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I. RIEMANNIAN OPTIMIZATION FRAMEWORK: PROOFS

In this appendix, we provide the proofs of the statements of
section II of the paper. The constraints defining SPn and OPn
only involves the SPD component of the couple (S,U). It is
enough to studyMSn = {S ∈ S++

n : det(S) = 1} andMOn =
{S ∈ S++

n : ddiag(S2) = In} since the rest of the proofs
follows from the properties of product of manifolds [1]. In
the following, diag(·) denotes the vector of diagonal elements
of its argument.

Proof of proposition 1: We have

D f(B)[ξ] = tr((ξSU + SξU )T gradGL f(π(B))).

The result for the gradient is then obtained by basic manipu-
lations of the trace and identification. Concerning the Hessian,
recalling that HessE f(B)[ξ] = D gradE f(B)[ξ] and basic
calculations gives the result.

Proof of proposition 2: To show that MSn , MOn and IPn
are submanifolds, consider functions FS : S++

n → R+
∗

such that FS(S) = det(S), FO : S++
n → (R+

∗ )n such
that FS(S) = diag(S2) and FI : Pn → (R+

∗ )n such that
FI(B) =

∑
k diag(BCkB

T )2. Clearly MSn = F−1
S ({1}),

MOn = F−1
O ({1n}) and IPn = F−1

I ({1n}) where 1n
is the vector of ones. Let SS ∈ MSn , SO ∈ MOn and
B ∈ IPn, the directional derivatives of FS , FO and FI are
DFS(SS)[Z] = tr(S−1

S Z), DFO(SO)[Z] = 2 diag(SOZ)
and DFI(B)[Z] = 2 diag((ZSU + ZUS)Q). Let z ∈ R,
then ZS = z

nS ∈ Sn and DFS(SS)[ZS ] = z. Let z ∈
Rp, the diagonal matrix ZO such that for all i, (ZO)ii =
zi/2(SO)ii is in Sn and DFO(SO)[ZO] = z. Finally, let
Z = (SPS(UQ∆)S, PU (S∆QT )) whith ∆ diagonal matrix
solution to (20) where the right side is replaced by z. We leave
the proof of existence of such ∆ to the proof of lemma 1. Z is
in TBPn and DFI(B)[Z] = z. This shows that FS , FO and
FI are submersions and proposition 3.3.3 in [1] completes the
proof.

Next, we show that MSn , MOn and IPn are connected.
First consider the geodesic γ of S++

n defined for S1, S2 in
S++
n and t = [0, 1] as γ(t) = S

1/2
1 (S

−1/2
1 S2S

−1/2
1 )tS

1/2
1 [2].

If S1 and S2 are in MSn , then for all t, γ(t) is also in MSn .
This is a consequence of det(MN) = det(M) det(N) and
det(M t) = det(M)t for M and N in S++

n . Thus, MSn is

connected. ConcerningMOn , let γ(t) = (tS2
1 +(1−t)S2

2)1/2 for
S1 and S2 inMOn . For all t, γ(t) remains inMOn , completing
the proof. Finally, consider P (t) = tπ(B1) + (1− t)π(B2) for
B1, B2 in IPn. Then, γ(t) = π−1(Υπ(P (t))), where Υ is
defined in proposition 4 with RB(ξ) replaced by P (t), is a
smooth path in IPn. This is enough to conclude.

Finally, we find the tangent spaces of MSn , MOn and IPn.
Let FS(S) = det(S), FO(S) = ddiag(S2) and FI(B) =∑
k ddiag(BCkB

T )2. The kernels of DFS(S), DFO(S) and
DFI(B) are the sets {ξS ∈ Sn : tr(S−1ξS) = 0}, {ξS ∈
Sn : ddiag(SξS) = 0} and {ξ ∈ TBPn : ddiag(ḂQ) =
0}. Equation (3.19) in [1] allows to conclude that these are
TSMSn , TSMOn and TBIPn.

Proof of lemma 1: Given Z = (ZS , ZU ) in TBPn, ba-
sic calculations yield PSS (ZS) is in TSMSn , POS (ZS) and
P IB (Z) are in TSMOn and TBIPn only if ∆O and ∆I
are solution to (19) and (20) respectively. Let us suppose
that ∆O and ∆I exist and are unique. One can check that
PS 2
S = PSS , PO 2

S = POS and P I 2
B = P IB showing that

these are projections. Finally, they are the orthogonal ones
according to metric (11) since tr(S−1PSS (ZS)S−1λS) = 0
for any scalar λ, tr(S−1POS (ZS)S−1PS(S2∆OS)) = 0 and
〈P IB (Z),Z − P IB (Z)〉B = 0. It remains to show that equa-
tions (19) and (20) always admit a unique solution. After some
manipulations, these equations can be vectorized as

(S3 � S + S2 � S2) diag(∆O) = 2 diag(ZSS),

(S � S1 + S2 � S2) diag(∆I) = 2 diag((ZSU + SZU )Q),

where � is the Hadamard product, S1 = QTUTSUQ and
S2 = QTQ are SPD matrices. The Schur product theorem
shows that (S3 � S + S2 � S2) and (S � S1 + S2 � S2) are
SPD and can be inverted. This completes the proof.

Proof of lemmas 2, 3: To show that ∆̇O and ∆̇I are solution
to these equations, it suffices to derive (19) and (20). The
proofs of existence and uniqueness are identical to the ones
of (19) and (20) since only the right side is modified.

Proof of proposition 3: By definition, HessM f(B)[ξ] =
∇ξ gradM f(B), where ∇ is the Levi Civita connection on
M [1]. The Levi Civita connection ∇ at B in Pn is defined
for the vector field η = (ηS , ηU ) and ξ = (ξS , ξU ) in TBPn
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as [1], [3]

∇ηξ = PB
(
D ξS [η]− ξSS−1ηS ,D ξU [η]

)
.

The Levi Civita connections at B in SPn, OPn and IPn are

SPn OPn IPn
PSB (∇ηξ) POB (∇ηξ) P IB (∇ηξ)

. (I-.1)

For HessSP f(S)[ξ], basic calculations yield

HessSP f(S)[ξ] = PSS (HessP f(S)[ξ])

+ PSS (DPSS [ξ](gradP f(S)) +
1

p
tr(S−1 gradP f(S)ξS)

and PSS (DPSS [ξ](ZS) = −PSS ( 1
p tr(S−1ZS)ξS). The result

follows. Concerning HessOP f(S)[ξ], calculations yield

HessOP f(S)[ξ] = POS (HessP f(S)[ξ])

+ POS (DPOS [ξ](gradP f(S)) + PS((S2∆O + S∆OS)ξS))

and DPOS [ξ](ZS) = −PS(SṀOS + (S∆OS + S2∆O)ξS).
The result follows. Finally, for HessIP f(B)[ξ], its first com-
ponent HessIP f(S)[ξ] is

HessIP f(S)[ξ] = P IS (HessP f(S)[ξ])

+ P IS (DP IS [ξ](gradP f(S)) + PS(ξSPS(MI)S))

with DP IS [ξ](ZS) = −2PS(ξSPS(MI)S)−SPS(ṀI)S. For
its second component HessIP f(U)[ξ], calculations yield

HessIP f(U)[ξ] = P IU (HessP f(U)[ξ])

− P IU (PU (DP IU [ξ](gradP f(U))))

and PU (DP IU [ξ](ZU )) = PU (ṄI − ξU sym(UTNI)). This is
enough to conclude.

Proof of proposition 4: Given S in MSn and ξS in
TSMSn , one can show det(RS(ξS)) = 1. This arises from
det(exp(M)) = exp(tr(M)). This is enough to conclude that
RS defines a retraction onMSn . Let F be the function defined
in proposition 4. Since RS(0) = S and F (S) = S for S in
MOn , F (RS(0)) = S. We further have RS(ξS) = S + ξS +
o(ξS). One can show that ddiag((S + ξS)2) = In + o(ξS)
using ddiag(SξS) = 0 and ddiag(S2) = In. This leads to
F (S + ξS) = S + ξS + o(ξS). Hence, DF (RS(0))[ξS ] = ξS .
This shows that ROS is a retraction on MOn . Finally, since
RB(0) = B, the corresponding Υ defined in proposition 4 is
equal to In for B in IPn. Thus, we have RIB(0) = B since
π is bijective. Furthermore, RB(ξ) = B + ξ + o(ξ). One can
show that Υ = In + o(ξ). It follows that DRIB(0))[ξ] = ξ.
This completes the proof.

II. APPROXIMATE JOINT DIAGONALIZATION

A. Gradients and Hessians

This appendix contains the Euclidean gradients and Hes-
sians of the AJD cost functions of section III-B of the
article. All gradients and Hessians are the weighted sum of
the formulas given here in table (gradients on the left-hand
side and Hessians on the right-hand side). We use notations:
Mk = BCkB

T , Ṁk = ξCkB
T +BCkξ

T , Nk = AΛkA
T and

Ṅk = ξΛkA
T +AΛkξ

T .

1) Frobenius distance: The Euclidean gradient and Hessian
of fF are classical results (see [4] for example), thus we skip
them here.

gradGL HessGL

f̃F

4(Nk −Mk)AΛk 4(ṄkA+ (Nk −Mk)ξ)Λk

f̂F

4(Mk − Λk)BCk 4(ṀkB + (Mk − Λk)ξ)Ck

2) Kullback-Leibler divergence:

flKL

2(Λ−1
k −M−1

k )BCk
2Λ−1

k (ξ − Λ−1
k Λ̇kB)Ck

+2B−T ξTB−T

Λk = ddiag(Mk), Λ̇k = ddiag(Ṁk).

frKL

2(In −M−1
k Λk)B−T

2M−1
k (ṀkM

−1
k Λk − Λ̇k)B−T

−2(In −M−1
k Λk)B−T ξTB−T

Λk = ddiag(M−1
k )−1, Λ̇k = Λk ddiag(M−1

k ṀkM
−1
k )Λk .

fsKL

(Λ−1
k Mk −M−1

k Λk)B−T
M−1
k (ΛkB

−T ξT + ṀkM
−1
k Λk)B−T

+Λ−1
k (ξ − Λ−1

k Λ̇kB)Ck

Λk = ddiag(Mk)1/2 ddiag(M−1
k )−1/2,

Λ̇k = 1
2 Λk(ddiag(Ṁk) + ddiag(M−1

k )−1 ddiag(M−1
k ṀkM

−1
k )).

f̃sKL

(M−1
k Nk −N−1

k Mk)A−T
N−1
k (MkA

−T ξT + ṄkN
−1
k Mk)A−T

+M−1
k ξΛk

f̂sKL

(Λ−1
k Mk −M−1

k Λk)B−T
M−1
k (ΛkB

−T ξT + ṀkM
−1
k Λk)B−T

+Λ−1
k ξCk

3) Log-det α-divergence:

f̃αLD

4
1−α (Q−1

k,α −N
−1
k )AΛk

4
1−αQ

−1
k,α(ξ − Q̇k,αQ−1

k,αA)Λk

+ 4
1−αA

−T ξTA−T

Qk,α = 1−α
2 Mk + 1+α

2 Nk , Q̇k,α = 1+α
2 Ṅk .

f̂αLD

4
1+α (Q−1

k,α −M
−1
k )BCk

4
1+αQ

−1
k,α(ξ − Q̇k,αQ−1

k,αB)Ck

+ 4
1+αB

−T ξTB−T

Qk,α = 1−α
2 Mk + 1+α

2 Λk , Q̇k,α = 1−α
2 Ṁk .

4) Riemannian distance:

f̃R

4 log(M−1
k Nk)A−T

−4 log(M−1
k Nk)A−T ξTA−T

+4 D log(M−1
k Nk)[ξ]A−T

f̂R

4 log(Λ−1
k Mk)B−T

−4 log(Λ−1
k Mk)B−T ξTB−T

+4 D log(Λ−1
k Mk)[ξ]B−T

5) Log-Euclidean distance:

fLE

4D log(Mk)[Ok]BCk
4 DD log(Mk)[Ok][ξ]BCk

+4D log(Mk)[Ok]ξCk

Ok = log(Mk)− ddiag(log(Mk)).

f̃LE

4D log(Nk)[Ok]AΛk
4 DD log(Nk)[Ok][ξ]AΛk

+4D log(Nk)[Ok]ξΛk

Ok = log(Nk)− log(Mk).

f̂LE

4D log(Mk)[Ok]BCk
4 DD log(Mk)[Ok][ξ]BCk

+4D log(Mk)[Ok]ξCk

Ok = log(Mk)− log(Λk).
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D log(Mk)[Ok] is the derivative of the logarithm at Mk in the
direction Ok. We have D log(Mk)[ξ] = D log(Mk)[Ṁk] and
DD log(Mk)[Ok][ξ] = D(2) log(Mk)[Ok][Ṁk], where D(2)

denotes the second derivative.
For the Riemannian and log-Euclidean distances, the first

and second derivatives of the logarithm are computed as per [5]
and [6], respectively.

6) Wasserstein distance:

f̃W

(In −M1/2
k QkM

1/2
k )AΛk

(In −M1/2
k QkM

1/2
k )ξΛk

−M1/2
k Q̇kM

1/2
k AΛk

Qk = (M
1/2
k NkM

1/2
k )−1/2, Q̇k solution to the Sylvester equation

QkQ̇k + Q̇kQk = −M−1/2
k N−1

k ṄkN
−1
k M

−1/2
k

f̂W

(In − Λ
1/2
k QkΛ

1/2
k )BCk

(In − Λ
1/2
k QkΛ

1/2
k )ξCk

−Λ
1/2
k Q̇kΛ

1/2
k BCk

Qk = (Λ
1/2
k MkΛ

1/2
k )−1/2, Q̇k solution to the Sylvester equation

QkQ̇k + Q̇kQk = −Λ
−1/2
k M−1

k ṀkM
−1
k Λ

−1/2
k

B. Closest diagonal matrix

The closest diagonal matrix Λ to a SPD matrix M according
to the distance or divergence d(·, ·) is defined as

argmin
Λ∈D++

n

d(M,Λ), (II-B.1)

where D++
n denotes the set of diagonal matrices with strictly

positive elements. For some divergences, (II-B.1) does not
admit a closed form solution and we approximate it again
using Riemannian optimization.

Recall that D++
n is a closed Riemannian submanifold of

S++
n . From the Riemannian gradient and Hessian of Λ 7→
d(M,Λ), one can obtain a descent direction ξ in Dn (set of
diagonal matrices) from a generic Riemannian algorithm. The
next iterate is then defined through the canonical retraction
(exponential map) of ξ at Λ in D++

n , which is given by

expΛ(ξ) = Λ exp(Λ−1ξ). (II-B.2)

1) Log-det α-divergence: The Riemannian gradient and
Hessian of gαLD : Λ 7→ dαLD(M,Λ) are

gradD++
n

gαLD(Λ) = 2
1−αΛ(ΣΛ− In)

HessD++
n

gαLD(Λ)[ξ] = 4
1−αΛΣξ + 2

1−αΛΣ̇Λ,
(II-B.3)

where we have Σ = ddiag
(
( 1−α

2 M + 1+α
2 Λ)−1

)
and Σ̇ =

− 1+α
2 ddiag

(
( 1−α

2 M + 1+α
2 Λ)−1ξ( 1−α

2 M + 1+α
2 Λ)−1

)
.

2) Riemannian distance: The Riemannian gradient and
Hessian of gR : Λ 7→ δ2

R(M,Λ) are

gradD++
n

gR(Λ) = 2Λ ddiag(log(M−1Λ))

HessD++
n

gR(Λ)[ξ] = 2Λ ddiag(D log(M−1Λ)[ξ]).
(II-B.4)

3) Wasserstein distance: The Riemannian gradient and
Hessian of gW : Λ 7→ δ2

W(M,Λ) are

gradD++
n

gW(Λ) = 1
2Λ(Λ− ddiag(Q))

HessD++
n

gW(Λ)[ξ] = 1
2Λ(ξ − ddiag(Q̇)),

(II-B.5)

where Q = (Λ1/2MΛ1/2)1/2 and Q̇ solution to the Sylvester
equation

Q̇Q+QQ̇ = sym(ξΛ
−1/2MΛ

1/2). (II-B.6)

Finally, the closest diagonal matrix to M according to the
Wasserstein distance is Λ defined such that the gradient of gW
is canceled. Thus, it is the solution to (36).
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