � 0.43 0.01 (±0.01) � 0.0.02
(kcol) 0.51 (±0.01) � 0.52 0.31 (±0.05) � 0.37 0.47 (±0.06) � 0.54 0.16 (±0.03) � 0.18 0.47 (±0.06) � 0.54 0.01 (±0.01) � 0.04

vehicle (¬col) 0.57 (±0.06) � 0.65 0.21 (±0.01) � 0.22 0.37 (±0.02) � 0.40 0.25 (±0.05) � 0.31 0.35 (±0.01) � 0.36 0.50 (±0.10) � 0.62
(col) 0.58 (±0.07) � 0.69 0.22 (±0.01) � 0.24 0.38 (±0.02) � 0.40 0.25 (±0.06) � 0.22 0.35 (±0.01) � 0.39 0.51 (±0.12) � 0.68
(kcol) 0.65 (±0.02) � 0.66 0.22 (±0.01) � 0.24 0.37 (±0.01) � 0.39 0.16 (±0.01) � 0.17 0.37 (±0.01) � 0.39 0.63 (±0.02) � 0.64

segment (¬col) 0.65 (±0.06) � 0.71 0.30 (±0.03) � 0.34 0.49 (±0.03) � 0.53 0.46 (±0.03) � 0.49 0.45 (±0.04) � 0.49 0.61 (±0.07) � 0.68
(col) 0.83 (±0.02) � 0.85 0.38 (±0.03) � 0.41 0.56 (±0.03) � 0.59 0.48 (±0.05) � 0.54 0.55 (±0.03) � 0.58 0.83 (±0.03) � 0.84
(kcol) 0.84 (±0.03) � 0.87 0.39 (±0.03) � 0.42 0.58 (±0.03) � 0.60 0.52 (±0.07) � 0.60 0.56 (±0.03) � 0.60 0.83 (±0.03) � 0.87

Table 2: Evaluation of the integration of background knowledge using cascade evaluation
D D1 D2 D3

iris 93.33% 94.67% (±0.47) � 94.67 95.47% (±0.30) � 96.00 96.40% (±0.60) � 96.67
wine 92.13% 93.48% (±1.52) � 95.51 95.73% (±0.50) � 96.07 96.18% (±0.73) � 97.19
ionosphere 88.03% 89.00% (±1.25) � 90.60 89.40% (±0.93) � 90.88 90.94% (±0.31) � 91.17
pima 63.41% 64.35% (±0.57) � 65.23 64.92% (±0.76) � 65.89 65.89% (±0.95) � 67.45
sonar 71.15% 70.58% (±0.79) � 71.63 71.44% (±0.87) � 71.63 72.50% (±0.86) � 74.04
vehicle 69.47% 69.17% (±0.87) � 70.35 69.77% (±0.91) � 71.23 70.55% (±0.82) � 71.61
segment 95.93% 95.79% (±0.17) � 96.02 95.77% (±0.15) � 95.97 95.79% (±0.14) � 95.97

As supervised algorithm, we chose the tree-based classifier C4.5 [57] for his ability to handle numeric
and categorical attributes, and we made 100 runs of 10-fold cross validations, each on the three versions of
each dataset.

The results of this evaluation are presented in Table 2 where the values are the average values, the
standard deviations and the maximum values of the accuracy for the four versions of each dataset (i.e.
the normal dataset D, the one embedded with the clustering D1, the one embedded with the refined
clustering D2, and the one embedded with the refined clustering integrating background knowledge D3).
The histograms of the accuracies are presented on Fig. 7. One can see that the datasets embedded by the
refined clusterings gives the best results on 6 of the 7 datasets. One can notice that the refinement step
degrades the results without clustering only when the initial clustering results also degrade the result. This
can be explained by the lack of concordance between the class of the objects and their distribution in the
data space. Consequently, adding the clustering information just added noise to the dataset.

Furthermore, one can observe an increase of the stability, as the standard deviation significantly decreases,
when the refined results are used instead of the initial ones. The results refined using background knowledge
are better in means than the results obtained without it. However the results are less stable (higher standard
deviation) on the half of the datasets. This can be explained by the high degree of randomness in the selection
of the samples used as background knowledge. If these samples are well distributed on the data space and
among the different clusters, they will carry a better information and will make helping the collaboration
easier. We assume that this issue can be solved if the samples are actually provided by the expert itself (and
not selected randomly). The expert should be able to provide high quality examples. An active learning
approach could also be used where the expert could, during the collaboration, gives information about the
clusters involved in strong conflict.

5. Conclusion

In many clustering problems, the user is able to provide some background knowledge which can be used
to guide the algorithm to obtain more accurate results. Moreover, it has been accepted that ensemble
clustering algorithms give more robust results to such problems. Unfortunately, no ensemble clustering
method that includes information given by the user has been defined yet.

In this article, we have presented a new method of collaborative clustering, that integrates and benefits
from background knowledge on the given problem. The user can express the knowledge through different
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kinds of constraints. To illustrate this, we have proposed a formalization of three main types of constraints:
cluster quality, class label and link-based constraints. Then, we presented how this information can be used
during the collaboration step, to guide the different methods in their search for a better solution.

Finally, we have shown by different experiments that the collaboration between the clustering methods
provides better results than the single classical method, and that introducing knowledge to control the
collaboration gives even more accurate results.
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