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ABSTRACT

Recent research on Automatic Chord Extraction (ACE)
has focused on the improvement of models based on ma-
chine learning. However, most models still fail to take
into account the prior knowledge underlying the labeling
alphabets (chord labels). Furthermore, recent works have
shown that ACE performances have reached a glass ceil-
ing. Therefore, this prompts the need to focus on other
aspects of the task, such as the introduction of musical
knowledge in the representation, the improvement of the
models towards more complex chord alphabets and the de-
velopment of more adapted evaluation methods.

In this paper, we propose to exploit specific properties
and relationships between chord labels in order to improve
the learning of statistical ACE models. Hence, we ana-
lyze the interdependence of the representations of chords
and their associated distances, the precision of the chord
alphabets, and the impact of performing alphabet reduc-
tion before or after training the model. Furthermore, we
propose new training losses based on musical theory. We
show that these improve the results of ACE systems based
on Convolutional Neural Networks. By analyzing our re-
sults, we uncover a set of related insights on ACE tasks
based on statistical models, and also formalize the musical
meaning of some classification errors.

1. INTRODUCTION

Automatic Chord Extraction (ACE) is a topic that has been
widely studied by the Music Information Retrieval (MIR)
community over the past years. However, recent results
seem to indicate that the rate of improvement of ACE per-
formances has diminished over the past years [20].

Recently, a part of the MIR community pointed out the
need to rethink the experimental methodologies. Indeed,
current evaluation methods do not account for the intrinsic
relationships between different chords [10]. Our work is
built on these questions and is aimed to give some insights
on the impact of introducing musical relationships between
chord labels in the development of ACE methods.
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Most ACE systems are built on the idea of extracting
features from the raw audio signal and then using these
features to construct a chord classifier [4]. The two major
families of approaches that can be found in previous re-
search are rule-based and statistical models. On one hand,
the rule-based models rely on music-theoretic rules to ex-
tract information from the precomputed features. Although
this approach is theoretically sound, it usually remains brit-
tle to perturbations in the spectral distributions from which
the features were extracted. On the other hand, statistical
models rely on the optimization of a loss function over an
annotated dataset. However, the generalization capabilities
of these models are highly correlated to the size and com-
pleteness of their training set. Furthermore, most training
methods see musical chords as independent labels and do
not take into account the inherent relations between chords.

In this paper, we aim to target this gap by introducing
musical information directly in the training process of sta-
tistical models. To do so, we propose to use prior knowl-
edge underlying the labeling alphabets in order to account
for the inherent relationships between chords directly in-
side the loss function of learning methods. Due to the
complexity of the ACE task and the wealth of models avail-
able, we choose to rely on a single Convolutional Neural
Network (CNN) architecture, which provides the current
best results in ACE [19]. First, we study the impact of
chord alphabets and their relationships by introducing a
specific hierarchy of alphabets. We show that some of the
reductions proposed by previous researches might be inad-
equate for learning algorithms. We also show that relying
on more finely defined and extensive alphabets allows to
grasp more interesting insights on the errors made by ACE
systems, even though their accuracy is only marginally bet-
ter or worse. Then, we introduce two novel chord distances
based on musical relationships found in the Tonnetz-space
or directly between chord components through their cate-
gorical differences. These distances can be used to define
novel loss functions for learning algorithms. We show that
these new loss functions improve ACE results with CNNs.
Finally, we perform an extensive analysis of our approach
and extract insights on the methodology required for ACE.
To do so, we develop a specifically-tailored analyzer that
focuses on the functional relations between chords to dis-
tinguish strong and weak errors. This analyzer is intended
to be used for future ACE research to develop a finer un-
derstanding on the reasons behind the success or failure of
ACE systems.



2. RELATED WORKS

Automatic Chord Extraction (ACE) is defined as the task
of labeling each segment of an audio signal using an alpha-
bet of musical chords. In this task, chords are seen as the
concomitant or successive combination of different notes
played by one or many instruments.

2.1 Considerations on the ACE task

Whereas most MIR tasks have benefited continuously from
the recent advances in deep learning, the ACE field seems
to have reached a glass ceiling. In 2015, Humphrey and
Bello [10] highlighted the need to rethink the whole ACE
methodology by giving four insights on the task.

First, several songs from the reference annotated chord
datasets (Isophonics, RWC-Pop, McGill Billboard) are not
always tuned to 440Hz and may vary up to a quarter-tone.
This leads to multiple misclassifications on the concomi-
tant semi-tones. Moreover, chord labels are not always
well suited to describe every song in these datasets.

Second, the chord labels are related and some subsets of
those have hierarchical organizations. Therefore, the one-
to-K assessment where all errors are equivalently weighted
appears widely incorrect. For instance, the misclassifica-
tion of a C:Maj as a A:min or C#:Maj, will be considered
equivalently wrong. However, C:Maj and A:min share two
pitches in common whereas C:Maj and C#:Maj have to-
tally different pitch vectors.

Third, the very definition of the ACE task is also not
entirely clear. Indeed, there is a frequent confusion be-
tween two different tasks. First, the literal recognition of
a local audio segment using a chord label and its precise
extensions, and, second, the transcription of an underlying
harmony, taking into account the functional aspect of the
chords and the long-term structure of the song. Finally, the
labeling process involves the subjectivity of the annotators.
For instance, even for expert annotators, it is hard to agree
on possible chord inversions.

Therefore, this prompts the need to focus on other as-
pects such as the introduction of musical knowledge in the
representation of chords, the improvement of the models
towards more complex chord alphabets and the develop-
ment of more adapted evaluation methods.

2.2 Workflow of ACE systems

Due to the complexity of the task, ACE systems are usually
divided into four main modules performing feature extrac-
tion, pre-filtering, pattern matching and post-filtering [4].

First, the pre-filtering usually applies low-pass filters
or harmonic-percussive source separation methods on the
raw signal [12, 26]. This optional step allows to remove
noise or other percussive information that are irrelevant
for the chord extraction task. Then, the audio signal is
transformed into a time-frequency representation such as
the Short-Time Fourier Transform (STFT) or the Constant-
Q Transform (CQT) that provides a logarithmically-scaled
frequencies. These representations are sometimes summa-
rized in a pitch class vector called chromagram. Then, suc-

cessive time frames of the spectral transform are averaged
in context windows. This allows to smooth the extracted
features and account for the fact that chords are longer-
scale events. It has been shown that this could be done
efficiently by feeding STFT context windows to a CNN in
order to obtain a clean chromagram [13].

Then, these extracted features are classified by relying
on either a rule-based chord template system or a statistical
model. Rule-based methods give fast results and a decent
level of accuracy [21]. With these methods, the extracted
features are classified using a fixed dictionary of chord pro-
files [2] or a collection of decision trees [12]. However,
these methods are usually brittle to perturbations in the in-
put spectral distribution and do not generalize well.

Statistical models aim to extract the relations between
precomputed features and chord labels based on a train-
ing dataset in which each temporal frame is associated
to a label. The optimization of this model is then per-
formed by using gradient descent algorithms to find an ad-
equate configuration of its parameters. Several probabilis-
tic models have obtained good performances in ACE, such
as multivariate Gaussian Mixture Model [3] and convolu-
tional [9, 14] or recurrent [1, 25] Neural Networks.

Finally, post-filtering is applied to smooth out the clas-
sified time frames. This is usually based on a study of
the transition probabilities between chords by a Hidden
Markov Model (HMM) optimized with the Viterbi algo-
rithm [17] or with Conditional Random Fields [15].

2.3 Convolutional Neural Network

A Convolutional Neural Network (CNN) is a statistical
model composed of layers of artificial neurons that trans-
form the input by repeatedly applying convolution and
pooling operations. A convolutional layer is characterized
by a set of convolution kernels that are applied in parallel
to the inputs to produce a set of output feature maps. The
convolution kernels are defined as three-dimensional ten-
sors h ∈ RM×U×V where M is the number of kernels, U
is the height and V the width of each kernel. If we note the
input as matrix X , then the output feature maps are defined
by Y = X ∗hm for every kernels, where ∗ is a 2D discrete
convolution operation

(A ∗B)i,j =

(T−1)∑
r=0

(F−1)∑
s=0

Ar,sBi−r,j−s (1)

for A ∈ RT×F and B ∈ RU×V with 0 ≤ i ≤ T +U−1
and 0 ≤ j ≤ F + V − 1.

As this convolutional layer significantly increases the
dimensionality of the input data, a pooling layer is used
to reduce the size of the feature maps. The pooling opera-
tion reduces the maps by computing local mean, maximum
or average of sliding context windows across the maps.
Therefore, the overall structure of a CNN usually consists
in alternating convolution, activation and pooling layers.
Finally, in order to perform classification, this architecture
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Figure 1. Hierarchy of the chord alphabets (blue: A0, or-
ange: A1, green: A2)

is typically followed by one or many fully-connected lay-
ers. Thus, the last layer produces a probability vector of
the same size as the chord alphabet. As we will rely on the
architecture defined by [9], we redirect interested readers
to this paper for more information.

3. OUR PROPOSAL

3.1 Definition of alphabets

Chord annotations from reference datasets are very precise
and include extra notes (in parenthesis) and basses (after
the slash) [7]. With this notation, we would obtain over
a thousand chord classes with very sparse distributions.
However, we do not use these extra notes and bass in our
classification. Therefore, we can remove this information

F : maj7(11)/3→ F : maj7 (2)

Even with this reduction, the number of chord qualities (eg.
maj7, min, dim) is extensive and we usually do not aim for
such a degree of precision. Thus, we propose three alpha-
bets named A0, A1 and A2 with a controlled number of
chord qualities. The level of precision of the three alpha-
bets increases gradually (see Figure 1). In order to reduce
the number of chord qualities, each one is mapped to a par-
ent class when it exists, otherwise to the no-chord class N .

The first alphabet A0 contains all the major and minor
chords, which defines a total of 25 classes

A0 = {N} ∪ {P ×maj,min} (3)

where P represents the 12 pitch classes.
Here, we consider the interest of working with chord

alphabets larger than A0. Therefore, we propose an alpha-
bet containing all chords present in the harmonization of
the major scale (usual notation of harmony in jazz music).
This corresponds to the orange chord qualities and their
parents in Figure 1. The chord qualities without heritage
are included in the no-chord class N , leading to 73 classes

A1 = {N}∪ {P ×maj,min, dim,maj7,min7, 7} (4)

Finally, the alphabet A2 is inspired from the large vo-
cabulary alphabet proposed by [19]. This most complete
chord alphabet contains 14 chord qualities and 169 classes

A2 = {N} ∪ {P ×maj,min, dim, aug,maj6,min6,

maj7,minmaj7,min7, 7, dim7, hdim7, sus2, sus4}
(5)

3.2 Definition of chord distances

In most CNN approaches, the model does not take into ac-
count the nature of each class when computing their differ-
ences. Therefore, this distance which we called categorical
distance D0 is the binary indicator

D0(chord1, chord2) =

{
0 if chord1 = chord2
1 if chord1 6= chord2

(6)
However, we want here to include the relationships be-

tween chords directly in our model. For instance, a C:maj7
is closer to an A:min7 than a C#:maj7. Therefore, we in-
troduce more refined distances that can be used to define
the loss function for learning.
Here, we introduce two novel distances that rely on the
representation of chords in an harmonic space or in a pitch
space to provide a finer description of the chord labels.
However, any other distance that measure similarities be-
tween chords could be studied [8, 18].

3.2.1 Tonnetz distance

A Tonnetz-space is a geometric representation of the tonal
space based on harmonic relationships between chords.
We chose a Tonnetz-space generated by three transforma-
tions of the major and minor triads [5] changing only one
of the three notes of the chords: the relative transforma-
tion (transforms a chord into his relative major / minor),
the parallel transformation (same root but major instead
of minor or conversely), the leading-tone exchange (in a
major chord the root moves down by a semitone, in a mi-
nor chord the fifth moves up by a semitone). Representing
chords in this space has already shown promising results
for classification on the A0 alphabet [11].

We define the cost of a path between two chords as the
sum of the succesive transformations. Each transformation
is associated to the same cost. Furthermore, an extra cost is
added if the chords have been reduced beforehand in order
to fit the alphabet A0. Then, our distance D1 is:

D1(chord1, chord2) = min(C) (7)

with C the set of all possible path costs from chord1 to
chord2 using a combination of the three transformations.

3.2.2 Euclidean distance on pitch class vectors

In some works, pitch class vectors are used as an inter-
mediate representation for ACE tasks [16]. Here, we use
these pitch class profiles to calculate the distances between
chords according to their harmonic content.

Each chord from the dictionary is associated to a 12-
dimensional binary pitch vector with 1 if the pitch is
present in the chord and 0 otherwise (for instance C:maj7



becomes (1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1)). The distance be-
tween two chords is defined as the Euclidean distance be-
tween the two binary pitch vectors.

D2(chord1, chord2) =

√√√√ 11∑
i=0

(chordi1 − chordi2)2 (8)

Hence, this distance allows to account for the number
of pitches that are shared by two chords.

The D0, D1 or D2 distance is used to define the loss
function for training the CNN classification model.

3.3 Introducing the relations between chords

To train the model with our distances, we first reduce the
original labels from the Isophonics dataset 1 so that they fit
one of our three alphabets A0, A1, A2. Then, we denote
ytrue as the one-hot vector where each bin corresponds to
a chord label in the chosen alphabet Ai. The output of
the model, noted ypred, is a vector of probabilities over all
the chords in a given alphabet Ai. In the case of D0, we
train the model with a loss function that simply compares
ypred to the original label ytrue. However, for our proposed
distances (D1 and D2), we introduce a similarity matrix M
that associates each couple of chords to a similarity ratio.

Mi,j =
1

Dk(chordi, chordj) + K
(9)

K is an arbitrary constant to avoid division by zero. The
matrix M is symmetric and we normalize it with its max-
imum value to obtain M̄ . Afterwards, we define a new

¯ytrue which is the matrix multiplication of the old ytrue
and the normalized matrix M̄ .

¯ytrue = ytrueM̄ (10)

Finally, the loss function for D1 and D2 is defined by
a comparison between this new ground truth ¯ytrue and the
output ypred. Hence, this loss function can be seen as a
weighted multi-label classification.

4. EXPERIMENTS

4.1 Dataset

We perform our experiments on the Beatles dataset as it
provides the highest confidence regarding the ground truth
annotations [6]. This dataset is composed by 180 songs
annotated by hand. For each song, we compute the CQT
by using a window size of 4096 samples and a hop size
of 2048. The transform is mapped to a scale of 3 bins
per semi-tone over 6 octaves ranging from C1 to C7. We
augment the available data by performing all transpositions
from -6 to +6 semi-tones and modifying the labels accord-
ingly. Finally, to evaluate our models, we split the data into
a training (60%), validation (20%) and test (20%) sets.

1 http://isophonics.net/content/
reference-annotations-beatles

4.2 Models

We use the same CNN model for all test configurations,
but change the size of the last layer to fit the size of the se-
lected chord alphabet. We apply a batch normalization and
a Gaussian noise addition on the inputs layer. The archi-
tecture of the CNN consists of three convolutional layers
followed by two fully-connected layers. The architecture
is very similar to the first CNN that has been proposed for
the ACE task [9]. However, we add dropout between each
convolution layer to prevent over-fitting.

For training, we use the ADAM optimizer with a learn-
ing rate of 2.10−5 for a total of 1000 epochs. We reduce the
learning rate if the validation loss has not improved during
50 iterations. Early stopping is applied if the validation
loss has not improved during 200 iterations and we keep
the model with the best validation accuracy. For each con-
figuration, we perform a 5-cross validation by repeating a
random split of the dataset.

5. RESULTS AND DISCUSSION

The aim of this paper is not to obtain the best classification
scores (which would involve pre- or post-filtering meth-
ods) but to study the impact on the classification results of
different musical relationships (as detailed in the previous
section). Therefore, we ran 9 instances of the CNN model
corresponding to all combinations of the 3 alphabets A0,
A1, A2 and 3 distances D0, D1, D2 to compare their re-
sults from both a quantitative and qualitative point of view.
We analyzed the results using the mireval library [22] to
compute classification scores, and a Python ACE Analyzer
that we developed to reveal the musical meaning of classi-
fication errors and, therefore, understand their qualities.

5.1 Quantitative analysis: MIREX evaluation

Regarding the MIREX evaluation, the efficiency of ACE
models is assessed through classification scores over dif-
ferent alphabets [22]. The MIREX alphabets for evalua-
tion have a gradation of complexity from Major/Minor to
Tetrads. In our case, for the evaluation on a specific al-
phabet, we apply a reduction from our training alphabet
Ai to the MIREX evaluation alphabet. Here, we evaluate
on three alphabet : Major/Minor, Sevenths, and Tetrads.
These alphabets correspond roughly to our three alphabets
(Major/Minor ∼ A0, Sevenths ∼ A1, Tetrads ∼ A2).

5.1.1 MIREX Major/minor

Figure 2 depicts the average classification scores over all
frames of our test dataset for different distances and alpha-
bets. We can see that the introduction of the D1 or D2

distance improves the classification compared to D0. With
these distances, and even without pre- or post-filtering, we
obtain classification scores that are superior to that of sim-
ilar works (75.9% for CNN with post-filtering but an ex-
tended dataset in [10] versus 76.3% for A2 − D1). Sec-
ond, the impact of working first on large alphabets (A1 and
A2), and then reducing on A0 for the test is negligible on
Maj/Min (only from a quantitative point of view, see 5.2).
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Figure 2. Results of the 5-folds: evaluation on MIREX
Maj/Min (∼ reduction on A0).
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Figure 3. Results of the 5-folds: evaluation on MIREX
Sevenths (∼ reduction on A1).

5.1.2 MIREX Sevenths

With more complex alphabets, the classification score is
lower than for MIREX Maj/Min. This result is not surpris-
ing since we observe this behavior on all ACE systems.
Moreover, the models give similar results and we can not
observe a particular trend between the alphabet reductions
or the different distances. The same result is observed for
the evaluation with MIREX tetrads (∼ reduction on A2).
Nonetheless, the MIREX evaluation uses a binary score to
compare chords. Because of this approach, the qualities of
the classification errors cannot be evaluated.

5.2 Qualitative analysis: understanding the errors

In this section, we propose to analyze ACE results from
a qualitative point of view. The aim here is not to intro-
duce new alphabets or distances in the models, but to in-
troduce a new type of evaluation of the results. Our goal
is twofold: to understand what causes the errors in the first
place, and to distinguish “weak” from “strong” errors with
a functional approach.

In tonal music, the harmonic functions qualify the roles
and the tonal significances of chords, and the possible
equivalences between them within a sequence [23, 24].
Therefore, we developed an ACE Analyzer including two
modules discovering some formal musical relationships

Model Tot. ⊂ Maj ⊂ min
A0-D0 34.93
A0-D1 36.12
A0-D2 35.37
A1-D0 52.40 23.82 4.37
A1-D1 57.67 28.31 5.37
A1-D2 55.17 25.70 4.21
A2-D0 55.28 26.51 4.29
A2-D1 60.47 31.61 6.16
A2-D2 55.45 25.74 4.78

Table 1. Left: total percentage of errors corresponding to
inclusions or chords substitutions rules, right: percentage
of errors with inclusion in the correct triad (% of the total
number of errors).

Model rel. M rel. m T subs. 2 m→M M→m
A0-D0 4.19 5.15 2.37 7.26 12.9
A0-D1 4.40 5.20 2.47 7.66 13.4
A0-D2 5.13 4.87 2.26 8.89 10.89
A1-D0 2.63 3.93 1.53 4.46 8.83
A1-D1 3.05 3.36 1.58 5.53 7.52
A1-D2 3.02 4.00 1.62 5.84 8.07
A2-D0 2.54 4.15 1.51 4.96 8.54
A2-D1 2.79 2.97 1.54 5.29 7.46
A2-D2 3.11 4.26 1.63 5.34 7.59

Table 2. Left: percentage of errors corresponding to usual
chords substitutions rules, right: percentage of errors “ma-
jor instead of minor” or inversely (% of the total number
of errors).

between the target chords and the chords predicted by ACE
models. Both modules are generic and independent of the
classification model, and are available online. 2

5.2.1 Substitution rules

The first module detects the errors corresponding to hierar-
chical relationships or usual chord substitutions rules: us-
ing a chord in place of another in a chord progression (usu-
ally substituted chords have two pitches in common with
the triad that they are replacing).

Table 1 presents: Tot., the total fraction of errors that
can be explained by the whole set of substitution rules we
implemented, and⊂Maj and⊂ min, the errors included in
the correct triad (e.g. C:maj instead of C:maj7, C:min7 in-
stead of C:min). Table 2 presents the percentages of errors
corresponding to widely used substitution rules: rel. m and
rel. M, relative minor and major; T subs. 2, tonic substitu-
tion different from rel. m or rel. M (e.g. E:min7 instead or
C:maj7), and the percentages of errors m→M and M→m
(same root but major instead of minor or conversely). The
tables only show the categories representing more than 1%
of the total number of errors, but other substitutions (that
are not discussed here) were analyzed: tritone substitution,
substitute dominant, and equivalence of dim7 chords mod-
ulo inversions.

First, Tot. in Table 1 shows that a huge fraction of errors
can be explained by usual substitution rules. This percent-

2 http://repmus.ircam.fr/dyci2/ace_analyzer



Model Non-diat. targ. Non-diat. pred.
A0-D0 37.96 28.41
A0-D1 44.39 15.82
A0-D2 45.87 17.60
A1-D0 38.05 21.26
A1-D1 37.94 20.63
A1-D2 38.77 20.23
A2-D0 37.13 30.01
A2-D1 36.99 28.41
A2-D2 37.96 28.24

Table 3. Errors occurring when the target is non-diatonic
(% of the total number of errors), non-diatonic prediction
errors (% of the subset of errors on diatonic targets).

age can reach 60.47%, which means that numerous clas-
sification errors nevertheless give useful indications since
they mistake a chord for another chord with an equivalent
function. For instance, Table 2 shows that a significant
amount of errors (up to 10%) are relative major / minor
substitutions. Besides, for the three distances, the percent-
age in Tot. (Table 1) increases with the size of the alpha-
bet: larger alphabets seem to imply weaker errors (higher
amount of equivalent harmonic functions).

We can also note that numerous errors (between 28.19%
and 37.77%) correspond to inclusions in major or minor
chords (⊂ Maj and ⊂ min, Table 1) for A1 and A2. In the
framework of the discussion about recognition and tran-
scription mentioned in introduction, this result questions
the relevance of considering exhaustive extensions when
the goal is to extract and formalize an underlying harmony.

Finally, for A0, A1, and A2, using D1 instead of D0

increases the fraction of errors attributed to categories in
the left part of Table 2 (and in almost all the configurations
when using D2). This shows a qualitative improvement
since all these operations are considered as valid chord
substitutions. On the other hand, the impact on the (quite
high) percentages in the right part of Table 2 is not clear.
We can assume that temporal smoothing can be one of the
keys to handle the errors m→M and M→m.

5.2.2 Harmonic degrees

The second module of our ACE Analyzer focuses on har-
monic degrees. First, by using the annotations of key in
the dataset in addition to that of chords, this module de-
termines the roman numerals characterizing the harmonic
degrees of the predicted chord and of the target chord (e.g.
in C, if a chord is an extension of C, I; if it is an extension
of D:min, ii; etc.) when it is possible (e.g. in C, if a chord
is an extension of C# it does not correspond to any degree).
Then, it counts the errors corresponding to substitutions of
harmonic degrees when it is possible (e.g. in C, A:min in-
stead of C corresponds to I∼vi). This section shows an
analysis of the results using this second module. First, it
determines if the target chord is diatonic (i.e. belongs to
the harmony of the key), as presented in Table 3. If this
is the case, the notion of incorrect degree for the predicted
chord is relevant and the percentages of errors correspond-
ing to substitutions of degrees is computed (Table 4).

Model I∼IV I∼V IV∼V I∼vi IV∼ii I∼iii
A0-D0 17.41 14.04 4.54 4.22 5.41 2.13
A0-D1 17.02 13.67 3.33 4.08 6.51 3.49
A0-D2 16.16 13.60 3.08 5.65 6.25 3.66
A1-D0 17.53 13.72 3.67 5.25 4.65 3.50
A1-D1 15.88 13.82 3.48 4.95 6.26 3.46
A1-D2 16.73 13.45 3.36 4.70 5.75 2.97
A2-D0 16.90 13.51 3.68 4.45 5.06 3.32
A2-D1 16.81 13.60 3.85 4.57 5.37 3.59
A2-D2 16.78 12.96 3.84 5.19 7.01 3.45

Table 4. Errors (> 2%) corresponding to degrees substitu-
tions (% of the subset of errors on diatonic targets).

A first interesting fact presented in Table 3 is that
36.99% to 45.87% of the errors occur when the target
chord is non-diatonic. It also shows, for the three alpha-
bets, that using D1 or D2 instead of D0 makes the frac-
tion of non-diatonic errors decrease (Table 3, particularly
A0), which means that the errors are more likely to stay
in the correct key. Surprisingly, high percentages of errors
are associated to errors I∼V (up to 14.04%), I∼IV (up to
17.41%), or IV∼V (up to 4.54%) in Table 4. These errors
are not usual substitutions, and IV∼V and I∼IV have re-
spectively 0 and 1 pitch in common. In most of the cases,
these percentages tend to decrease on alphabets A1 or A2

and when using musical distances (particularly D2). Con-
versely, it increases the amount of errors in the right part
of Table 4 containing usual substitutions: once again we
observe that the more precise the musical representations
are, the more the harmonic functions tend to be correct.

6. CONCLUSION

We presented a novel approach taking advantage of musi-
cal prior knowledge underlying the labeling alphabets into
ACE statistical models. To this end, we applied reduc-
tions on different chord alphabets and we used different
distances to train the same type of model. Then, we con-
ducted a quantitative and qualitative analysis of the classi-
fication results.

First, we conclude that training the model using dis-
tances reflecting the relationships between chords im-
proves the results both quantitatively (classification scores)
and qualitatively (in terms of harmonic functions). Second,
it appears that working first on large alphabets and reduc-
ing the chords during the test phase does not significantly
improve the classification scores but provides a qualitative
improvement in the type of errors. Finally, ACE could
be improved by moving away from its binary classifica-
tion paradigm. Indeed, MIREX evaluations focus on the
nature of chords but a large amount of errors can be ex-
plained by inclusions or usual substitution rules. Our eval-
uation method therefore provides an interesting notion of
musical quality of the errors, and encourages to adopt a
functional approach or even to introduce a notion of equiv-
alence classes. It could be adapted to the ACE problem
downstream and upstream: in the classification processes
as well as in the methodology for labeling the datasets.
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