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Abstract. The automatic generation of 3D urban models from geospa-
tial data is now a standard procedure. However, practitioners still have to
visually assess, at city-scale, the correctness of these models and detect
inevitable reconstruction errors. Such a process relies on experts, and is
highly time-consuming (2 h/km2/expert). In this work, we propose an
approach for automatically evaluating the quality of 3D building models.
Potential errors are compiled in a hierarchical, versatile and parameter-
izable taxonomy. This allows for the first time to disentangle fidelity
and modeling errors, whatever the level of details of the modeled build-
ings. The quality of models is predicted using the geometric properties
of buildings and, when available, image and depth data. A baseline of
handcrafted, yet generic features, is fed to a Random Forest classifier.
Both multi-class and multi-label cases are considered. Due to the inter-
dependence between classes of errors, we have the ability to retrieve all
errors at the same time while predicting erroneous buildings. We tested
our framework on an urban area with more than 1,000 building models.
We can satisfactorily detect, on average 96% of the most frequent errors.

Keywords: 3D urban modeling, buildings, quality assessment, taxon-
omy, classification, error detection, geometry, geospatial imagery, depth.

1 Introduction

3D urban models have a wide range of applications. They can be used for ludic
purposes (video games or tourism) as much as they can be vital in more critical
domains with significant societal challenges (e.g., run-off water or microclimate
simulation, urban planning or security operations preparation) [1], [2]. There-
fore, automatic urban reconstruction focuses efforts of both scientific research
and industrial activities. However, the problem remains unsolved [2], [3]. In fact,
besides the seamless nature of reconstituted models, current algorithms lack of
generic capacity. They cannot handle the high heterogeneity of urban scenes.
As such, human intervention is needed either in interaction within the recon-
struction pipeline or as a post-processing refinement and correction step. The
latter is based on a highly tedious task which requires individual visual inspec-
tion of buildings [2]. Consequently, for all stakeholders (from researchers up to
end-users), the automatic evaluation of 3D building models remains a critical
step, especially in a production environment. It has been barely investigated in
the literature. This paper addresses this issue.



2 Oussama Ennafii, Arnaud Le-Bris, Florent Lafarge, Clément Mallet

(c) Height based(b) Geometric(a) Input model (d) Image based

Features

(d) Erroneous building:
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Fig. 1: The semantic evaluation paradigm proposal: in addition to the input
model topological structure depicted in (b), features are extracted from com-
parison to height maps, as represented by the difference computed between the
model height and the Digital Surface Model in (c). Images can also be used to
characterize models by comparing their projected edges to local gradients (cf.
(d)). Based on the computed features, semantic errors affecting the building are
predicted using a pretrained classifier.

Our work focuses on assessing polyhedral structured models, representing
building architectures. These models result from a given urban reconstruction
method, e.g. [4]. Compared to triangle meshes that are extracted from multiview
images or point clouds, the studied objects are, by design, more compact but
less faithful to input data. In counterpart, they hold more semantic information
as each polygonal facet typically corresponds to a façade, a roof or any well
defined architectural feature. 3D modeling algorithms traditionally build a com-
promise between compactness of the representation and fidelity to the input data
(meshes or 3D points). Depending on its spatial resolution, the urban environ-
ment, and the targeted application, the reconstituted result achieves a certain
Level of Detail (LoD) [5]. A LoD-1 model is a simple building extrusion (flat
roof). A LoD-2 model considers geometric simplification of buildings, ignoring
superstructures, such as dormer windows and chimneys. These are taken into
account in LoD-3. The LoD rational is still open for debate [6]. Nevertheless,
in this paper, we will follow the LoD categorization introduced above, which is
standard in the computer vision literature [7].

A large body of papers has addressed the 3D building modeling issue and sub-
sequently tried to find the trade-off between fidelity and compactness [4], [8], [9], [7].
Few works investigate the issue of assessing the quality of the derived models,
especially out of a given reconstruction pipeline. Usually, quality assessment is
based on visual inspection [10], [11] or geometric fidelity metrics [12] without
any localized semantic dimension. Only one benchmark dataset [3] exists and is
not widely used [13], [14], [15]. This motivates the need for a well suited quality
assessment paradigm. Since the models to be diagnosed display strong struc-
tural properties, an unconstrained evaluation based on data fidelity metrics, as
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in [16], is too general. The evaluation should also ignore format issues or geo-
metric consistencies as proposed in [17], as they must have been ruled out well
before this stage. Instead, we target a semantic evaluation in which building
semantics should be taken into account through the detection and categoriza-
tion of modeling errors at the facet level for each 3D building. The framework
should be independent from the Level of Detail and the modeling method which
is regularly evaluated based on the minimized metrics during the reconstruction
process. Thus, we define an evaluation framework that can be used for:

– Building model correction: for the automatic or interactive [18] refine-
ment of building models using the detected errors.

– Change detection: modeling errors can straightforwardly stem from changes,
which often occur in urban environments [19]. Conversely, changes can be
implicitly detected from other defects.

– Reconstruction method selection: evaluating models from various recon-
struction algorithms can allow assessing which method(s) is(are) the most
adapted for a specific LoD and building type.

– Crowd-sourcing evaluation [20]: by categorizing user behaviors during
crowd-sourced modeling and vandalism detection process [21].

This work proposes an adaptable and flexible framework indifferent to input
urban scenes and reconstruction methods (Figure 1). For that purpose, our con-
tributions are three-fold:

– A new taxonomy of errors, hierarchical, adapted to all LoD, and inde-
pendent from input models;

– A supervised classification formulation of the evaluation problem which
predicts all errors affecting the building model;

– A multimodal baseline of features which are extracted both from the
model and external data (optical images and height data).

Section 2 introduces the problem of the evaluation of 3D building models
and discusses existing methods. Section 3 details the proposed approach, while
data and results of experiments conducted over an urban area are presented in
Section 4. Main conclusions are drawn in Section 5.

2 Related Work

Quality assessment methods can be classified according to two main criteria:
reference data and output type.

Reference data types. Existing methods rely on two types of reference data
in order to compare models to. First comes manually plotted ground truth data
with very high spatial accuracy. These models can be obtained either from field
measurements [4], [12] with the highest possible precision (σ(error) ≈ 0.05 m), or
using stereo-plotting [22], [12], [8], [23]. However, such an approach does not scale
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well. The other alternative is the direct comparison with raw data. For instance,
models can be compared to LiDAR point clouds, height maps [24], [25], [13]
or geospatial multi-view images as in [26], [27]. They are, however, not always
helpful: these are the input data used by modeling methods and such comparisons
are often the basis for their fidelity criterion.

Evaluation outputs. The quality assessment methods can produce two kinds
of outputs. Geometric fidelity metrics summarize the quality of the whole
assessed model. These indices are computed at different levels: specific points of
interest (such as corners or edge points) average precision [28], [12], surface dis-
similarity [22], [4], [12], [8], [25], [23], [13], [14] or volume discrepancy to reference
data [22], [23]. The obtained outputs have the drawback of being too general for
the special case of urban structured models. Indeed, their diagnosis, far from sur-
face reconstruction evaluation [16], needs to pinpoint specific types of errors that
can be easily corrected once identified [29]. On the other hand, semantic errors
identify topological and geometric errors that affect building models. One exam-
ple of such defects is the traffic light paradigm (“correct”, “acceptable”, “gener-
alized” and “rejected”) [26]. However, these errors depend on a definition of the
end-user specific “generalization” level at which models are rejected. In addition,
this taxonomy does not help in localizing the model shortcomings. Another so-
lution is to look at the issue at hand through the used reconstruction algorithm
perspective. For instance, defects are discriminated in [27] between footprint er-
rors (“erroneous outline”, “inexistent building”, “missing inner court” and “im-
precise footprint”), intrinsic reconstruction errors (“over segmentation”, “under
segmentation”, “inexact roof” and “Z translation”) and “vegetation occlusion”
errors. In the latter methods [26], [27], the evaluation is casted as a supervised
classification process: the predicted classes are defects listed in an established
taxonomy. Features used for this classification are extracted from very high spa-
tial resolution (0.2 m to 0.25 m) images and Digital Surface Models (DSMs), like
3D segment or texture correlation score comparisons. In spite of their semantic
contribution in quality evaluation, such taxonomies are prone to overfitting to
specific urban scenes or modeling algorithms.

Main objective. This work defines a new quality evaluation paradigm when
only the most accessible unstructured data could be provided. It should also
be capable of detecting semantic localized errors independently from the used
reconstruction method(s) and the urban environment.

3 Problem formulation

To evaluate reconstituted 3D models, a hierarchical error taxonomy is estab-
lished. From the latter, we deduce, depending on the evaluation objectives, error
labels that can pinpoint defects altering a building model. A set of buildings
are thus annotated in order to train a supervised classifier that will be used for
prediction on other models.
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The error taxonomy is parameterizable and agnostic towards reconstructed
inputs, no matter which modeling method or urban scenes are studied. Further-
more, it does not require onerous reference data aside from the annotated objects
on which the classifier is trained.

The quality assessment pipeline is also modular. Building models are rep-
resented by intrinsic geometric features extracted from the model facets graph.
If available, the classifier can also be fed with additional depth related features,
based on the comparison of the model altimetry and the DSM, in case of geospa-
tial reconstruction, or, in general, any depth map comparison. Eventually, image
information can be incorporated into the pipeline through spectral or textural
information available in satellites, aerial or street view images.

3.1 Error taxonomy

In order to build a generic and flexible taxonomy, we rely on two criteria for error
compilation: the building model LoD and the error semantic level, named hence-
forth finesse (cf. Figure 2). Different degrees of finesse describe, from coarse to
fine, the specificity of defects. Errors with maximal finesse are called atomic
errors. Multiple atomic errors can affect the same building. For instance, topo-
logical defects induce, almost always, geometrical ones. In practice, only inde-
pendently coexisting atomic defects are reported. The idea is to provide the most
relevant information to be able to correct a model. Atomic errors can thus be
heuristically correlated to independent actions that an operator or an algorithm
needs to choose to correct building models.

The general framework. The main idea of error hierarchization is to enable
modularity in the taxonomy, and thus achieve a strong flexibility towards input
urban scenes and desired error precision. A general layout is first drawn, followed
by the detailed error description.

At a first level, model qualifiability is studied. In fact, aside from format-
ting issues or geometric inconsistencies [17], other reasons make building models
unqualifiable. For instance, buildings can be occluded by vegetation. Generally
speaking, input models can be impaired by some pathological cases that are
outside our evaluation framework. In consequence, qualifiable models are distin-
guished here from unqualifiable buildings. This first level corresponds to a finesse
equal to 0.

At the finesse level 1, we predict the correctness of all qualifiable build-
ings. It is the lowest semantization level at which the evaluation of a model
is expressed. Then, a model is either valid or erroneous. Most state-of-the-art
evaluation methods address this level.

Model errors are to be grouped into three families depending on the under-
lying LoD. The first family of errors “Building Errors” affects the building in its
entirety. It corresponds to an accuracy evaluation at LoD-0 ∪ LoD-1. At the next
LoD-2, the family “Facet Errors” assembles defects that can damage façade or
roof fidelity. The last error family, i.e.,“Superstructure Errors”, describes errors
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that involve superstructures modeled at LoD-3. Only the first two families are
represented in Figure 2. The last one will not be studied in further experiments.

Each family contains atomic errors of maximal finesse equal to 3. Although
they can co-occur in the same building model and across different error families,
these errors are semantically independent. They represent specific topological or
geometric defects. Topological errors translate inaccurate structural modeling,
while geometric defects raise positioning infidelity.

At evaluation time, three parameters play a role in determining which error
labels to consider. The first is the evaluation Level of Detail (eLoD). Ev-
ery reconstruction method targets a certain set of LoDs. In consequence, when
assessing a reconstruction, a LoD must be specified. At a predefined eLoD, all
error families involving higher orders will be ignored. Depending on the target
of the qualification process, a finesse level might be preferred. This second eval-
uation parameter specifies the appropriate semantic level at which errors will be
reported. The last one is error exclusivity. It is based on family error hierar-
chization. If errors of a certain LoD family are detected, the ones with higher
LoD orders are considered meaningless and thus are not reported.

Input

Unqualifiable

Qualifiable

Error

Building
Errors

Under segmentation

Over segmentation

Inexact footprint

Imprecise height

Facet
Errors

Under segmentation

Over segmentation

Inexact segmentation

Imprecise slope

Valid

finesse = 0 finesse = 1 finesse = 2 finesse = 3

LoD0 ∪ LoD1

LoD2

Family errors:
possible exclusivity

Atomic errors:
no exclusivity

Fig. 2: The proposed taxonomy structure. In our case of very high resolution
overhead modeling, only two family errors are depicted. At finesse level 2, hier-
archization is possible: the exclusivity parameter can thus act. However, it is
not the case at the atomic errors level since they are independent.

The geospatial overhead modeling case. This study is, henceforth, nar-
rowed to the satellite and aerial reconstruction case. The objective is to recon-
struct large urban scenes using Very High Resolution geospatial images or, if
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available, LiDAR point clouds. These data could also be used later to assess
modeled buildings.

In the present case, 2.5D buildings are evaluated. The next atomic errors are
proposed:

– Building errors family (cf. Figure 3.i):
• Under segmentation (BUS ): two or more buildings are modeled as one;
• Over segmentation (BOS ): one building is subdivided into two or more

buildings;
• Inexact footprint (BInF ): erroneous building footprint, grouping geo-

metric inaccuracies and topological defects as missing inner courts (≡
not the right number of polygon holes);

• Imprecise height (BImH ): wrong building height estimation;
– Facet errors family (cf. Figure 3.ii):
• Under segmentation (FUS ): two or more facets are modeled as one;
• Over segmentation (FOS ): one facet is subdivided into two or more

facets;
• Inexact segmentation (FIS ): facet edges are inaccurate;
• Imprecise slope (FImS ): wrong facet slope estimation.

These errors are illustrated in Figure 3. In (3.i.(a)), two distinct buildings
can be visually identified while they are grouped into one building. The contrary
happens when a single building is subdivided in three parts as in (3.i.(b)). BInF
can be detected easily when it ensues a wrong outline as illustrated in the top
right corner of (3.i.(c)). Depth information is hard to convey using only one im-
age, as shown in (3.i.(d)). The balcony, besides being detached from its building,
has its height wrongly estimated due to the influence of the main building. It
is also impossible to deduce the slope mis-evaluation without a depth map as
depicted in (3.ii.(d)). Another fidelity error can be seen in (3.ii.(c)), as the cen-
tral edge that links the two main roof sides does not correspond to the image
position. Facets can also suffer from over segmentation as both roof sides are in
(3.ii.(b)). To complete the picture, (3.ii.(a)) illustrates how a model roof facet
can be under segmented.

3.2 Feature baseline

In order to predict errors, models need to be described using relevant attributes.
Since there is no comparable work that studies the previously defined errors, we
propose a new baseline of features. They are kept simple so as to be used in most
situations relying on generally available data. Indeed, they are based on depth
map comparison, segment and image gradient pairing or the model intrinsic
structural characteristics. We avoid computing and comparing 3D lines [27],
correlation scores [26] or, in general, any Structure-from-Motion (SfM) based
metric [18]. In addition of being very costly, these features are methodologically
endogamous to the 3D modeling techniques used to produce the assessed models.
In other words, they are vulnerable to the same defects that may be overlooked
during modeling in the first place.
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(a) BUS (b) BOS (c) BInF (d) BImH

i. Building errors family samples.

(a) FUS (b) FOS (c) FIS (d) FImS

ii. Facet errors family samples.

Fig. 3: Illustration of various errors of our taxonomy. One can see that geometric,
spectral and height information are required for an accurate detection of all kinds
of errors.

The presented approach offers another flexibility lever related to the input
data. The model itself can be directly used in order to discover flaws based on its
geometrical structure compared to the dataset statistics. Dense depth informa-
tion can be added, through for instance a DSM, in order to help detecting defects
that can be hardly discriminated otherwise. Eventually, optical images can bring
additional information critical for semantic heavy segmentation evaluation (high
frequencies and texture). Each modality is described herein in detail.

Geometric features. The model facet set is denoted by F. ∀(f, g) ∈ F×F f ∼
g correspond to facets f and g being adjacent: i.e., they share a common edge.
As the roof topology graph in [30], the input building model can be seen as a
facet (dual) graph:

M ,
(
F,E ,

{
(f, g) ∈ F× F : f ∼ g

})
. (1)

For each facet f ∈ F, we compute its degree (i.e., number of vertices; d(f) , |{v :
v is a vertex of f}|), area A (f), circumference C (f), centroid G (f) and normal
n(f). Statistical characteristics are then computed over building model facets
using specific functions S, like a histogram Sp

hist : l 7→ histogram(l, p), with p
standing for histogram parameters. Another simple option could be Ssynth : l 7→[
max(l) min(l) l̄ median(l) σ(l)

]
where l̄ (resp. σ(l)) represents the mean (resp.

the standard deviation) over a tuple l.
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Each building M can consequently be characterized by a geometric feature
vector that accounts for its geometric characteristics:

vgeometric(M) =



S
((
d(f)

)
f∈F

)
S
((

A (f)
)
f∈F

)
S
((

C (f)
)
f∈F

)
S
((
||G (f)− G (g)||

)
(f,g)∈E

)
S
((

arccos(n(f),n(g))
)

(f,g)∈E

)


. (2)

Additionally to individual facet statistics, regularity is taken into account by
looking into adjacent graph nodes as in [31]. Such features express only a small
part of structural information. Taking this type of information into account
would implicate graph comparisons which are not genuinely simple tasks to
achieve. Since our objective is to build a baseline, this approach has not been
considered for the moment.

Height based features. For this modality, raw depth information is provided
by a Digital Surface Model as a 2D height grid dsm. It must have been produced
around the same time of the 3D reconstruction so as to avoid probable temporal
changes. It is compared to the model altimetry like in [32], [8]. The latter is
inferred from its facets plane equations. It is then rasterized into the image alt
at the spatial resolution of the dsm. Their difference reveals a discrepancy map
that can be exploited for the prediction (cf. Figure 1.c). A baseline approach
is proposed relying on pixel values statistics computed using previously defined
functions S.

vheight(M) = S
(
dsm− alt

)
(3)

Equation 3 summarizes how building height based features are computed. Dif-
ferent from a root mean square metric [25], [33], the histogram captures the
the discrepancy distribution. However, as for the previous geometric attributes,
structural information coming from the model is lost.

Image features. We can benefit from high frequencies existing in Very High
Spatial Resolution optical images. Building edges correspond to sharp disconti-
nuities in images [34]. The idea is to compare these edges to local gradients in
order to look for inconsistencies. In an ideal setting, in an image I, gradients
computed at pixels g that intersect any segment s from the building projection
(4.a) will almost be collinear with its normal. In consequence, we qualify, apply-
ing the same statistical functions S, the distribution of the normalized gradient
scalar product with the normal all along a facet edge:

DS(s, I) , S

((∇I(g) · n(s)

‖∇I(g)‖ )g∈I and g∩s

))
. (4)
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(a) A building model pro-
jection superimposed on the
aerial image.

~n∇I

(b) The green squares repre-
sent intersecting pixels with
the red segment. The gradi-
ent vector in purple is com-
pared to the segment normal
in black.

Fig. 4: Illustration of features that can be derived from optical images. For each
model facet, the corresponding polygon projection edges are compared to local
gradients as in (b).

Once the distribution is computed over a segment, it is compiled over all facet
edges to define the distribution over projected facets. In the case of histograms
Sp
hist with the same parameters (and thus the same bins), it is equivalent to sum-

ming out the previous vectors DSp
hist

(s, I) over segments s forming the polygon

projection q(f) of the facet f on as the image I. In order to take into account
the variability of segment dimensions, this sum is weighted by segment lengths.

DSp
hist

(f, I) ,
∑

s∈q(f)

‖s‖ · DSp
hist

(s, I). (5)

The same can be done over all facets of a building M, resulting in equation 6.
The weights are added in order to take into account the geometry heterogeneity.
The gradient to normal comparison is similar to the 3D data fitting term for-
mulation in [13]. Once again, the model structure is partially lost when simply
summing histograms over all segments.

vimage(M) = DSp
hist

(M, I) ,
∑
f∈F

A (q(f)) · DSp
hist

(f, I). (6)

3.3 Classification process

When designing the classification process, two sources of flexibility are to be
taken into account: the parametric nature of the taxonomy and the feature vector
heterogeneity. The first means that labels to predict are not fixed but depend on
the specified parameters. The second means that the classifier must adapt well
to different input vectors types and sizes.
Classification problems. Both the classification problem nature and the set
of labels to work with are determined by the three previously defined taxonomy
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parameters (cf. Table 1). The first target finesse = 1 level corresponds to a
binary classification problem: ‘ ‘Valid” or “Erroneous”. At the next one finesse =
2, the other parameters intervene. The eLoD can take then two values in the
aerial reconstruction case: LoD-1 or LoD-2. If fixed at LoD-1, it is a binary
classification problem: “Valid” or “Building error”. For LoD-2, if the exclusivity
is on, it turns into a multi-class problem: “Valid”, “Building error” or “Facet
errors”, while, if set off, it becomes a multi-label one: “Valid”, “Building error”
and “Facet errors”. At the last finesse = 3 level, if the exclusivity is on, it is a
2-stage classification problem. In the first stage, a multi-class, or simply binary
in case eLoD = LoD1, problem, like in the previous semantic degree, predicts
the error family, after which a second multi-label problem decides between the
predicted error family children. If the exclusivity is off, it changes into 1-stage
multi-label problem that guesses the existence of each atomic error corresponding
to the chosen eLoD.

finesse eLoD exclusivity Classification output

1 – – Binary(Valid, Erroneous)
2 LoD-1 – Binary(Valid, Building error)
2 LoD-2 on MultiClass(Valid, Building error, Facet error)
2 LoD-2 off MultiLabel(Valid, Building error, Facet error)
3 LoD-1 on MultiLabel(children(Binary(Valid, Building error)))

3 LoD-2 on
MultiLabel(children(MultiClass(Valid, Building error,

Facet error)))
3 LoD-1 off MultiLabel(children(Building error))

3 LoD-2 off
MultiLabel(children(Building error)∪ children(Facet

error))

Table 1: The summary of all possible classification problem types.
children(error) lists the children of error from the taxonomy tree (Figure 2).

In a multi-class classification problem, each instance has only one label that
takes only one value amongst multiple ones (two in the case of binary classifi-
cation). The multi-label problem decides, for multiple labels, the most probable
state: present (+1) or absent (−1). In the multi-stage setting, one decides, at
each level, the most probable class or labels which impact the next stages of
prediction. Errors are easily propagated in the last case. That is why, the rest of
the study is not interested in this case. Since it focuses on semantic evaluation,
the first finesse degree is not experimented on. Furthermore, it can be inferred
from higher levels of finesse.

Classifier choice. The highly modular nature of proposed features involving
a great number of parameters restricts the choice of classifiers. Random forest
classifiers [35], [36] were retained in this setting. In fact, they can manage a great
number of features with different dynamics and coming from multiple modalities.
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Relying on their bagging property, a high number of trees (1, 000 elements) is
necessary to cover most of the feature space, while a limited tree depth (4) helps
avoiding overfitting during training. It adapts also to any classification paradigm:
multi-class or multi-label. In the latter case, a one-vs-all approach is adopted in
addition so as to address each label separately.

4 Experiments

4.1 Data

We evaluate our approach using a 3D city model over the city of Elancourt
(France). The studied scene spans an area of 15 km2. It exhibits a high diversity
of building types and errors: residential districts with mostly bi-level buildings,
industrial areas with flat roof buildings, a stadium, a petrol station and ad-
ministrative edifices such as schools. These were modeled, using the algorithm
described in [10], out of existing building footprints and an aerial multi-view
DSM with a 0.06 m spatial resolution. The modeling algorithm simulates possi-
ble constrained roof structures. The best one is selected after scoring the extrap-
olated roofs. Finally, orthogonal building façades connect the best roof to the
ground. The produced 2.5D models have a LoD-2 level. This method is adapted
to roof types of low complexity and favors symmetrical models. Therefore, a high
number of errors exist in our test case. 1, 501 buildings are considered in these
experiments. They were annotated according to the atomic errors list provided
by our taxonomy. Table 2 reports statistics over the annotated dataset.

Error Family
Occurrence

ratio
Atomic error

Family conditional
occurrence ratio

Absolute
occurrence ratio

Unqualifiable 0.0180 — — —

Building

Errors
0.8235

Over segmentation 0.8285 0.6822
Under segmentation 0.2824 0.2325
Imprecise footprint 0.1521 0.1252

Imprecise height 0.0057 0.0047

Facet Errors 0.7249

Over segmentation 0.8971 0.6502
Under segmentation 0.1314 0.0953

Imprecise segmentation 0.1351 0.9793
Imprecise slope 0.0193 0.0140

Table 2: Ground truth statistics over the dataset containing 1501 buildings.
Atomic errors are miscellaneously represented.

Both error families are highly present in the dataset. Only a small fraction
(27 samples) of instances are unqualifiable, being occluded, completely or par-
tially, by vegetation. At the atomic level, apart from building and facet over
segmentation cases, most errors are under-represented with the extreme case
of height imprecision error (7 samples). The unbalanced nature of our datasets
obviously affects our results, as highlighted later in the next Section.
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4.2 Results

Geometry Geom. ∪ Height Geom. ∪ Image All
Recall Prec. Recall Prec. Recall Prec. Recall Prec.

Building
errors

99.76 84.16 99.76 84.11 99.92 83.84 100 83.85

Facet
errors

90.81 98.02 91.08 98.41 90.44 97.62 90.53 97.82

Table 3: Test results expressed in percentage for the finesse = 2 case. All four
configurations are compared across both family errors. Geom. stands for geo-
metric

Based on the devised pipeline, four feature configurations were tested: “ge-
ometric features” only, “geometric and height features”, “geometric and image
features” as well as “geometric, height and image features”. Each feature modal-
ity produces a 20 dimension vector. A 0.06 m spatial resolution DSM and a 0.2 m
pixel size orthorectified image are used to derive height and image features. La-
bels are extracted from a non exclusive and eLoD = LoD-2 taxonomy. Both
finesse levels 2 and 3 are tested. We perform a 10-fold cross validation. The over-
all accuracy is not interesting regarding the highly unbalanced nature of labels.

Geometry Geom. ∪ Height Geom. ∪ Image All
Recall Prec. Recall Prec. Recall Prec. Recall Prec.

BOS 94.34 77.09 93.36 77.66 92.38 77.04 92.19 76.69
BUS 34.38 76.43 31.52 78.57 42.98 76.53 41.55 77.96
BInf 22.34 68.85 22.34 67.74 18.09 64.15 18.62 64.81
BImH 0 — 0 — 0 — 0 0

FOS 98.77 98.77 98.87 98.67 98.67 98.47 98.67 98.37
FUS 0.70 50.00 0.70 33.34 0.70 50.00 0.70 50.00
FIS 1.36 66.67 1.36 50.00 1.36 28.57 1.36 40.00
FImS 0 — 0 — 0 — 0 —

Table 4: Test results reported in percentage for the finesse level 3. All atomic
errors are considered over all possible configurations. Ratios in bold represent
the higher ones for each error.

4.3 Discussion

Three criteria are considered when investigating qualitative results (Tables 3-
4). The first analysis dimension involves finesse. Scores are compared, between
both finesse levels, by averaging across all feature configurations. In terms of
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precision, at finesse level 3, compared to finesse level 2, “Facet errors” fam-
ily looses 7.2%, while “Building errors” gains only 0.6%. The same finesse level
comparison reveals that recall is diminished by 2.0% for “Facet errors” and 8.3%
for “Building errors”. Thus, if limited to determining the error family, training
the model at the finesse level 2 is the best alternative. Feature configurations
are also studied in order to assess image and height attributes contributions. In
general, results vary within a 2% margin except in three cases. First, the preci-
sion instability for facet inexact and under segmentation can be spotted, as they
are under detected: only one or two are rightfully identified as errors, while the
number of valid instances, that are predicted as erroneous, vary between 1 and
5. Secondly, inexact footprint recall decreases by around 4% in precision, when
image features are added. This could result from the insufficient spatial resolu-
tion of optical images. However, in the last case, image features help “Building
under segmentation” error gaining around 9% in recall while loosing only 1.5%
in precision. This may be explained by the high radiometric heterogeneity of
building roofs. Finally, scores are distinguished according to atomic errors. As
predicted, defects that are well represented in the dataset achieve high recall
and precision values. The others, being present at rates lower than 23%, are not
well predicted, especially in the case of very rare errors: height imprecision (7)
or slope errors (21).

Qualitative assessment is also performed in order to illustrate some failure
cases (Figure 5, from left to right). In the first image, the similarity of the build-
ing outline to over segmented buildings cases induces an overdetection. In the
second example, the building is wrongfully detected as being under segmented
due to the presence of a balcony and a smaller annex building. In the third
building, while correctly predicting BOS, our algorithm fails to detect the under
segmented roof. Finally, in the last depiction, except the well caught footprint
error, defects are overlooked as there are few comparable samples in the dataset.
To alleviate these issues, more robust features could be introduced taking into
account higher order information. Dataset enrichment could be another option
which provides more instances of underrepresented errors. In the end, we can
also add the human in the loop through manual interactive evaluation which can
adapt well to user-specific needs.

5 Conclusion

We proposed a framework to semantically evaluate automatically modeled build-
ings. For that purpose, errors are hierarchically organized into a flexible and
parametrized taxonomy. It aims to handle the large diversity of urban enviro-
ments and varying requirements stemming from end-users (geometric accuracy
and level of details). Based on the desired LoD, exclusivity and semantic level,
an error collection is considered. Model quality is then predicted using a super-
vised classifier. Each model provides intrinsic geometrical characteristics that
are compiled in a feature vector. Other modalities can help describing building
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Errors G.T. Pred. Errors G.T. Pred. Errors G.T. Pred. Errors G.T. Pred.

BOS 7 3 BUS 7 3 BOS 3 3 BOS 3 7

Valid 3 7 FImS 3 7 FUS 3 7 FOS 3 7

FOS 3 7 BUS 3 7

BInF 3 3

Fig. 5: Predicted (Pred.) errors compared to ground truth (G.T.) labels are
illustrated for some pathological cases. Knowing how each error is represented
in the dataset helps interpreting mispredictions.

models, as attributes can also be extracted from model comparison to images or
depth data. It helps detecting hard cases.

This new framework was applied to the case of aerial urban reconstruction,
where features are extracted from geospatial images and a DSM. A dataset
containing 1, 501 aerial reconstructed building models with high diversity was
used to test the devised evaluation method associated to multimodal baseline
features. Although being mitigated over under-represented errors, results are
satisfactory in the well balanced cases. As a next step, more structurally aware
features (based on graph comparison, for instance) could be proposed so as
to be applied on a richer and more diverse dataset (potentially involving data
augmentation) under a deep-based framework.
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