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100 Rue des Mathématiques, 38610 Gières, France

alessandro.duca@univ-grenoble-alpes.fr

Abstract

The aim of this work is to study the controllability of the bilinear Schrödinger equation on compact
graphs. In particular, we consider the equation (BSE) i∂tψ = −∆ψ + u(t)Bψ in the Hilbert space
L2(G ,C), with G being a compact graph. The Laplacian −∆ is equipped with self-adjoint boundary
conditions, B is a bounded symmetric operator and u ∈ L2((0, T ),R) with T > 0. We provide a
new technique leading to the global exact controllability of the (BSE) in D(|∆|s/2) with s ≥ 3.
Afterwards, we introduce the “energetic controllability”, a weaker notion of controllability useful
when the global exact controllability fails. In conclusion, we develop some applications of the main
results involving for instance star graphs.

1 Introduction

In quantum mechanics, any state of a closed system is mathematically represented by a wave function ψ
in the unit sphere of a Hilbert space H . We consider the evolution of a particle confined in a network
shaped as compact graph G (see Figure 1) and subjected to a controlling external field.

Figure 1: A compact graph is a one-dimensional domain composed by finite vertices (points) connected
by edges (segments) of finite lengths.

A standard choice for such setting is to represent the action of the field by an operator B and its
intensity by a real function u; we also impose H := L2(G ,C). The evolution of ψ is modeled by the
bilinear Schrödinger equation in H{

i∂tψ(t) = Aψ(t) + u(t)Bψ(t), t ∈ (0, T ),

ψ(0) = ψ0, T > 0.
(BSE)

The Laplacian A = −∆ is equipped with self-adjoint boundary conditions, B is a bounded symmetric
operator and u ∈ L2((0, T ),R). In this context, the well-posedness of the (BSE) can be deduced by the
seminal work on bilinear systems [BMS82] by Ball, Mardsen and Slemrod where it is also proved the
existence of the unitary propagator Γut generated by A+ u(t)B.

The aim of this work is to study the controllability of the (BSE) according to the structure of the
graph G , the choice of control field B and the boundary conditions defining the domain of A.

The controllability of finite-dimensional quantum systems modeled by the (BSE), when A and B
are N ×N Hermitian matrices, is well-known for being linked to the rank of the Lie algebra spanned by
A and B (see [Alt02, Cor07]); nevertheless the Lie algebra rank condition can not be used for infinite-
dimensional quantum systems (see [Cor07]).
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The global approximate controllability of the (BSE) has been proved with different techniques in
literature. We refer to [Mir09, Ner10] for Lyapunov techniques, while we cite [BCMS12, BGRS15] for
adiabatic arguments and [BdCC13, BCS14] for Lie-Galerking methods.

The exact controllability of infinite-dimensional quantum systems is in general a more delicate mat-
ter. When we consider the linear Schrödinger equation, the controllability and observability prop-
erties are reciprocally dual. Different results were developed by addressing directly or by duality
the control problem with different techniques: multiplier methods [Lio83, Mac94], microlocal analy-
sis [BLR92, Bur91, Leb92] and Carleman estimates [BM08, LT92, MOR08]. In any case, when one
considers graph type domains, a complete theory is far from being formulated. Indeed, the interaction
between the different components of a graph may generate unexpected phenomena (see [DZ06]).

The bilinear Schrödinger equation is well-known for not being exactly controllable in the Hilbert
space where it is defined when B is a bounded operator and u ∈ L2((0, T ),R) with T > 0 (even though
it is well-posed in such space). This result has been proved by Turinici in [Tur00], but it can also be
deduced by the work [BMS82]. As a consequence, the exact controllability of bilinear quantum systems
can not be addressed with the classical techniques valid for the linear Schrödinger equation and weaker
notions of controllability are necessary. The turning point for this kind of studies has been the idea
of controlling the equation in subspaces of D(A) introduced by Beauchard in [Bea05]. Following this
approach, different works were developed for the bilinear Schrödinger equation (BSE) with G = (0, 1)
and A = −∆D the Dirichlet Laplacian:

D(−∆D) = H2((0, 1),C) ∩H1
0 ((0, 1),C)), −∆Dψ := −∆ψ, ∀ψ ∈ D(−∆D).

For instance, in [BL10], Beauchard and Laurent proved the well-posedness and the local exact control-
lability of the bilinear Schrödinger equation in Hs

(0) := D(| − ∆D|s/2) for s = 3. For the global exact

controllability in H3
(0), we refer to [BL17, Duc19], while we mention [Mor14, MN15] for simultaneous

exact controllability results in H3
(0) and H4

(0).

Studying the controllability of the bilinear Schrödinger equation (BSE) on compact graphs presents
an additional problem. In particular, when we consider (λk)k∈N∗ , the ordered sequence of eigenvalues of
A, it is possible to show that there exists M∈ N∗ such that

inf
k∈N∗

|λk+M − λk| > 0(1)

(as presented in [Duc18a, relation (2)]). Nevertheless the uniform spectral gap infk∈N∗ |λk+1 − λk| > 0
is only valid when G = (0, 1). This hypothesis is crucial for the techniques developed in the works
[BL10, Duc19, Mor14], which can not be directly applied without imposing further assumptions.

As far as we know, the bilinear Schrödinger equation on compact graphs has only been studied in
[Duc18a]. There, the author ensures that, if there exist C > 0 and suitable d̃ ≥ 0 such that

|λk+1 − λk| ≥ Ck−d̃, ∀k ∈ N∗,(2)

then the well-posedness and the global exact controllability of the bilinear Schrödinger equation (BSE)
can be guaranteed in some subspaces of L2(G ,C).

Novelties of the work: Global exact controllability

The aim of this work is to present a new technique ensuring the global exact controllability of the (BSE)
in different frameworks from the ones considered in [Duc18a]. Such result is postponed to the next section
in Theorem 2.3 in order to avoid further technicalities at this moment. Here, we focus on discussing two
interesting applications involving star graphs composed by any number of edges.

Let G be a star graph with N ∈ N∗ edges {ej}j≤N . We denote by v the internal vertex of G and by
{vj}j≤N the set of the external vertices such that vj ∈ ej for every j ≤ N . Each edge ej with j ≤ N is
equipped with a coordinate going from 0 to the length of the edge Lj ; we set the coordinate 0 in vj .
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Figure 2: Parametrization of a star graph with N = 3 edges.

We consider functions f := (f1, ..., fN ) : G → C so that f j : (0, Lj) → C for every j ≤ N . We denote
L2(G ,C) =

∏
j≤N L

2((0, Lj),C) the Hilbert space equipped with the norm ‖ · ‖L2 . The controllability
result that we present is guaranteed when the lengths {Lj}j≤N satisfy suitable assumptions introduced
in the following definition.

Definition 1.1. Fixed N ∈ N∗, we define AL(N) such as the set of elements {Lj}j≤N ∈ (R+)N so
that: the numbers

{
1, {Lj}j≤N

}
are linearly independent over Q and all the ratios Lk/Lj are algebraic

irrational numbers.

The set AL(N) with N ∈ N∗ contains the uncountable set of numbers {Lj}j≤N ∈ (R+)N so that

each Lj can be written in the form tL̃j where all the ratios L̃j/L̃k are algebraic irrational numbers and
t is a transcendental number. For instance, {π

√
2, π
√

3} belongs to AL(2).

Definition 1.2. Let ΓuT be the unitary propagator associated to the (BSE) with u ∈ L2((0, T ),R) and
T > 0. The (BSE) is globally exactly controllable in D(|A| s2 ) with s ≥ 3 when, for every ψ1, ψ2 ∈
D(|A| s2 ) such that ‖ψ1‖L2 = ‖ψ2‖L2 , there exist T > 0 and u ∈ L2((0, T ),R) such that ΓuTψ

1 = ψ2.

We are finally ready to present the applications of the main results of the works presented in the next
section in Theorem 2.3.

Theorem 1.3. Let G be a star graph. Let D(A) be the set of functions f ∈
∏
j≤N H

2(ej ,C) such that:

� f j(0) = 0 for every j ≤ N (Dirichlet boundary conditions in the external vertices {vj}j≤N );

� f is continuous in the vertex v and
∑
j≤N ∂xf

j(Lj) = 0 (Neumann-Kirchhoff boundary conditions).

Let the control field B be such that, for every ψ ∈H ,{
Bψ(x) = (x− L1)4ψ(x), x ∈ e1,
Bψ(x) = 0, x ∈ G \ e1.

There exists C ⊂ (R+)N countable such that, for every {Lj}j≤N ∈ AL(N) \ C, the (BSE) is globally

exactly controllable in D
(
|A| 4+ε2

)
for every ε > 0.

A similar result to Theorem 1.3 is the following where the (BSE) is considered on a generic star graph
equipped with Neumann boundary conditions on the external vertices instead of the Dirichlet ones.

Theorem 1.4. Let G be a star graph. Let D(A) be the set of functions f ∈
∏
j≤N H

2(ej ,C) such that:

� ∂xf
j(0) = 0 for every j ≤ N (Neumann boundary conditions in the external vertices {vj}j≤N );

� f is continuous in the vertex v and
∑
j≤N ∂xf

j(Lj) = 0 (Neumann-Kirchhoff boundary conditions).

Let the control field B be such that, for every ψ ∈H ,{
Bψ(x) = (5x6 − 24x5L1 + 45x4L2

1 − 40x3L3
1 + 15x2L4

1 − L6
1)ψ(x), x ∈ e1,

Bψ(x) = 0, x ∈ G \ e1.

There exists C ⊂ (R+)N countable such that, for every {Lj}j≤N ∈ AL(N) \ C, the (BSE) is globally

exactly controllable in D
(
|A| 5+ε2

)
for every ε > 0.
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The main novelty of Theorem 1.3 and Theorem 1.4 is the validity of the controllability results when G
is a star graph with any number of edges. In fact, the techniques developed in the existing work [Duc18a]
only allow to consider star graphs with at most 4 edges (see [Duc18a, Theorem 2.5]). In addition, the
controllability is guaranteed even though the control field B acts only on one edges of the graph, which is
due to the choice of the lengths {Lj}j≤N in AL(N). About this fact, if some ratios Lk/L1 are rationals,
then the spectrum of the operator A presents multiple eigenvalues and there exist eigenfunctions of A
vanishing in e1 (we refer to Remark 5.3 for further details on this fact). As a consequence, the dynamics
of the bilinear Schrödinger equation (BSE) stabilizes such eigenfunctions since the control operator B
only acts on e1. It is an obvious obstruction to the controllability which underlines the importance of
choosing suitable lengths for the edges of the graph in this kind of problems.

Theorem 1.3 and Theorem 1.4 are proved by concatenating several intermediate outcomes. As it
is common for this type of result, the global exact controllability can be proved by extending a local
exact controllability result that follows from the solvability of a suitable “moment problem” (an example
can be found in (8)). Hence, in the very first moment, we study assumptions on (λk)k∈N∗ ensuring
the solvability of such moment problem. The main obstacle of this step follows from the nature of the
spectrum (λk)k∈N∗ , which may be difficult to characterize when G is a general compact graph.
In the second step, we ensure an abstract global exact controllablity result for the (BSE) with respect
to two types of hypotheses. The first conditions are on the spectrum (λk)k∈N∗ , while the second on B.
Afterwards, we prove the validity of the assumptions on (λk)k∈N∗ when G is a star graph with edges of
suitable lengths and external vertices equipped with Dirichlet or Neumann boundary conditions.
Only in the very last moment, we validate the remaining hypotheses on the operator B of the abstract
controllability result when B is defined such as in Theorem 1.3 and Theorem 1.4.

Energetic controllability

When the global exact controllability fails, in the spirit of the results provided in [BC06], we introduce
a weaker notion of controllability: the energetic controllability.

Definition 1.5. Let (ϕk)k∈N∗ be an orthonormal system of H (not necessarily complete) composed by
eigenfunctions of A and (µk)k∈N∗ be the corresponding eigenvalues. Let ΓuT be the unitary propagator
associated to the (BSE) with u ∈ L2((0, T ),R) and T > 0. The (BSE) is energetically controllable in
(µk)k∈N∗ if, for every m,n ∈ N∗, there exist T > 0 and u ∈ L2((0, T ),R) so that ΓuTϕm = ϕn.

The energetic controllability guarantees the controllability of specific energy levels of the quantum
system i∂tψ = Aψ in L2(G ,C) via the external field u(t)B. An application of the abstract result, which
is stated in Theorem 6.1, is the following theorem.

Theorem 1.6. Let G be a star graph with edges of equal length L. Let D(A) be defined such as in
Theorem 1.3. Let the control field B be such that, for every ψ ∈H ,{

Bψ(x) = (x− L)2ψ(x), x ∈ e1,
Bψ(x) = 0, x ∈ G \ e1.

The (BSE) is energetically controllable in
(
k2π2

4L2

)
k∈N∗ .

Theorem 1.6 is valid although the spectrum of A presents multiple eigenvalues and then the global
exact controllability from Theorem 2.3 is not satisfied (also [Duc18a, Theorem 2.3] is not guaranteed).
In addition, the energetic controllability is ensured with respect to all the energy levels of the quantum

system i∂tψ = Aψ, since the eigenvalues of A are
(
k2π2

4L2

)
k∈N∗ (without considering their multiplicity).

The energetic controllability is useful when it is not possible to fully characterize the spectrum of A
because of the complexity of the graph G . By studying the structure of G , it is possible to explicit some
eigenvalues (µk)k∈N∗ and verify if the system is energetically controllable in (µk)k∈N∗ . In Section 6.1, we
discuss some examples where the result is satisfied, e.g graphs containing loops as in Figure 3 (a loop is
an edge of the graph which is connected from both extremes to the same vertex).

Figure 3: Example of compact graph containing more loops.
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Scheme of the work

In Section 2, we present the main assumptions adopted in the work, the well-posedness of the (BSE) in
specific subspaces of L2(G ,C) and the abstract global exact controllability result in Theorem 2.3.
In Section 3, we study the solvability of the “moment problem” under the hypotheses of Theorem 2.3.
In Section 4, we prove Theorem 2.3 by using the results developed in Section 3 and Appendix A.
In Section 5, we study the (BSE) on star graphs and we prove Theorem 1.3 and Theorem 1.4.
In Section 6, we discuss the energetic controllability of the (BSE) and we prove Theorem 1.6.
In Appendix A, we present the global approximate controllability of the bilinear Schrödinger equation.
In Appendix B, we study some spectral results adopted in the work.

2 The bilinear Schrödinger equation on compact graphs

2.1 Preliminaries

Let G be a compact graph composed by N ∈ N∗ edges {ej}j≤N of lengths {Lj}j≤N and M ∈ N∗ vertices
{vj}j≤M . For every vertex v, we denote N(v) :=

{
l ∈ {1, ..., N} | v ∈ el

}
and n(v) := |N(v)|. We call

Ve and Vi the external and the internal vertices of G , i.e.

(3) Ve :=
{
v ∈ {vj}j≤M | ∃!e ∈ {ej}j≤N : v ∈ e

}
, Vi := {vj}j≤M \ Ve.

We study graphs equipped with a metric, which parametrizes each edge ej with a coordinate going from
0 to its length Lj . A graph is compact when it is composed by a finite number of vertices and edges of
finite lengths. We consider functions f := (f1, ..., fN ) : G → C with domain a compact metric graph G
so that f j : ej → C for every j ≤ N . We denote

H = L2(G ,C) =
∏
j≤N

L2(ej ,C).

The Hilbert space H is equipped with the norm ‖ · ‖L2 and the scalar product

〈ψ,ϕ〉L2 :=
∑
j≤N

〈ψj , ϕj〉L2(ej ,C) =
∑
j≤N

∫
ej

ψj(x)ϕj(x)dx, ∀ψ,ϕ ∈H .

For s > 0, we define the spaces

Hs = Hs(G ,C) :=

N∏
j=1

Hs(ej ,C),

hs =
{

(xj)j∈N∗ ⊂ C
∣∣ ∞∑
j=1

|jsxj |2 <∞
}
.

We equip hs with the norm
∥∥(xj)j∈N∗

∥∥
(s)

=
(∑∞

j=1 |jsxj |2
) 1

2 for every (xj)j∈N∗ ∈ hs.
Let f = (f1, ..., fN ) : G → C be smooth and v be a vertex of G connected once to an edge ej with

j ≤ N . When the coordinate parametrizing ej in the vertex v is equal to 0 (resp. Lj), we denote

∂xf
j(v) = ∂xf

j(0),
(
resp. ∂xf

j(v) = −∂xf j(Lj)
)
.

When ej is a loop and it is connected to v in both of its extremes

∂xf
j(v) = ∂xf

j(0)− ∂xf j(Lj).

When v is an external vertex of G and then ej is the only edge connected with v, we denote

∂xf(v) = ∂xf
j(v).

In the bilinear Schrödinger equation (BSE), we consider the Laplacian A being self-adjoint and we
denote G as quantum graph. From now on, when we introduce a quantum graph G , we implicitly define
on G a self-adjoint Laplacian A. Formally, D(A) is characterized via the following boundary conditions.
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Boundary conditions. Let G be a quantum compact graph.

(D) A vertex v ∈ Ve is equipped with Dirichlet boundary conditions when f(v) = 0 for every f ∈ D(A).

(N ) v ∈ Ve is equipped with Neumann boundary conditions when ∂xf(v) = 0 for every f ∈ D(A).

(NK) v ∈ Vi is equipped with Neumann-Kirchhoff boundary conditions when every f ∈ D(A) is contin-
uous in v and

∑
j∈N(v) ∂xf

j(v) = 0.

Notations. Let G be a quantum compact graph.

� The graph G is said to be equipped with (D) (resp. (N )) when every v ∈ Ve is equipped with (D)
(resp. (N )) and every v ∈ Vi with (NK).

� The graph G is said to be equipped with (D/N ) when every v ∈ Ve is equipped with (D) or (N ),
while every v ∈ Vi with (NK).

When the introduced boundary conditions are satisfied, the Laplacian A is self-adjoint (see [Kuc04,
Theorem 3] for further details) and admits purely discrete spectrum (see [Kuc04, Theorem 18]). We
define (λk)k∈N∗ the ordered sequence of eigenvalues of A and a Hilbert basis of H :

(4) Φ := (φk)k∈N∗

composed by corresponding eigenfunctions. From [Duc18a, RemarkA.4], there exist C1, C2 > 0 so that

(5) C1k
2 ≤ λk ≤ C2k

2, ∀k ≥ 2.

Let [r] be the entire part of r ∈ R. For s > 0, we denote

Hs
NK :=

{
ψ ∈

N∏
j=1

Hs(ej ,C)
∣∣∣ ∂2nx ψ is continuous in v, ∀n ∈ N, n <

[
(s+ 1)/2

]
, ∀v ∈ Vi;

∑
j∈N(v)

∂2n+1
x ψj(v) = 0, ∀n ∈ N, n <

[
s/2
]
, ∀v ∈ Vi

}
,

Hs
G = Hs

G (G ,C) := D(As/2), ‖ · ‖(s) := ‖ · ‖HsG =
( ∑
k∈N∗

|ks〈·, φk〉L2 |2
) 1

2

.

We introduce the main assumptions adopted in the manuscript by considering (µk)k∈N∗ ⊆ (λk)k∈N∗

an ordered sequence of some eigenvalues of A and the corresponding eigenfunctions

ϕ := (ϕk)k∈N∗ ⊆ (φk)k∈N∗ .

Let η > 0, a ≥ 0, I := {(j, k) ∈ (N∗)2 : j 6= k} and H̃ := span{ϕk | k ∈ N∗}
L2

.

Assumptions I (ϕ, η). The bounded symmetric operator B satisfies the following conditions.

1. There exists C > 0 such that |〈ϕk, Bϕ1〉L2 | ≥ C
k2+η for every k ∈ N∗.

2. For every (j, k), (l,m) ∈ I such that (j, k) 6= (l,m) and µj − µk − µl + µm = 0, it holds

〈ϕj , Bϕj〉L2 − 〈ϕk, Bϕk〉L2 − 〈ϕl, Bϕl〉L2 + 〈ϕm, Bϕm〉L2 6= 0.

Assumptions I (η). The couple (A,B) satisfies Assumptions I(Φ, η) with Φ defined in (4).

The first condition of Assumptions I(ϕ, η) (resp. Assumptions I(η)) quantifies how much B mixes the
eigenspaces associated to the eigenfunctions {ϕk}k∈N∗ (resp. {φk}k∈N∗). This assumption is crucial for
the controllability. Indeed, when B stabilizes such spaces, also ΓuT does the same and we can not expect
to obtain controllability results. The second hypothesis is used to decouple some eigenvalues resonances
appearing in the proof of the approximate controllability that we will use in order to prove our main
results.
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Assumptions II (ϕ, η, a). Let Ran(B|
H2

G∩H̃
) ⊆ H2

G ∩ H̃ and one of the following points be satisfied.

1. When G is equipped with (D/N ) and a+ η ∈ (0, 3/2), there exists d ∈ [max{a+ η, 1}, 3/2) so that

Ran(B|
H2+d

G ∩H̃
) ⊆ H2+d ∩H2

G ∩ H̃ .

2. When G is equipped with (N ) and a + η ∈ (0, 7/2), there exist d ∈ [max{a + η, 2}, 7/2) and
d1 ∈ (d, 7/2) such that

Ran(B|
H
d1
NK∩H̃

) ⊆ Hd1
NK ∩ H̃ , Ran(B|

H2+d
G ∩H̃

) ⊆ H2+d ∩H1+d
NK ∩H

2
G ∩ H̃ .

3. When G is equipped with (D) and a+ η ∈ (0, 5/2), there exists d ∈ [max{a+ η, 1}, 5/2) such that

Ran(B|
H2+d

G ∩H̃
) ⊆ H2+d ∩H1+d

NK ∩H
2
G ∩ H̃ .

If a+ η ≥ 2, then there exists d1 ∈ (d, 5/2) such that Ran(B|
Hd1∩H̃

) ⊆ Hd1 ∩ H̃ .

Assumptions II (η, a). The couple (A,B) satisfies Assumptions II(Φ, η, a) with Φ defined in (4).

We introduce Assumptions II(ϕ, η, a) and Assumptions II(ϕ, η) since the choice of the boundary
conditions defining D(A) affects the definition of the spaces Hs

G = D(|A| s2 ) with s > 0. For this reason,
we have to calibrate the regularity of the control potential B according to such choice.

2.2 Well-posedness of the bilinear Schrödinger equation

Now, we cite [Duc18a, P roposition 3.1] where the well-posedness of the bilinear Schrödinger equation
(BSE) is ensured in Hs

G with suitable s ≥ 3.

Proposition 2.1. [Duc18a, P roposition 3.1] Let G be a compact quantum graph and (A,B) satisfy
Assumptions II(η, d̃) with η > 0 and d̃ ≥ 0. For any T > 0 and u ∈ L2((0, T ),R), the flow of the (BSE)
is unitary in H and, for any initial data ψ0 ∈ H2+d

G with d from Assumptions II(η, d̃), there exists a

unique mild solution of (BSE) in H2+d
G , i.e. a function ψ ∈ C0([0, T ], H2+d

G ) such that

(6) ψ(t, x) = e−iAtψ0(x)− i
∫ t

0

e−iA(t−s)u(s)Bψ(s, x)ds, ∀t ∈ [0, T ].

Remark 2.2. Let ϕ := (ϕk)k∈N∗ ⊆ (φk)k∈N∗ be an orthonormal system of H made by eigenfunctions

of A and H̃ := span{ϕk | k ∈ N∗}
L2

. We notice that the statement of Proposition 2.1 can be ensured

in H̃ as the propagator Γut preserves the space H2
G ∩ H̃ when B : H2

G ∩ H̃ −→ H2
G ∩ H̃ . Thus, if

(A,B) satisfies Assumptions II(ϕ, η, d̃) with η > 0 and d̃ ≥ 0, then, for every ψ0 ∈ H2+d
G ∪ H̃ with d

from Assumptions II(ϕ, η, d̃) and u ∈ L2((0, T ),R), there exists a unique mild solution of the (BSE) in

H2+d
G ∪ H̃ .

2.3 Abstract global exact controllability result

In the following theorem, we provide the main abstract result of the work regarding the global exact
controllability of the (BSE) in Hs

G with s ≥ 3.

Theorem 2.3. Let G be a compact quantum graph and (λk)k∈N∗ be the ordered sequence of eigenvalues
of A. Let the following hypotheses be satisfied.

� There exists an entire function G ∈ L∞(R,R) such that there exist J, I > 0 such that

|G(z)| ≤ JeI|z|, ∀ ∈ C.
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� The eigenvalues (λk)k∈N∗ are simple, the numbers {±
√
λk}k∈N∗ are simple zeros of G and there

exist d̃ ≥ 0 and C > 0 such that

(7) |G′(±
√
λk)| ≥ C

k1+d̃
, ∀k ∈ N∗.

If the couple (A,B) satisfies Assumptions I(η) and Assumptions II(η, d̃) for η > 0, then the (BSE) is
globally exactly controllable in Hs

G for s = 2 + d and d from Assumptions II(η, d̃).

Proof. See Section 4.

The proof of Theorem 2.3 is obtained by extending a local exact controllability result which follows
from the solvability of a suitable moment problem in a specific subspace of `2(C). Namely, we will ensure
that, for every (xk)k∈N∗ in such subspace, there exists u ∈ L2((0, T ),R) with T > 0 such that

xk = −i
∫ T

0

u(τ)ei(λk−λ1)τdτ, ∀k ∈ N∗.(8)

In the next section, we develop a new technique leading to such result when the hypotheses of Theorem
2.3 are satisfied. In particular, the entire function G is used to construct the control u satisfying (8)
thanks to the Paley-Wiener’s Theorem and the lower bound (7) provides the regularity of the subspace
of `2(C) where we can consider (xk)k∈N∗ in the moment problem (8).

In Section 5, we will show how to provide an entire function G satisfying the hypothesis of Theorem 2.3
when G is an appropriate star graph. In such framework, it is possible to see the numbers {±

√
λk}k∈N∗

as the zeros of a specific function that we will use to construct G when we chose suitable {Lj}j≤N .

Remark. When G = (0, 1), Ingham’s type theorems lead to the solvability of (26) for sequences (xk)k∈N∗ ∈
`2. Such techniques are valid thanks to the spectral gap infk∈N∗ |λk+1 − λk| > 0 as explained in [BL10,
Appendix B]. When G is a compact graph and the weak spectral gap (2) is satisfied with suitable d̃ > 0,

such result can be ensured for (xk)k∈N∗ ∈ hd̃(M−1) with M from (1) (see [Duc18a, Appendix B]).

3 Trigonometric moment problems

3.1 On the solvability of the moment problem

The aim of this section is to prove the next proposition which ensures the solvability of the moment
problem (8) when the hypotheses of Theorem 2.3 are valid.

Proposition 3.1. Let (λk)k∈N∗ ⊂ R+ be an ordered sequence of pairwise distinct numbers so that there
exist δ, C1, C2 > 0 and M∈ N∗ such that

inf
k∈N∗

|
√
λk+M −

√
λk| ≥ δM, C1k

2 ≤ λk ≤ C2k
2, ∀k ∈ N∗.

Let G be an entire function so that {±
√
λk}k∈N∗ are its simple zeros, G ∈ L∞(R,R) and there exist

J, I > 0 such that |G(z)| ≤ JeI|z| for every z ∈ C. If there exist d̃ ≥ 0 and C > 0 such that

|G′(±
√
λk)| ≥ C

k1+d̃
, ∀j ∈ N∗,

then for T > 2π/δ and for every (xk)k∈N∗ ∈ hd̃(N∗,C) with x1 ∈ R, there exists u ∈ L2((0, T ),R) so that

xk =

∫ T

0

u(τ)ei(λk−λ1)τdτ, ∀k ∈ N∗.(9)

The proof of Proposition 3.1 is provided in Section 3.5 by gathering some technical results developed
below. We suggest to the uninterested reader to skip it and pass to the Section 4.
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Remark 3.2. Let the hypotheses of Proposition 3.1 be guaranteed. For T > 2π/δ and for every

(xk)k∈N∗ ∈ hd̃(N∗,C) with x1 ∈ R, there exists u ∈ L2((0, T ),R) such that

xk =

∫ T

0

u(τ)e−i(λk−λ1)τdτ, ∀k ∈ N∗.(10)

The result follows from Proposition 3.1. Indeed, for every (xk)k∈N∗ ∈ hd̃(N∗,C) with x1 ∈ R, there

exists u ∈ L2((0, T ),R) such that xk =
∫ T
0
u(τ)ei(λk−λ1)τdτ for every k ∈ N∗. By conjugating the last

expression, the identity (10) is satisfied since u is real.

3.2 Families of functions in a Hilbert space

Let Z∗ = Z \ {0}. We denote by 〈·, ·〉L2(0,T ) the scalar product in L2((0, T ),C) with T > 0.

Definition 3.3. Let (fk)k∈Z∗ be a family of functions in L2((0, T ),R) with T > 0. The family (fk)k∈Z∗

is said to be minimal if and only if fk 6∈ span{fj : j 6= k}
L2

for every k ∈ Z∗.

Definition 3.4. A biorthogonal family to (fk)k∈Z∗ ⊂ L2((0, T ),R) is a sequence of functions (gk)k∈Z∗

in L2((0, T ),R) such that 〈fk, gj〉L2(0,T ) = δk,j for every j, k ∈ Z∗.

Remark 3.5. When (fk)k∈Z∗ is minimal, there exists an unique biorthogonal family (gk)k∈Z∗ to (fk)k∈Z∗

belonging to X := span{fj : j ∈ Z∗}
L2

. Indeed, (gk)k∈Z∗ can be constructed by setting

gk = (fk − πkfk)‖fk − πkfk‖−2L2(0,T ), ∀k ∈ Z∗

where πk is the orthogonal projector onto span{fj : j 6= k}
L2

. The unicity of (gk)k∈Z∗ follows as, for any
biorthogonal family {g1k}k∈Z∗ in X, we have 〈gk − g1k, fj〉L2(0,T ) = 0 for every j, k ∈ Z∗, which implies
gk = g1k for every k ∈ Z∗.

Remark 3.6. If a sequence of functions (fk)k∈Z∗ ⊂ L2((0, T ),C) admits a biorthogonal family (gk)k∈Z∗ ,

then it is minimal. Indeed, if we assume that there exists k ∈ Z∗ such that fk ∈ span{fj : j 6= k}
L2

, then
the relations 〈fk, gj〉L2(0,T ) = 0 for every j ∈ Z∗ \ {k} would imply 〈fk, gk〉L2(0,T ) = 0 which is absurd.

Definition 3.7. Let (fk)k∈Z∗ be a family of functions in L2((0, T ),R) with T > 0. The family (fk)k∈Z∗

is a Riesz basis of span{fj : j ∈ Z∗}
L2

if and only if it is isomorphic to an orthonormal system.

Remark 3.8. Let (fk)k∈Z∗ be a Riesz basis of X := span{fj : j ∈ Z∗}
L2

. The sequence (fk)k∈Z∗ is also
minimal and the biorthogonal family to (fk)k∈Z∗ can be uniquely defined in X thanks to Remark 3.5.
The biorthogonal family to (fk)k∈Z∗ forms a Riesz basis of X.

Now, we provide an important property on the Riesz basis proved in [BL10, Appendix B.1].

Proposition 3.9. [BL10, Appendix B;Proposition 19] Let (fk)k∈Z∗ be a family of functions in L2((0, T ),R)

with T > 0 and let (fk)k∈Z∗ be a Riesz basis of span{fk : k ∈ Z∗}
L2

. There exist C1, C1 > 0 such that

(11) C1‖x‖2`2 ≤
∫ T

0

∣∣∣ ∑
k∈Z∗

xkfk

∣∣∣2ds ≤ C2‖x‖2`2 , ∀x := (xk)k∈N∗ ∈ `2(Z∗,C).

3.3 Riesz basis made by divided differences of exponentials

Let ν = (νk)k∈Z∗ ⊂ R+ be an ordered sequence of pairwise distinct numbers such that there exist
M∈ N∗ and δ > 0 such that

inf
{k∈Z∗ : k+M6=0}

|νk+M − νk| ≥ δM.(12)
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The last relation yields that there does not exist M consecutive k, k+ 1 ∈ Z∗ such that |νk+1 − νk| < δ.
It leads to a partition of Z∗ in subsets Em with m ∈ Z∗ and defines an equivalence relation in Z∗:

k ∼ n if and only if there exists m ∈ Z∗ such that k, n ∈ Em.

Now, {Em}m∈Z∗ are the equivalence classes corresponding to such relation and |Em| ≤ M−1. Let s(m)
be the smallest element of Em. For every x := (xk)k∈Z∗ ⊂ C and m ∈ Z∗, we define

xm := (xml )l≤|Em|, : xml = xs(m)+(l−1), ∀l ≤ |Em|.

In other words, xm is the vector in C|Em| composed by those elements of x with indices in Em. For every
m ∈ Z∗, we denote Fm(νm) : C|Em| → C|Em| the matrix with components

Fm;j,k(νm) :=


∏
l 6=j
l≤k

(νmj − νml )−1, j ≤ k,

1, j = k = 1,

0, j > k,

∀j, k ≤ |Em|.

For each k ∈ Z∗, there exists m(k) ∈ Z∗ such that k ∈ Em(k), while s(m(k)) represents the smallest
element of Em(k). Let F (ν) be the infinite matrix acting on x = (xk)k∈Z∗ ⊂ C as follows(

F (ν)x
)
k

=
(
Fm(k)(ν

m(k))xm(k)
)
k−s(m(k))+1

, ∀ k ∈ Z∗.

We consider F (ν) as the operator on `2(Z∗,C) defined by the action above and with domain

H(ν) := D(F (ν)) =
{
x := (xk)k∈Z∗ ∈ `2(Z∗,C) : F (ν)x ∈ `2(Z∗,C)

}
,

Remark 3.10. Each matrix Fm(νm) with m ∈ Z∗ is invertible and we call Fm(νm)−1 its inverse. Now,
F (ν) : H(ν)→ Ran(F (ν)) is invertible and F (ν)−1 : Ran(F (ν))→ H(ν) is so that, for x ∈ Ran(F (ν)),(

F (ν)−1x
)
k

=
(
Fm(k)(ν

m(k))−1xm(k)
)
k−s(m(k))+1

, ∀k ∈ Z∗.

Let Fm(k)(ν
m(k))∗ be the transposed matrix of Fm(k)(ν

m(k)) for every m ∈ Z∗ and F (ν)∗ be the
infinite matrix so that, for every x = (xk)k∈Z∗ ⊂ C,(

F (ν)∗x
)
k

=
(
Fm(k)(ν

m(k))∗xm(k)
)
k−s(m(k))+1

, ∀k ∈ Z∗.

Remark 3.11. When H(ν) is dense in `2(Z∗,C), we can consider F (ν)∗ as the unique adjoint operator
of F (ν) in `2(Z∗,C) with domain H(ν)∗ := D(F (ν)∗). As in Remark 3.10, we define (F (ν)∗)−1 the
inverse operator of F (ν)∗ : H(ν)∗ → Ran(F (ν)∗) and (F (ν)∗)−1 = (F (ν)−1)∗.

Let e be sequence of functions in L2((0, T ),C) with T > 0 so that e := (eiνk(·))k∈Z∗ . We denote by Ξ
the so-called divided differences of the family (eiνkt)k∈Z∗ such that

Ξ := (ξk)k∈Z∗ = F (ν)∗e.(13)

In the following theorem, we rephrase a result of Avdonin and Moran [AM01], which is also proved
by Baiocchi, Komornik and Loreti in [BKL02].

Theorem 3.12 (Theorem 3.29; [DZ06]). Let (νk)k∈Z∗ be an ordered sequence of pairwise distinct real

numbers satisfying (12). If T > 2π/δ, then (ξk)k∈Z∗ forms a Riesz Basis in the space span{ξk : k ∈ Z∗}
L2

.

Remark 3.13. Let Theorem 3.12 be valid. As Ξ is a Riesz basis, it is minimal in span{ξk : k ∈ Z∗}
L2

and it admits a biorthogonal family u := (uk)k∈Z∗ thanks to Remark 3.6. Now, it is possible to see that

〈uk, ξj〉L2(0,T ) = 〈uk, (F (ν)∗e)j〉L2(0,T ) = 〈(F (ν)u)k, e
iνjt〉L2(0,T ), ∀j, k ∈ Z∗.

The last relation ensures that F (ν)u is a biorthogonal family to e, which is then minimal.
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3.4 Auxiliary results

In this subsection, we provide few intermediate results required in the proof of Proposition 3.1.
In Lemma 3.14 and Lemma 3.15, we consider a sequence ν := (νk)k∈Z∗ . We construct and characterize
a suitable biorthogonal family to {eiνkt}k∈Z∗ by using a function G defined as in Proposition 3.1.
In Lemma 3.16, the preceding results lead to specific estimations on Fm(νm) with m ∈ Z∗.
In Lemma 3.18 and Lemma 3.19, we consider a sequence Θ := (θk)k∈Z∗ and another one defined as
(νk)k∈Z∗ =

(
sgn(θk)

√
|θk|
)
k∈Z∗ . We use Lemma 3.16 with respect to the sequence (νk)k∈Z∗ to provide

estimations on Fm(Θm) with m ∈ Z∗ and on the domain of the operator F (Θ).
In the proof of Proposition 3.1, we respectively denote by Θ and ν the sequences obtained by reordering
{±λk}k∈N∗ and {±

√
λk}k∈N∗ and we use Lemma 3.19 to ensure the statement.

Lemma 3.14. Let ν := (νk)k∈Z∗ be an ordered sequence of pairwise distinct real numbers. Let G be
an entire function such that G ∈ L∞(R,R) and there exist J, I > 0 such that |G(z)| ≤ JeI|z| for every
z ∈ C. Denoted Gk(z) := G(z)(z − νk)−1 with z ∈ C for every k ∈ Z∗, there exists C > 0 such that

‖Gk‖L2(R,R) ≤ C, ∀k ∈ Z∗.

Proof. We know that there exists M > 0 so that |G(x)| ≤ M for every x ∈ R, which implies that, for
every k ∈ Z∗, there exists C1 > 0, not depending on k, so that

‖Gk‖2L2(R) =

∫
R
Gk(x)Gk(x) dx =

∫
R

G(x)G(x)

(x− νk)2
dx ≤

∫
|x−νk|≤1

G(x)G(x)(x− νk)−2 dx+M2C1.

Now, from [You80, p. 82; Theorem 11], we have |G(x + iy)| ≤ MeI|y| for x, y ∈ R and the Cauchy
Integral Theorem ensured the existence of C2 > 0, not depending on k, so that∫

|x−νk|≤1

G(x)G(x)

(x− νk)2
dx ≤

∫ π

0

∣∣G(νk + eiθ)G(νk + eiθ)
∣∣dθ ≤M2

∫ π

0

e2I sin(θ) dθ ≤M2C2.

Lemma 3.15. Let ν := (νk)k∈Z∗ be an ordered sequence of pairwise distinct real numbers satisfying
(12) with δ > 0. Let G be an entire function such that G ∈ L∞(R,R) and there exist J, I > 0 such that
|G(z)| ≤ JeI|z| for every z ∈ C. Let (ξk)k∈Z∗ from (13) defined on L2((0, T ),C) with T > max{2π/δ, 2I}.
If (νk)k∈Z∗ are simple zeros of G such that there exist d̃ ≥ 0, C > 0 such that

(14) |G′(νk)| ≥ C

|k|1+d̃
, ∀k ∈ Z∗,

then there exists (wk)k∈Z∗ an unique biorthogonal family to (eiνkt)k∈Z∗ in span{ξk : k ∈ Z∗}
L2

satisfying

the following property. There exists C1 > 0 such that ‖wk‖L2(0,T ) ≤ C1|k|1+d̃ for every k ∈ Z∗.

Proof. For every k ∈ Z∗, we define Gk(z) := G(z)(z − νk)−1. Thanks to the Paley-Wiener’s Theorem
[DZ06, Theorem 3.19], for every k ∈ Z∗, there exists fk ∈ L2(R,R) with support in [−I, I] such that

Gk(z) =

∫ I

−I
eizsfk(s)ds =

∫ T/2

−T/2
eizsfk(s)ds =

∫ T

0

eizte−iz
T
2 fk(t− T/2)dt.

For j, k ∈ Z∗ and ck := G′(νk), we call vk(t) := eiνk
T
2 fk(t− T/2) and

〈vk, eiνj(·)〉L2(0,T ) = Gk(νj) = δk,jG
′(νk) = δk,jck.

Thus, the sequence (vk)k∈Z∗ is biorthogonal to (c−1k eiνk(·))k∈Z∗ . Thanks to the Plancherel’s identity and
to Lemma 3.14, there exists C1 > 0 such that

(15) ‖vk‖L2(0,T ) = ‖Gk‖L2(R,R) ≤ C1, ∀k ∈ Z∗.

The family (eiνk(·))k∈Z∗ is minimal inX := span{ξk : k ∈ Z∗}
L2

thanks to Remark 3.6 and then (c−1k eiνk(·))k∈Z∗

is also minimal in X. Defined πX the orthogonal projector onto X, we see that, for every j, k ∈ Z∗,

〈πXvk, c−1j eiνj(·)〉L2(0,T ) = 〈vk, c−1j eiνj(·)〉L2(0,T ) = δk,j .
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The last relation and Remark 3.8 imply that (πXvk)k∈Z∗ is the unique biorthogonal family to (c−1k eiνk(·))k∈Z∗

in X. We denote wk = (ck)−1πXvk for every k ∈ Z∗ and (wk)k∈Z∗ is the unique biorthogonal family to
(eiνk(·))k∈Z∗ in X. In conclusion, thanks to (14) and (15), there exists C2 > 0 such that

‖wk‖L2(0,T ) ≤ ‖πXvk‖L2(0,T )|ck|−1 ≤ ‖vk‖L2(0,T )|G′(νk)|−1 ≤ C2|k|1+d̃, ∀k ∈ Z∗.

Lemma 3.16. Let ν := (νk)k∈Z∗ be an ordered sequence of pairwise distinct real numbers satisfying (12).
Let G be an entire function such that G ∈ L∞(R,R) and there exist J, I > 0 such that |G(z)| ≤ JeI|z|

for every z ∈ C. If (νk)k∈Z∗ are simple zeros of G such that there exist d̃ ≥ 0, C > 0 such that
|G′(νk)| ≥ C

|k|1+d̃
for every k ∈ Z∗, then there exists C > 0 so that

Tr
(
Fm(νm)∗Fm(νm)

)
≤ C min{|l| ∈ Em}2(1+d̃), ∀m ∈ Z∗

where the matrices Fm(νm) are defined in Section 3.3.

Proof. Let T > max(2π/δ, 2I) with δ > 0 from (12). Let e := (eiνk(·))k∈Z∗ ⊂ L2((0, T ),C) and ν :=
(νk)k∈Z∗ be defined in (13). Thanks to Proposition 3.12, the sequence of functions Ξ = (ξk)k∈Z∗ :=

(F (ν)∗e) forms a Riesz basis of X := span{ξk : k ∈ Z∗}
L2

. We call u := (uk)k∈Z∗ the corresponding
biorthogonal sequence to Ξ in X which is also a Riesz basis of X (see Remark 3.8). From Remark 3.10,
the matrix F (ν) is invertible and (F (ν)∗)−1 = (F (ν)−1)∗. Let w = (wk)k∈Z∗ be the biorthogonal family
in X to (eiνk(·))k∈Z∗ defined in Lemma 3.15. For every j, k ∈ Z∗,

δk,j = 〈wk, eiνj(·)〉L2(0,T ) = 〈wk, ((F (ν)∗)−1Ξ)j〉L2(0,T ) = 〈(F (ν)−1w)k, ξj〉L2(0,T ),

which implies w = F (ν)u. Let f(t) =
∑
k∈Z∗ ξkxk with x := (xk)k∈Z∗ ∈ `2(Z∗,C). The biorthogonality

relation between Ξ and u yields that xk = 〈uk, f〉L2(0,T ) for every k ∈ Z∗. From Proposition 3.9, there
exist C1, C2 > 0 such that

(16) C1‖x‖2`2 ≤ ‖f‖L2(0,T ) ≤ C2‖x‖2`2 .

For k ∈ Z∗, we call m(k) ∈ Z∗ the number such that k ∈ Em(k). Thanks to Lemma 3.15 and (16), there
exist C3, C4 > 0 such that, for every k ∈ Z∗, we have

|(F (ν)x)k| = |〈(F (ν)(〈ul, f〉L2(0,T ))l∈Z)k| = |〈wk, f〉L2(0,T )| ≤ ‖wk‖L2(0,T )‖f‖L2(0,T )

≤ C
1
2
2 ‖wk‖L2(0,T )‖x‖`2 ≤ C3|k|1+d‖x‖`2 ≤ C4 min

l∈Em(k)

|l|1+d‖x‖`2 .
(17)

For every m ∈ Z∗, we denote by s(m) the smallest element of Em and, for every j ≤ |Em|, we consider

x ∈ `2(Z∗,C) : xs(m)+j−1 = 1, xl = 0, ∀l ∈ Z∗ \ {s(m) + j − 1}.

For every j, n ≤ |Em|, we use the sequence x in the identity (17) with k = s(m) + n− 1 and we obtain
|(Fm;n,j(ν

m))| ≤ C4 minl∈Em |l|1+d which leads to the statement.

Remark 3.17. Let Θ := (θk)k∈Z∗ be an ordered sequence of pairwise distinct real numbers and let
the sequence (νk)k∈Z∗ =

(
sgn(θk)

√
|θk|
)
k∈Z∗ satisfy the identity (12) with M ∈ N∗ and δ > 0. As

inf k∈Z∗
k+M6=0

|νk+M − νk| ≥ δMmink∈Z∗
νk 6=0

(|νk|, 1), we have

inf
k∈Z∗
k+M6=0

|θk+M − θk| = inf
k∈Z∗
k+M6=0

∣∣|νk+M| − |νk|∣∣∣∣|νk+M|+ |νk|∣∣ ≥ min
k∈Z∗
νk 6=0

(|νk|, 1)δM.

Now, both the sequences Θ and ν := (νk)k∈Z∗ satisfy (12) with respect to the same δ′ := min k∈Z∗
νk 6=0
{|νk|, 1}δ

and M. This fact ensures that Θ and ν induce the definition of the same equivalence classes {Em}m∈Z∗
of Z∗ discussed in Section 3.3. Thus, we can use {Em}m∈Z∗ in order to define the matrices Fm(Θm)
and Fm(νm) for every m ∈ Z∗ and the operators F (Θ) and F (ν) on `2(Z∗,C).
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Lemma 3.18. Let Θ := (θk)k∈Z∗ be an ordered sequence of pairwise distinct real numbers such that
(νk)k∈Z∗ =

(
sgn(θk)

√
|θk|
)
k∈Z∗ satisfies (12). Let exist C1, C2 > 0 such that

(18) C1|k| ≤ |νk| ≤ C2|k|, ∀k ∈ Z∗, νk 6= 0.

Let G be an entire function so that (νk)k∈Z∗ are its simple zeros, G ∈ L∞(R,R) and there exist J, I > 0
such that |G(z)| ≤ JeI|z| for every z ∈ C. If there exist d̃ ≥ 0 and C > 0 such that |G′(νk)| ≥ C

|k|1+d̃
for

every k ∈ Z∗, then there exists C > 0 so that

Tr
(
Fm(Θm)∗Fm(Θm)

)
≤ C min{|l| ∈ Em}2d̃, ∀m ∈ Z∗

where the matrices Fm(Θm) are defined as in Remark 3.17 from the sequence Θ.

Proof. We notice |θl − θk| ≥ min{|νl|, |νk|}|νl − νk| for every l, k ∈ Z∗. Let m ∈ Z∗ and I ⊆ Em so that
I 6= ∅. Now, |I| ≤ |Em| ≤ M− 1 and∏

j,k∈I

|θk − θj | ≥ min
l∈I
νl 6=0

|νl||I|
∏
j,k∈I

|νk − νj | ≥ C1min
l∈I
νl 6=0

|νl|
∏
j,k∈I

|νk − νj |

for C1 = minl∈Z∗
νl 6=0

(|νl|M−2, 1). Thus, there exists C2 > 0 so that, for every m and j, k ∈ Em, we have

|Fm;j,k(Θm)| ≤ C2|Fm;j,k(νm)|min{|νl|−1 : l ∈ Em, νl 6= 0}.

In conclusion, thanks to (19) and Lemma 3.16, there exists C3 > 0 such that

Tr
(
Fm(Θm)∗Fm(Θm)

)
≤ C2

2 min
l∈Em
νl 6=0

|νl|−2 Tr
(
Fm(νm)∗Fm(νm)

)
≤ C3 min

l∈Em
|l|2d̃.

Lemma 3.19. Let Θ := (θk)k∈Z∗ be an ordered sequence of pairwise distinct real numbers such that
(νk)k∈Z∗ =

(
sgn(θk)

√
|θk|
)
k∈Z∗ satisfies (12). Let exist C1, C2 > 0 such that

(19) C1|k| ≤ |νk| ≤ C2|k|, ∀k ∈ Z∗, νk 6= 0.

Let G be an entire function so that (νk)k∈Z∗ are its simple zeros, G ∈ L∞(R,R) and there exist J, I > 0
such that |G(z)| ≤ JeI|z| for every z ∈ C. If there exist d̃ ≥ 0 and C > 0 such that |G′(νk)| ≥ C

|k|1+d̃
for

every k ∈ Z∗, then

H(Θ) ⊆ hd̃(Z∗,C)

where H(Θ) is the domain of the operator F (Θ) defined as in Remark 3.17 from the sequence Θ.

Proof. Let ρ(M) be the spectral radius of a matrix M and let |||M ||| =
√
ρ(M∗M) be its euclidean

norm. We consider Lemma 3.18 and, thanks to the fact that
(
Fm(Θm)∗Fm(Θm)

)
is positive-definite,

there exists C > 0 such that

|||Fm(Θm) ||| 2 = ρ
(
Fm(Θm)∗Fm(Θm)

)
≤ Tr

(
Fm(Θm)∗Fm(Θm)

)
≤ C min

l∈Em
|l|2d̃, m ∈ Z∗.

In conclusion, we obtain that hd̃(Z∗,C) ⊂ H(Θ) since, for every x = (xk)k∈Z∗ ∈ hd̃(Z∗,C),

‖F (Θ)x‖2`2 ≤
∑
m∈Z∗

|||Fm(Θm) ||| 2
∑
l∈Em

|xl|2 ≤ C
∑
m∈Z∗

min
l∈Em

|l|2d̃
∑
l∈Em

|xl|2 ≤ C‖x‖2hd̃ < +∞.

Remark 3.20. If Proposition 3.18 is satisfied with Θ = (θk)k∈Z∗ and d̃ ≥ 0, then H(Θ) ⊇ hd̃(Z∗,C)
which is dense in `2(Z∗,C). Thanks to Remark 3.11, we consider F (Θ)∗ as the unique adjoint operator of
F (Θ). As Tr(Fm(Θm)∗Fm(Θm)) = Tr(Fm(Θm)Fm(Θm)∗) for every m ∈ Z∗, the techniques developed

in the proof of Proposition 3.18 lead to H(Θ)∗ = D(F (Θ)∗) ⊇ hd̃(Z∗,C).
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3.5 Proof of Proposition 3.1

Let us introduce the following sequences:

Θ := (θk)k∈Z∗ : θk = −λk, ∀k > 0; θk = λ−k, ∀k < 0;

ν := (νk)k∈Z∗ : νk = −
√
λk, ∀k > 0; νk =

√
λ−k, ∀k < 0;

α := (αk)k∈Z∗\{−1} : αk = −λk + λ1, ∀k > 0; αk = λ−k − λ1, ∀k < −1.

We consider M′ ∈ N∗ and δ′ > 0 so that Θ and ν satisfy (12) with respect to M′ and δ′, while

(20) inf
{k∈Z∗\{−1} : k+M′∈Z∗\{−1}}

|αk+M′ − αk| ≥ δ′M′.

Let {Em}m∈Z∗ be the equivalence classes in Z∗ defined by Θ and ν (as in Remark 3.17). Let us assume
that −1 ∈ E−1. Now, {Em}m∈Z∗\{−1} ∪ {E−1 \ {−1}} are the equivalence classes in Z∗ \ {−1} defined

by (20) as in Section 3.3. Remark 3.20 implies H(Θ)∗ ⊇ hd̃(Z∗,C). We define as in Section 3.3, the
operator F (α) in `2(Z∗ \ {−1},C) from the sequence α and we notice that, for every m 6= −1, we have
Fm(αm) = Fm(Θm) and Fm(αm)∗ = Fm(Θm)∗. Thus, as in Lemma 3.19 and Remark 3.20, there holds

H(α) ⊇ hd̃(Z∗ \ {−1},C), H(α)∗ ⊇ hd̃(Z∗ \ {−1},C).

We define e := (eiαk(·))k∈Z∗\{−1} and Ξ := (ξk)k∈Z∗\{−1} = F (α)∗e. When T > 2π/δ, Theorem 3.12

ensures that (ξk)k∈Z∗\{−1} is a Riesz Basis of the space X := span{ξk : k ∈ Z∗ \ {−1}}
L2

. Now, the map

M : g ∈ X 7−→ (〈ξk, g〉L2(0,T ))k∈Z∗\{−1} ∈ `2(Z∗ \ {−1},C)

is invertible thanks to Proposition 3.9. Denoted X̃ := M−1 ◦ F (α)∗
(
hd̃(Z∗ \ {−1},C)

)
, the map

(F (α)∗)−1 ◦M : g ∈ X̃ 7−→ (〈e, g〉L2(0,T ))k∈Z∗\{−1} ∈ hd̃(Z∗ \ {−1},C)

is invertible. Thus, for every (xk)k∈Z∗\{−1} ∈ hd̃(Z∗ \ {−1},C), there exists u ∈ L2((0, T ),C) such that

(21) xk =

∫ T

0

u(τ)e−iαkτdτ, ∀k ∈ Z∗ \ {−1}.

Given (xk)k∈N∗ ∈ hd̃(N∗,C), we introduce (x̃k)k∈Z∗\{−1} ∈ hd̃(Z∗ \ {−1},C) so that x̃k = xk for k > 0,
while x̃k = x−k for k < −1. From (21) and to the definition of α, there exists u ∈ X ⊆ L2((0, T ),C) so
that ∫ T

0

u(s)ei(λk−λ1)sds = xk =

∫ T

0

u(s)ei(λk−λ1)sds, k ∈ N∗ \ {1},(22)

while
∫ T
0
u(s)ds = x1. The last relations and the fact that x1 ∈ R imply that

〈Im(u), eiαk(·)〉L2(0,T ) = 0, ∀k ∈ Z∗ \ {−1}.(23)

From Remark 3.13, the family {eiαkt}k∈Z∗\{−1} is minimal in X and X = span{eiαkt : k ∈ Z∗ \ {−1}}
L2

.
Now, we recall that −αk = α−k for every k ∈ Z∗ \ {±1} and α1 = 0. For every u ∈ X, we have

u ∈ span{e−iαkt : k ∈ Z∗ \ {−1}}
L2

= X, =⇒ Im(u) =
u− u

2i
∈ X.

In conclusion, for u ∈ X satisfying (22), the identity (23) and the fact that Im(u) ∈ X yield that
Im(u) = 0 which implies that u is real.
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4 Proof of Theorem 2.3

4.1 Local exact controllability

Let s = 2 + d and d from Assumptions II(η, d̃). For ε, T > 0, we introduce the following subspace of Hs
G

Osε,T :=
{
ψ ∈ Hs

G

∣∣ ‖ψ‖L2 = 1, ‖ψ − φ1(T )‖(s) < ε
}
, φ1(T ) := e−iλ1Tφ1.

We say that the (BSE) is locally exactly controllable in Osε,T when, for every ψ ∈ Osε,T , there exists

u ∈ L2((0, T ),R) such that ψ = ΓuTφ1. The result corresponds to the surjectivity of the map

Γ
(·)
T φ1 : L2((0, T ),R) −→ Osε,T .

Let us define φk(T ) := e−iλkTφk with k ∈ N∗. We decompose Γ
(·)
T φ1 =

∑
k∈N∗ φk(T )〈φk(T ),Γ

(·)
T φ1〉L2

and we consider
α : u ∈ L2((0, T ),R) 7−→

(
〈φk(T ),ΓuTφ1〉L2

)
k∈N∗ .

Now, ΓuTφ1 ∈ Hs
G for every u ∈ L2((0, T ),R) and T > 0 thanks to Proposition 2.1. Thus, α takes value

in Qs := {x := (xk)k∈N∗ ∈ hs(C) | ‖x‖`2 = 1}. Defined δ := (δk,1)k∈N∗ , we notice that

α(0) =
(
〈φk(T ),Γ0

Tφ1〉L2

)
k∈N∗ =

(
〈φk(T ), φ1(T )〉L2

)
k∈N∗ = δ.

The local exact controllability of the (BSE) in Osε,T is equivalent to the surjectivity of the function

α : L2((0, T ),R) −→ Qsε := {x := (xk)k∈N∗ ∈ Qs | ‖x− δ‖(s) ≤ ε}.

Let TδQ
s be the tangent space of Qs in the point α(0) = δ. For every f : [0, 1]→ Qs such that f(0) = δ

and f ′(0) = x ∈ hs(C), we have 0 = (∂t〈f(t), f(t)〉)(t = 0) = 2<(〈x, δ〉`2), which implies

TδQ
s = {x := (xk)k∈N∗ ∈ hs(C) | ix1 ∈ R}.

Let P be the orthogonal projector onto TδQ
s. We define Q̃s := {x := (xk)k∈N∗ ∈ hs(C) | ‖x‖`2 ≤ 1}

and Q̃sε := {x := (xk)k∈N∗ ∈ Q̃s | ‖x‖(s) ≤ ε}. We consider the Fréchet derivative of α in u = 0:

γ : v ∈ L2((0, T ),R) 7−→ (duα(u = 0)) · v ∈ TδQs.

If γ is surjective in TδQ
s, then the Generalized Inverse Function Theorem ([Lue69, Theorem 1; p. 240])

guarantees the existence of ε > 0 sufficiently small so that Pα is surjective in Q̃sε ∩ TδQs (γ is also

the Fréchet derivative of Pα). Now, for every x = {xk}k∈N∗ ∈ Qsε , we have Px ∈ Q̃sε and there exists
u ∈ L2((0, T ),R) such that Px = Pα(u). Thus,

x = Px +
√

1− ‖Px‖2`2δ = Pα(u) +
√

1− ‖Pα(u)‖2`2δ = α(u).

Fixed T > 0, the last relation and the Generalized Inverse Function Theorem imply that if γ is surjective
in TδQ

s, then α is surjective in Qsε with ε > 0 sufficiently small. Thus, we study the function γ and,
thanks to the Duhamel’s formula provided in (6), we notice that it is composed by the elements

γk(v) = −i

〈
e−iλkTφk,

∫ T

0

e−iA(T−τ)v(τ)Be−iλ1τφ1dτ

〉
L2

= −i
∫ T

0

v(τ)ei(λk−λ1)τdτ〈φk, Bφ1〉L2 .

Proving the surjectivity of γ corresponds to ensure the solvability of the following moment problem

xk〈φj , Bφk〉−1L2 = −i
∫ T

0

u(τ)ei(λk−λ1)τdτ, ∀k ∈ N∗(24)

for every (xk)k∈N∗ ∈ TδQs. We notice that
(
xk〈φk, Bφ1〉−1L2

)
k∈N∗ ∈ h

s−2−η = hd−η ⊆ hd̃ thanks to the

point 1. of Assumptions I(η). As B is symmetric, we have 〈φ1, Bφ1〉L2 ∈ R and ix1〈φ1, Bφ1〉−1L2 ∈ R.
Thanks to [DZ06, relation (6.6)], there exist δ > 0 and M∈ N∗ such that

inf
k∈N∗

|
√
λk+M −

√
λk| ≥ δM.
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This fact and (5) ensure that Proposition 3.1 is satisfied. The solvability of (26) is guaranteed for

T > 0 large enough as
(
xk〈φk, Bφ1〉−1L2

)
k∈N∗ ∈ {(xk)k∈N∗ ∈ hd̃(C) | ix1 ∈ R} leading to the local exact

controllability. Thus, for every ψ ∈ Osε,T , there exists u ∈ L2((0, T ),R) such that

ψ = ΓuTφ1.(25)

Remark 4.1. We consider the unitary propagator Γ̃ut generated by the time-dependent Hamiltonian
−A−u(T − t)B with u ∈ L2((0, T ),R) with T > 0. As explained in [Duc18b, Section 2.3], the propagator

Γ̃ut represents the reversed dynamics of the (BSE) with the same u and

(Γ̃uT )(ΓuT ) = (ΓuT )(Γ̃uT ) = I.

The local exact controllability results provided in the previous part of the proof is also valid for the reversed
dynamics. Indeed, the functions (φk)k∈N∗ are the eigenfunctions of −A corresponding to the eigenvalues
(−λk)k∈N∗ . As above, the local exact controllability of the reversed dynamics in the neighborhood

Õsε,T :=
{
ψ ∈ Hs

G

∣∣ ‖ψ‖L2 = 1, ‖ψ − eiλ1Tφ1‖(s) < ε
}
,

can be ensured by proving the solvability of a moment problem of the form

xk〈φj , Bφk〉−1L2 = −i
∫ T

0

u(τ)e−i(λk−λ1)τdτ, ∀k ∈ N∗(26)

for every (xk)k∈N∗ ∈ TδQs. The result is proved as above thanks to Remark 3.2 and, for every ψ ∈ Õsε,T ,

there exists u ∈ L2((0, T ),R) such that ψ = Γ̃uTφ1. Finally, the last relation yields that

φ1 = ΓũTψ, for ũ(t) = u(T − t).(27)

4.2 Global exact controllability

Let us consider ψ1, ψ2 ∈ Hs
G be so that ‖ψ1‖L2 = ‖ψ2‖L2 . We assume that ‖ψ1‖L2 = ‖ψ2‖L2 = 1,

but the result is equivalently proved in the general case. Let T, ε > 0 be so that the local exact
controllability from Section 4.1 is valid. Thanks to Proposition A.2 and Corollary A.3, there exist
T1, T2 > 0, u1 ∈ L2((0, T1),R) and u2 ∈ L2((0, T2),R) such that

‖Γu1

T1
ψ1 − eiλ1Tφ1‖(s) < ε, ‖Γ̃u2

T2
ψ2 − e−iλ1Tφ1‖(s) < ε, =⇒ Γu1

T1
ψ1 ∈ Õsε,T , Γu2

T2
ψ2 ∈ Osε,T .

From Remark 4.1 (relation (27)), there exists u3 ∈ L2((0, T ),R) such that Γu3

T Γu1

T1
ψ1 = φ1. From Section

4.1 (relation (25)), there exist u4 ∈ L2((0, T ),R) such that Γu4

T φ1 = Γ̃u2

T2
ψ2 and then

Γu4

T Γu3

T Γu1

T1
ψ1 = Γ̃u2

T2
ψ2 =⇒ Γũ2

T2
Γu4

T Γu3

T Γu1

T1
ψ1 = ψ2, for ũ2(t) = u2(T2 − t).

In conclusion, there exists T̂ > 0 and û ∈ L2((0, T̂ ),R) such that Γû
T̂
ψ1 = ψ2.

5 Global exact controllability of bilinear quantum systems on
star graphs

In the current section, we study the global exact controllability when G is a star graph by applying
Theorem 2.3. The result is obtained by providing a suitable entire function G satisfying the hypotheses
of the theorem. From now on, when we call G star graph, we also consider it as a quantum graph.

Theorem 5.1. Let G be a star graph equipped with (D/N ) made by edges long {Lj}j≤N ∈ AL(N). If
the couple (A,B) satisfies Assumptions I(η) and Assumptions II(η, ε) for η, ε > 0, then the (BSE) is
globally exactly controllable in Hs

G for s = 2 + d and d from Assumptions II(η, ε).
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Proof. 1) Star graph equipped with (D). The boundary conditions (D) on Ve imply that φk =
(a1k sin(

√
λkx), ..., ank sin(

√
λkx)) for each k ∈ N∗ and suitable {alk}l≤N ⊂ C such that (φk)k∈N∗ is orthor-

mal in H . The conditions (NK) in the internal vertex v ∈ Vi ensure that{
a1k sin(

√
λkL1) = ... = aNk sin(

√
λkLN ),∑

l≤N a
l
k cos(

√
λkLl) = 0,

=⇒
N∑
l=1

cot(
√
λkLl) = 0.(28)

We use the provided identities in order to construct an entire function satisfying the hypotheses of
Theorem 2.3. To this purpose, we define an entire function G and two maps G̃ and H such that

G(x) :=
∏
l≤N

sin(xLl)
∑
l≤N

cot(xLl) G′(x) = −G̃(x) +H(x),

G̃(x) :=
∏
l≤N

sin(xLl)
∑
l≤N

Ll

sin2(xLl)
, H(x) :=

d

dx

( ∏
l≤N

cos(xLl)
)∑
l≤N

cot(xLl).
(29)

For L∗ := minl≤N Ll and x ∈ R, we have

|G̃(x)| =
∏
l≤N | sin(xLl)|

∑
l≤N Ll

∏
k 6=l sin

2(xLk)∏
l≤N sin2(xLl)

≥ L∗
∑
l≤N

∏
k 6=l

| sin(xLk)|.(30)

We refer to [DZ06, Corollary A.10; (2)], which contains a misprint as it is valid for every λ > π
2 max{1/Lj :

j ≤ N}. The identities (28) and (29) imply that H(
√
λk) = 0 and G′(

√
λk) = −G̃(

√
λk) for every k ∈ N∗.

Thanks to (30), [DZ06, Corollary A.10; (2)] ensures that, for every ε > 0, there exists C1 > 0 such that

|G′(±
√
λk)| ≥ L∗

N∑
l=1

∏
j 6=l

| sin(
√
λkLj)| ≥

C1

(
√
λk)1+ε

, ∀k ∈ N∗ : λk >
π

2
max{L−1j }j≤N .(31)

Remark 5.2. For every k ∈ N∗ and j ≤ N , we have |φjk(Lj)| 6= 0, otherwise the (NK) conditions
would ensure that φlk(Ll) = φmk (Lm) = 0 with l,m ≤ N so that φlk, φ

m
k 6≡ 0 and there would be satisfied

alk sin(Ll
√
λk) = amk sin(Lm

√
λk) = 0 with alk, a

m
k 6= 0, which is absurd as {Lj}j≤N ∈ AL(N).

Remark 5.2 implies |G′(±
√
λk)| 6= 0 for k ∈ N∗. Thanks to (5) and (31), there exists C2 > 0 so that

|G′(±
√
λk)| ≥ C2k

−(1+ε), ∀k ∈ N∗.

We notice that the spectrum of A is simple. Indeed, if there would exist two orthonormal eigenfuctions
f and g of A corresponding to the same eigenvalue λ, then h(x) = f(v)g(x)− g(v)f(x) would be another
eigenfunction of A. Now, h is an eigenfunction and h(v) = 0 that is impossible thanks to Remark 5.2.
As | cos(zLl)| ≤ eLl|z| and | sin(zLl)| ≤ eLl|z| for every l ≤ N and z ∈ C, we notice that |G(z)| ≤
Ne|z|

∑N
l=1 Ll for every z ∈ C. Now, G(

√
λk) = 0 for every k ∈ N∗ thanks to (28) and G ∈ L∞(R,R).

In conclusion, the claim is achieved as Theorem 2.3 is valid with respect to the function G when d̃ = ε.

2) Generic star graph. Let I1 ⊆ {1, ..., N} be the set of indices of those edges containing an external
vertex equipped with (N ) and I2 := {1, .., N} \ I1. The proof follows from the techniques adopted in 1)
by considering Proposition B.2 (instead of [DZ06, Corollary A.10; (2)]) and the entire map

G(x) :=
∏
l∈I2

sin(xLl)
∏
l∈I1

cos(xLl)
(∑
l∈I2

cot(xLl) +
∑
l∈I1

tan(xLl)
)
.

Remark 5.3. When G is star graph with equipped with (D) such that L2/L1 and L3/L1 are rationals,

∃n2, n3,m2,m3 ∈ N∗ : L2/L1 = n2/m2, L3/L1 = n3/m3.

The sequence {µk}k∈N∗ with µk = k n2n3

L1
are eigenvalues of A and they are multiple. Indeed, fixed k ∈ N∗,

fk =
(

sin(µkx), sin(µkx),−2 sin(µkx), 0, ..., 0
)
, gk =

(
0, sin(µkx),− sin(µkx), 0, ..., 0

)
are eigenfunctions of A reciprocally orthogonal and corresponding to µk. In addition, we notice that the
sequence {gk}k∈N∗ is composed by eigenfuctions vanishing in the edge e1. The same kind of construction
can be repeated when the star graph G is equipped with the general boundary conditions (D/N ).
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Corollary 5.4. Let G be a star graph equipped with (D/N ). Let G satisfy the following conditions with

Ñ ∈ 2N∗ such that Ñ ≤ N .

� For j ≤ Ñ/2, the two external vertices belonging to e2j−1 and e2j are equipped with (D) or (N ).

� The couples of edges {e2j−1, e2j}j≤Ñ/2 are long {Lj}j≤Ñ/2, while the edges {ej}Ñ<j≤N measure

{Lj}Ñ<j≤N . In addition, {Lj}j≤ Ñ2 ∪ {Lj}Ñ<j≤N ∈ AL
(
Ñ
2 +N − Ñ

)
.

If (A,B) satisfies Assumptions I(η) and Assumptions II(η, ε) for η, ε > 0, then the (BSE) is globally
exactly controllable in Hs

G for s = 2 + d and d from Assumptions II(η, ε).

e1 e2

e3

e4

Boundaries: Neumann-Kirchhoff Dirichlet/Neumann.

e5

e6

Figure 4: Example of graph described in Corollary 5.4 with Ñ = 4 and N = 6.

Proof. Let I1 ⊆ {1, ..., Ñ/2} be the set of j such that e2j−1 and e2j contain two external vertices of G

equipped with (N ) and I2 := {1, .., Ñ/2} \ I1. Let I3 ⊆ {Ñ + 1, ..., N} be the set of j such that ej
contains an external vertex of G equipped with (N ) and I4 := {Ñ + 1, ..., N} \ I3. Let

(λ1k)k∈N∗ :=
( (2k − 1)2π2

4L2
j

)
j,k∈N∗
j∈I1

, (λ2k)k∈N∗ :=
(k2π2

L2
j

)
j,k∈N∗
j∈I2

.

We notice that (λ1k)k∈N∗ ∪ (λ2k)k∈N∗ ⊂ (λk)k∈N∗ are the only eigenvalues of A corresponding to eigen-
functions vanishing in the internal vertex v. For every f ∈ (φk)k∈N∗ of A corresponding to an eigenvalue
λ ∈ (λ1k)k∈N∗ , f is uniquely defined (up to multiplication for α ∈ C such that |α| = 1) by the identities

f2j−1(x) = −f2j(x) =
√
L−1j cos(

√
λx), f l ≡ 0, ∀l ∈ {1, ..., N} \ {2j − 1, 2j}.

Equivalently, it is valid with (λ2k)k∈N∗ and then the eigenvalues (λ1k)k∈N∗ ∪ (λ2k)k∈N∗ are simple. In
conclusion, the discrete spectrum of A is simple since, if there would exist a multiple eigenvalue

λ ∈ (λk)k∈N∗ \
(
(λ1k)k∈N∗ ∪ (λ2k)k∈N∗

)
,

then there would exist two orthonormal eigenfuctions f and g corresponding to the same eigenvalue λ.
Now, h(x) = f(v)g(x)−g(v)f(x) would be another eigenfunction corresponding to λ such that h(v) = 0,
which is impossible as it would imply that λ ∈ (λ1k)k∈N∗∪(λ2k)k∈N∗ . Thus, (λk)k∈N∗ are simple eigenvalues.
The remaining part of proof follows the one of Theorem 5.1 thanks to Proposition B.2 by considering

G(x) :=
∏

l∈I2∪I4

sin(xLl)
∏

l∈I1∪I3

cos(xLl)
(

2
∑
l∈I2

cot(xLl) + 2
∑
l∈I1

tan(xLl) +
∑
l∈I4

cot(xLl) +
∑
l∈I3

tan(xLl)
)
.

5.1 Proofs of Theorem 1.3 and of Theorem 1.4

In the following theorem, we apply Theorem 5.1 for a specific problem.

Proof of Theorem 1.4. The conditions (N ) in Vi imply the existence, for every k ∈ N∗, of {alk}l≤N ⊂ C
such that φk = (a1k cos(x

√
λk), ..., aNk cos(x

√
λk)). The coefficients {alk}l≤N ⊂ C are so that (φk)k∈N∗

forms a Hilbert basis of H and then

(32) 1 =
∑
l≤N

∫ Ll

0

|alk|2 cos2(x
√
λk)dx =

∑
l≤N

|alk|2
(Ll

2
+

sin(2Ll
√
λk)

4
√
λk

)
.
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For every k ∈ N∗, the (NK) boundary conditions in Vi ensure

a1k cos(
√
λkL1) = ... = aNk cos(

√
λkLN ),

∑
l≤N

alk sin(
√
λkLl) = 0,

∑
l≤N

tan(
√
λkLl) = 0,

∑
l≤N

|alk|2sin(2Ll
√
λk) = 0.

(33)

The last identities and (32) imply 1 =
∑N
l=1 |alk|2Ll/2. Thanks to (33), we have alk = a1k

cos(
√
λkL1)

cos(
√
λkLl)

for

l 6= 1 and k ∈ N∗. Thus, |a1k|2
(
L1 +

∑N
l=2 Ll

cos2(
√
λkL1)

cos2(
√
λkLl)

)
= 2 for every k ∈ N∗ and

|a1k|2 = 2

N∏
m=2

cos2(
√
λkLm)

( N∑
j=1

Lj
∏
m 6=j

cos2(
√
λkLm)

)−1
.(34)

Validation of Assumptions I(3 + ε) with ε > 0. For every k ∈ N∗, thanks to the relation (33)

∏
l≤N

cos(
√
λkLl)

∑
l≤N

tan(
√
λkLl) = 0, =⇒

N∑
l=1

sin(
√
λkLl)

∏
m 6=l

cos(
√
λkLm) = 0.

Thanks to the relation (5) and Corollary B.3, for every ε > 0, there exist C1, C2 > 0 such that,

|a1k| ≥
√

2∑N
l=1 Ll cos−2(

√
λkLl)

≥
√

2∑N
l=1 LlC

−2
1 λ1+εk

≥ C2

k1+ε
, ∀k ∈ N∗.(35)

In addition, 〈φl1, Bφlk〉L2(el,C) = 0 for 2 ≤ l ≤ N and, for every k ∈ N∗,

〈φ1, Bφk〉L2 = 〈φ11, Bφ1k〉L2(e1,C) = − 120a1ka
1
1L

6
1

(
√
λk +

√
λ1)4

− 120a1ka
1
1L

6
1

(
√
λk −

√
λ1)4

+ o(
√
λk
−5

).(36)

From the relations (35) and (36), thanks to the relation (5), for every ε > 0, there exists C3 > 0, such
that for k ∈ N∗ sufficiently large,

|〈φ1, Bφk〉L2 | ≥ C3k
−(5+ε).(37)

Now, it is possible to compute ak(·) and Bk(·) with k ∈ N∗, analytic functions in R+, so that

ak(L1)2 = (a1k)2, a1(L1)ak(L1)Bk(L1) = 〈φ1, Bφk〉L2

and such that each a1(·)ak(·)Bk(·) is non-constant and analytic. Thus, each a1(·)ak(·)Bk(·) has discrete
zeros Ṽk ⊂ R+ and Ṽ =

⋃
k∈N∗ Ṽk is countable. For every {Ll}l≤N ∈ AL(N) so that L1 6∈ Ṽ , we have

|〈φ1, Bφk〉L2 | 6= 0 for every k ∈ N∗. Thus, the point 1. of Assumptions I(3 + ε) is ensured thanks to the
relations (37) since, for every ε > 0, there exists C4 > 0 such that

|〈φ1, Bφk〉L2 | ≥ C4k
−(5+ε), ∀k ∈ N∗.

Let (k, j), (m,n) ∈ I, (k, j) 6= (m,n) for I := {(j, k) ∈ (N∗)2 : j 6= k}. We prove the validity of the
point 2. of Assumptions I(3 + ε). As above, we compute Fk(·) with k ∈ N∗, analytic in R+, such that
〈φk, Bφk〉L2 = Fk(L1). Each Fj,k,l,m(·) := Fj(·) − Fk(·) − Fl(·) + Fm(·) is non-constant and analytic in
R+, the set of its positive zeros Vj,k,l,m is discrete. Now, we introduce the countable set:

V :=
⋃

(j,k),(l,m)∈I : (j,k)6=(l,m)

Vj,k,l,m.

For {Ll}l≤N ∈ AL(N) so that L1 6∈ V ∪ Ṽ , the point 2. of Assumptions I(3 + ε) with ε > 0 is satisfied.

Validation of Assumptions II(3 + ε1, ε2) with ε1, ε2 > 0 so that ε1 + ε2 ∈
(
0, 12

)
. Let

P (x) := (5x6 − 24x5L1 + 45x4L2
1 − 40x3L3

1 + 15x2L4
1 − L6

1).
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For m > 0, we notice B : Hm −→ Hm and ∂x(Bψ)(ṽ) = 0 for every ṽ ∈ Ve since ∂xP (0) = 0. Now,
∂x(Bψ)(v) = (Bψ)(v) = 0 with v ∈ Vi since ∂xP (L1) = P (L1) = 0. Then, B : H2

G → H2
G . Moreover,

∂2xP (L1) = ∂3xP (L1) = 0, which imply B : Hm
NK −→ Hm

NK for every m ∈
(
0, 92
)
. For d ∈

[
3 + ε1 + ε2,

7
2

)
and d1 ∈

(
d, 72

)
, there follow

Ran(B|
H
d1
NK

) ⊆ Hd1
NK, Ran(B|H2+d

G
) ⊆ Ran(B|H2+d∩H1+d

NK∩H2
G

) ⊆ H2+d ∩H1+d
NK ∩H

2
G .

The point 2. of Assumptions II(3 + ε1, ε2) with ε1, ε2 > 0 so that ε1 + ε2 ∈
(
0, 12
)

is valid.

Conclusion. The couple (A,B) satisfies Assumptions I(3 + ε) and Assumptions II(3 + ε1, ε2) with
ε1, ε2 > 0 so that ε1 + ε2 ∈

(
0, 12
)
. Theorem 5.1 guarantees the global exact controllability of the (BSE)

in Hs
G with s = 2 + d and d ≥ 3 + ε1 + ε2.

Proof of Theorem 1.3. Theorem 1.3 is proved as [Duc18a, Theorem 1.2] that is stated for N = 4. The
only difference between the two results is the fact that Theorem 1.3 follows from Theorem 5.1 instead of
[Duc18a, Theorem 2.4], which is only valid for N ≤ 4.

6 Energetic controllability

Let us recall the notation (ϕk)k∈N∗ ⊆ (φk)k∈N∗ indicating an orthonormal system (not necessarily com-
plete) of H made by some eigenfunctions of A. Let

(µk)k∈N∗

be the ordered sequence of corresponding eigenvalues. We refer to Definition 1.5 for the formal definition
of energetic controllability.

Theorem 6.1. Let G be a compact quantum graph and one of the following points be verified.

1. There exists an entire function G such that G ∈ L∞(R,R) and there exist J, I > 0 so that |G(z)| ≤
JeI|z| for every z ∈ C. The numbers {±√µk}k∈N∗ are simple zeros of G and there exist d̃ ≥ 0 and

C > 0 so that |G′(±√µk)| ≥ C

k1+d̃
for every k ∈ N∗.

2. There exist C > 0 and d̃ ≥ 0 so that |µk+1 − µk| ≥ Ck−
d̃
M−1 for each k ∈ N∗ with M from (1).

If (A,B) satisfies Assumptions I(ϕ, η) and Assumptions II(ϕ, η, d̃) for η > 0, then the (BSE) is globally

exactly controllable in Hs
G ∩ H̃ for s = 2 + d with d from Assumptions II(ϕ, η, d̃) and energetically

controllable in (µk)k∈N∗ .

Proof. From Remark 2.2, the (BSE) is well-posed in Hs
G ∩ H̃ with s = 2 + d and d from Assumptions

II(ϕ, η, d̃). The statement of Theorem 2.3 holds in H̃ when the point 1. is valid, while the validity

of [Duc18a, Theorem 2.3] in H̃ is guaranteed by 2. . The global exact controllability is provided in

Hs
G ∩ H̃ and the energetic controllability follows as ϕk ∈ Hs

G ∩ H̃ for every k ∈ N∗.

Let G be a compact quantum graph. By watching the structure of the graph and the boundary
conditions of D(A), it is possible to construct some eigenfuctions (ϕk)k∈N∗ of A corresponding to some
eigenvalues (µk)k∈N∗ . For instance, we consider G containing one loop e1 of length 1 connected to the
graph in a vertex v. In such case, we point out that the Neumann-Kirchhoff boundary conditions in v
for a function ψ ∈ D(A) yield that

∑
j∈N(v)\{1} ∂xψ

j(v) + ∂xψ
1(0)− ∂xψ1(1) = 0.

e1

v

Figure 5: Example of compact graph containing a loop.

We define ϕ := (ϕk)k∈N∗ such that ϕk =
(√

2 sin(2kπx), 0, ..., 0
)

and the corresponding eigenvalues
(µk)k∈N∗ = (4k2π2)k∈N∗ ⊆ (λk)k∈N∗ , satisfying the gap condition

inf
k∈N∗

|µk+1 − µk| = 12π2 > 0.
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If Assumptions I(ϕ, η) and Assumptions II(ϕ, η, 0) are satisfied for η > 0, then Theorem 6.1 implies the
energetic controllability in (µk)k∈N∗ . As we will show in the proof of Theorem 6.4, this approach is also
valid when G contains more loops (e.g. Figure 3).

Remark. The idea described above can be adopted when G contains suitable sub-graphs denoted “uniform
chains”. A uniform chain is a sequence of edges of equal length L connecting M ∈ N∗ vertices {vj}j≤M
such that v2, ..., vM−1 ∈ Vi when M ≥ 3. Moreover, one of the following is valid: either v1, vM ∈ Ve are
equipped with (D), or v1 = vM belong to Vi, or M ∈ {2, 3} and v1, vM ∈ Ve are equipped with (N ).

Boundaries: Neumann-Kirchhoff Neumann Dirichlet.

Figure 6: The figure underlines the uniform chains in a compact graph.

Let G contain Ñ ∈ N∗ uniform chains {G̃j}j≤Ñ , composed by edges of lengths {Lj}j≤Ñ ∈ AL(Ñ). Let

I1 ⊆ {1, ..., Ñ} and I2 ⊆ {1, ..., Ñ} \ I1 be respectively the sets of indices j such that the external vertices

of G̃j are equipped with (N ) and (D), while I3 := {1, ..., Ñ} \ (I1 ∪ I2). We consider the eigenvalues
(µk)k∈N∗ obtained by reordering( (2k − 1)2π2

4L2
j

)
k,j∈N∗
j∈I1

∪
(k2π2

L2
j

)
k,j∈N∗
j∈I2

∪
( (2k − 1)2π2

L2
j

)
k,j∈N∗
j∈I3

.

As in the proof of [Duc18a, Lemma A.2], the Roth’s Theorem [Duc18a, P roposition A.1] ensures that, if

{Lj}j≤Ñ ∈ AL(Ñ), then for every ε > 0, there exists C > 0 so that

|µk+1 − µk| ≥ Ck−ε, ∀k ∈ N∗.

In conclusion, if (A,B) satisfies Assumptions I(ϕ, η) and Assumptions II(ϕ, η, ε) with η > 0, then
Theorem 6.1 implies the energetic controllability in (µk)k∈N∗

6.1 Proof of Theorem 1.6 and some applications of Theorem 6.1

Proof of Theorem 1.6. Let us assume N = 3. The (D) conditions to the external vertices Ve imply
φk = (a1k sin(

√
µkx), a2k sin(

√
µkx), a3k sin(

√
µkx)) with suitable (a1k, a

2
k, a

3
k) ∈ C3. From the (NK) in

v ∈ Vi, there follow
∑
l≤3 a

l
k cos(

√
µkL) = 0 and amk sin(

√
µkL) = c ∈ R for every m ≤ 3. When c 6= 0,

we have the eigenvalues
( (2k−1)2π2

4L2

)
k∈N∗ corresponding to the eigenfunctions (gk)k∈N∗ so that

gk =
(√ 2

3L
sin
( (2k − 1)π

2L
x
)
,

√
2

3L
sin
( (2k − 1)π

2L
x
)
,

√
2

3L
sin
( (2k − 1)π

2L
x
))
, ∀k ∈ N∗.

When c = 0, we obtain the eigenvalues
(
k2π2

L2

)
k∈N∗ of multiplicity two that we associate to the couple of

sequences of eigenfunctions (f1k )k∈N∗ and (f2k )k∈N∗ such that, for every k ∈ N∗,

f1k :=
(
−
√

4

3L
sin
(kπ
L
x
)
,

√
1

3L
sin
(kπ
L
x
)
,

√
1

3L
sin
(kπ
L
x
))
,

f2k :=
(

0,−
√

1

L
sin
(kπ
L
x
)
,

√
1

L
sin
(kπ
L
x
))
.

Moreover, (f1k )k∈N∗ ∪ (f2k )k∈N∗ ∪ (gk)k∈N∗ is a Hilbert basis of H and
(
k2π2

L2

)
k∈N∗ ∪

( (2k−1)2π2

4L2

)
k∈N∗ are

the eigenvalues of A (not considering their multiplicity).

Validation of Assumptions I(ϕ,1). We reorder (f1k )k∈N∗ ∪ (gk)k∈N∗ in ϕ = (ϕk)k∈N∗ . The point
1. of Assumptions I(ϕ, 1) is verified as there exists C1, C2 > 0 such that

|〈ϕ1, Bϕk〉L2 | ≥
C1
√
µk
√
µ1

(µk − µ1)2
≥ C2

k3
, ∀k ∈ N∗.
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After, there exist C3, C4 > 0 so that Bk,k := 〈ϕk, Bϕk〉L2 = C3 +C4k
−2 for every k ∈ N∗ and µk = π2k2

4L2 .

Now, if µj − µk − µl + µm = π2

4L2 (j2 − k2 − l2 +m2) = 0, then

Bj,j −Bk,k −Bl,l +Bm,m = C4(j−2 − k−2 − l−2 +m−2) 6= 0,

which implies the point 2. of Assumptions I(ϕ, 1).

Validation of Assumptions II(ϕ,1,0) and conclusion. The operator B stabilizes the spaces Hm

with m > 0 and span{ϕk : k ∈ N∗}
L2

∩H2
G , ensuring the point 1. of Assumptions II(ϕ, 1, 0). Since

inf
j,k∈N∗

|µk − µj | =
π2

4L2
,

the point 2. of Theorem 6.1 holds and the global exact controllability is proved in H3
G ∩ H̃ . As ϕk ∈

H3
G ∩ H̃ for every k ∈ N∗, the energetic controllability follows in

(
k2π2

4L2

)
k∈N∗ .

When N > 3, the spectrum contains simple eigenvalues relative to some eigenfunctions (gk)k∈N∗ and
multiple eigenvalues, each one corresponding to N −1 eigenfunctions {fk;j}l≤N−1 with k ∈ N∗. For each
k ∈ N∗, we construct {fk;j}l≤N−1 such that only the functions {fk;j}l≤N−2 vanish in e1. We reorder
(fk;N−1)k∈N∗ ∪ (gk)k∈N∗ in ϕ = (ϕk)k∈N∗ and the proof is achieved as done for N = 3.

Theorem 6.2. Let G be a star graph equipped with (D/N ). Let G contain two edges e1 and e2 long 1
connected two external vertices both equipped with (D).

e1 e2

Boundaries: Neumann-Kirchhoff Dirichlet Dirichlet/Neumann.

Figure 7: Example of star graph described by Theorem 6.2 with N = 5.

Let Bψ =
(
x2(ψ1(x) − ψ2(x)), x2(ψ2(x) − ψ1(x)), 0, ..., 0

)
for every ψ ∈ H . There exists (ϕk)k∈N∗ ⊂

(φk)k∈N∗ such that the (BSE) is globally exactly controllable in H3
G ∩ H̃ and energetically controllable

in (k2π2)k∈N∗ .

Proof. Let (µk)k∈N∗ and (ϕk)k∈N∗ be so that µk = k2π2, ϕ1
k = −ϕ2

k = sin(kπx) and ϕlk = 0 with k ∈ N∗

and 3 ≤ l ≤ N. The claim follows from the point 2. of Theorem 6.1 with d̃ = 0 as Theorem 1.6.

Theorem 6.3. Let G be a star graph equipped with (D) and composed by N
2 couples of edges {e2j−1, e2j}j≤N2

long {Lj}j≤N2 ∈ AL(N2 ) with N ∈ 2N∗.

e1 e2

Boundaries: Neumann-Kirchhoff Dirichlet.

e3

e4

e5

e6

Figure 8: Example of star graph described by Theorem 6.3 with N = 6.

Let B be such that Bψ = ((Bψ)1, ..., (Bψ)N ) for every ψ ∈H and

(Bψ)2j = −(Bψ)2j−1 =

N/2∑
l=1

L
3/2
l

L
3/2
j

x2
(
ψ2l
(Ll
Lj
x
)
− ψ2l−1

(Ll
Lj
x
))
, ∀j ≤ N

2
.

There exists C ⊂ (R+)N countable so that, for every {Lj}j≤N ∈ AL(N) \ C, there exists (ϕk)k∈N∗ ⊆
(φk)k∈N∗ such that (BSE) is globally exactly controllable in H3+ε

G ∩ H̃ with ε > 0 and energetically

controllable in
(
k2π2

L2
j

)
k,j∈N∗
j≤N/2

.
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Proof. Let (µk)k∈N∗ ⊂ (λk)k∈N∗ be eigenvalues obtained by reordering
(
k2π2

L2
j

)
k∈N∗ for every j ≤ N/2

and (ϕk)k∈N∗ be an orthonormal system of H made by corresponding eigenfunctions. For k ∈ N∗, there
exist m(k) ∈ N∗ and l(k) ≤ N/2 so that ϕnk ≡ 0 for n 6= 2l(k), 2l(k)− 1 and

µk =
m(k)2π2

L2
l(k)

, ϕ
2l(k)−1
k (x) = −ϕ2l(k)

k (x) =

√
1

Ll(k)
sin (
√
µkx).

Let [r] be the entire part of r ∈ R+. For k ∈ N∗ and C = 4 minl≤N Ll, we have

|〈ϕ1, Bϕk〉L2 | =

∣∣∣∣∣
N∑
l=1

〈
ϕlk(x),

N/2∑
n=1

L
3
2
nx2

L
3
2

[(l+1)/2]

(
ϕ2n−1
1

( Ln
L[(l+1)/2]

x
)
− ϕ2n

1

( Ln
L[(l+1)/2]

x
))〉

L2(el)

∣∣∣∣∣
=
∣∣∣ ∫ Ll(k)

0

4x2L
3
2

l(1)

L
3
2

l(k)

sin
(m(1)πx

Ll(k)

)
sin
(m(k)πx

Ll(k)

)
dx
∣∣∣ ≥ C∣∣∣ ∫ 1

0

x2 sin(m(1)πx) sin(m(k)πx)dx
∣∣∣.

Assumptions I(ϕ, 1) and Assumptions II(ϕ, 1, ε) with ε ∈ (0, 12 ) hold as in the proofs of Theorem 1.4 and
Theorem 1.6. We consider the techniques adopted in the proof of [Duc18a, Lemma A.2] which are due
to the Roth’s Theorem [Duc18a, P roposition A.1]. For every ε > 0, there exists C > 0 so that

|µk+1 − µk| ≥ Ck−ε, ∀k ∈ N∗.

The claim follows since the hypotheses 2. of Theorem 6.1 are verified with d̃ = ε > 0.

Theorem 6.4. Let G be a compact quantum graph. Let the first Ñ ≤ N edges {ej}j≤Ñ of the graph be

loops of lengths {Lj}j≤Ñ (e.g Figure 3). For ψ = (ψ1, ...ψN ), let B be such that

(Bψ)l =
∑
j≤Ñ

L
3/2
j

L
3/2
l

x2
( x
Ll
− 1
)
ψj
(Lj
Ll
x
)
, (Bψ)m ≡ 0, ∀l ≤ Ñ , Ñ < m ≤ N.

There exists C ⊂ (R+)Ñ countable so that, if {Lj}j≤Ñ ∈ AL(Ñ)\C, then there exists (ϕk)k∈N∗ ⊆ (φk)k∈N∗

such that (BSE) is globally exactly controllable in H3+ε
G ∪ H̃ with ε > 0 and energetically controllable

in
(
k2π2

L2
j

)
k,j∈N∗
j≤Ñ

.

Proof. Let (ϕk)k∈N∗ be such that, for each k ∈ N∗, there exist m(k) ∈ N∗ and l(k) ≤ Ñ such that

µk = 4m(k)2π2

L2
l(k)

, ϕ
l(k)
k (x) =

√
2

Ll(k)
sin (
√
µkx) and ϕnk ≡ 0 for every n 6= l(k) and n ≤ N . Now, (ϕk)k∈N∗

is an orthonormal system made by eigenfunctions of A and the claim yields as Theorem 6.3.
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reviewed this work. He also thanks Käıs Ammari for suggesting him the problem and the colleagues
Andrea Piras, Riccardo Adami, Enrico Serra and Paolo Tilli for the fruitful conversations.

A Appendix: Global approximate controllability

In the current appendix, for the sake of completeness, we propose the global approximate controllability
result provided in [Duc18a, Section 4.2]. The outcome is adopted in the proof of Theorem 2.3.

Definition A.1. The (BSE) is said to be globally approximately controllable in Hs
G with s > 0 when,

for every ψ ∈ Hs
G , Γ̂ ∈ U(H ) such that Γ̂ψ ∈ Hs

G and ε > 0, there exist T > 0 and u ∈ L2((0, T ),R)

such that ‖Γ̂ψ − ΓuTψ‖(s) < ε.

Proposition A.2. Let (A,B) satisfy Assumptions I(η) and Assumptions II(η, d̃) for η > 0 and d̃ ≥ 0.
The (BSE) is globally approximately controllable in Hs

G for s = 2 + d with d from Assumptions II(η, d̃) .

Proof. In the point 1) of the proof, we suppose that (A,B) admits a non-degenerate chain of connect-
edness (see [BdCC13, Definition 3]). We treat the general case in the point 2) .
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1) (a) Preliminaries. Let πm be the orthogonal projector onto Hm := span {φj : j ≤ m}
L2

with
m ∈ N∗. Up to reordering (φk)k∈N∗ , the couples (πmAπm, πmBπm) for m ∈ N∗ admit non-degenerate
chains of connectedness in Hm. Let ‖ ·‖BV (T ) = ‖ ·‖BV ((0,T ),R) and ||| · ||| (s) := ||| · ||| L(HsG ,HsG ) for s > 0.

Claim. ∀ Γ̂ ∈ U(H ), ∀ε > 0, ∃N1 ∈ N∗, Γ̃N1
∈ U(H ) : πN1

Γ̃N1
πN1
∈ SU(HN1

),

(38) ‖Γ̃N1
φ1 − Γ̂φ1‖L2 < ε.

Let N1 ∈ N∗ and φ̃1 := ‖πN1
Γ̂φ1‖−1L2 πN1

Γ̂φ1. We define (φ̃j)2≤j≤N1
such that (φ̃j)j≤N1

is an orthonormal

basis of HN1
and we complete it to (φ̃j)j∈N∗ , an Hilbert basis of H . The operator Γ̃N1

is the unitary map

such that Γ̃N1
φj = φ̃j for every j ∈ N∗. The provided definition implies limN1→∞ ‖Γ̃N1

φ1− Γ̂φ1‖L2 = 0.
Thus, for every ε > 0, there exists N1 ∈ N∗ large enough satisfying the claim.

1) (b) Finite dimensional controllability. Let Mad be the set of (j, k) ∈ {1, ..., N1}2 such that
Bj,k := 〈φj , Bφk〉L2 6= 0 and |λj−λk| = |λm−λl| with m, l ∈ N∗ implies {j, k} = {m, l} for Bm,l = 0. For
every (j, k) ∈ {1, ..., N1}2 and θ ∈ [0, 2π), we define Eθj,k the N1×N1 matrix with elements (Eθj,k)l,m = 0,

(Eθj,k)j,k = eiθ and (Eθj,k)k,j = −e−iθ for (l,m) ∈ {1, ..., N1}2 \ {(j, k), (k, j)}. Let Ead =
{
Eθj,k : (j, k) ∈

Mad, θ ∈ [0, 2π)
}
. Let L1 := Ead. We define by iteration Lm := [Ead, Lm−1] + Lm−1 with m ∈ N∗ \ {1}

and there exists m̃ ∈ N∗ such that Lm̃ = Lm̃+1 as Ead is composed by N1 × N1 matrices. We denote
Lie(Ead) = Lm̃. Fixed v a piecewise constant control taking value in Ead and τ > 0, we introduce the
control system on SU(HN1

) {
ẋ(t) = x(t)v(t), t ∈ (0, τ),

x(0) = IdSU(HN1
).

(39)

Claim. (39) is controllable, i.e. for R ∈ SU(HN1
), there exist p ∈ N∗, M1, ...,Mp ∈ Ead,

α1, ..., αp ∈ R+ such that R = eα1M1 ◦ ... ◦ eαpMp .

For every (j, k) ∈ {1, ..., N1}2, we define the N1 ×N1 matrices Rj,k, Cj,k and Dj as follow. For (l,m) ∈
{1, ..., N1}2 \ {(j, k), (k, j)}, we have (Rj,k)l,m = 0 and (Rj,k)j,k = −(Rj,k)k,j = 1, while (Cj,k)l,m = 0
and (Cj,k)j,k = (Cj,k)k,j = i. Moreover, for (l,m) ∈ {1, ..., N1}2 \ {(1, 1), (j, j)}, (Dj)l,m = 0 and
(Dj)1,1 = −(Dj)j,j = i. We consider the basis of su(HN1

)

{Rj,k}j,k≤N1
∪ {Cj,k}j,k≤N1

∪ {Dj}j≤N1
.

Thanks to [Sac00, Theorem 6.1], the controllability of (39) is equivalent to prove that Lie(Ead) ⊇
su(HN1

) for su(HN1
) the Lie algebra of SU(HN1

). The claim is valid since it is possible to obtain the
matrices Rj,k, Cj,k and Dj for every j, k ≤ N1 by iterated Lie brackets of elements in Ead as follows.

� For every (j, k) ∈Mad, we have Rj,k = E0
j,k and Cj,k = E

π/2
j,k . For every (j, k) 6∈Mad such that there

exists j1 ≤ N1 so that (j, j1), (j1, k) ∈Mad, we have Rj,k = [E0
j,j1

, E0
j1,k

] and Cj,k = [E0
j,j1

, E
π/2
j1,k

].

� If (1, j) ∈ Mad, then 2Dj = [E0
1,j , E

π
2
1,j ], while if (1, j) 6∈ Mad and there exists j1 ≤ N1 such that

(1, j1), (j1, j) ∈Mad, then −2Dj =
[
[E

π
2
1,j1

, E
π
2
j1,j

], [E0
1,j1

, E
π
2
j1,j

]
]
.

� For every (j, k) 6∈Mad, there exist m ≤ N1 and {jl}l≤m such that (j, j1), ..., (jm, k) ∈Mad. We call
S = {(j, j1), ..., (jm, k)}. By repeating the previous point, we can generate each Rj,k, Cj,k and Dj

with j, k ∈ {1, ..., N1} by iterating Lie brackets of Eθl,m for (l,m) ∈ S and θ ∈ [0, 2π).

1) (c) Finite dimensional estimates. Let Γ̂ ∈ U(H ) and Γ̃N1
∈ U(H ) be defined in 1) (a). Thanks

to the previous claim and to the fact that πN1 Γ̃N1πN1 ∈ SU(HN1), there exist p ∈ N∗, M1, ...,Mp ∈ Ead
and α1, ..., αp ∈ R+ such that

(40) πN1 Γ̃N1πN1 = eα1M1 ◦ ... ◦ eαpMp .
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Claim. For every l ≤ p and eαlMl from (40), there exist {T ln}l∈N∗ ⊂ R+ and {uln}n∈N∗ such that
uln ∈ L2((0, T ln),R) for every n ∈ N∗ and

(41) lim
n→∞

‖Γu
l
n

T ln
φk − eαlMlφk‖L2 = 0, ∀k ≤ N1,

sup
n∈N∗

‖uln‖BV (T ln)
<∞, sup

n∈N∗
‖uln‖L∞((0,T ln),R) <∞,

sup
n∈N∗

T ln‖uln‖L∞((0,T ln),R) <∞.
(42)

We consider the results developed in [Cha12, Section 3.1 & Section 3.2] by Chambrion and leading to
[Cha12, P roposition 6] since (A,B) admits a non-degenerate chain of connectedness ([BdCC13, Defini-
tion 3]). Each eαlMl is a rotation in a two dimensional space for every l ∈ {1, ..., p} and this work explicits
{T ln}n∈N∗ ⊂ R+ and {uln}n∈N∗ satisfying (42) such that uln ∈ L2((0, T ln),R) for every n ∈ N∗ and

(43) lim
n→∞

‖πN1
Γ
uln
T ln
φk − eαlMlφk‖L2 = 0, ∀k ≤ N1.

Now, limn→∞ ‖πN1Γ
uln
T ln
φk‖L2 = 1 since eαlMl ∈ SU(HN1). Thus, limn→∞ ‖(1− πN1)Γ

uln
T ln
φk‖L2 = 0 and

lim
n→∞

‖Γu
l
n

T ln
φk − eαlMlφk‖L2 ≤ lim

n→∞

(
‖πN1

Γ
uln
T ln
φk − eαlMlφk‖L2 + ‖(1− πN1

)Γ
uln
T ln
φk‖L2

)
= 0.

1) (d) Infinite dimensional estimates.

Claim. Let Γ̂ ∈ U(H ). There exist K1,K2,K3 > 0 such that for every ε > 0, there exist T > 0

and u ∈ L2((0, T ),R) such that ‖ΓuTφ1 − Γ̂φ1‖L2 < ε and

‖u‖BV (T ) ≤ K1, ‖u‖L∞((0,T ),R) ≤ K2, T‖u‖L∞((0,T ),R) ≤ K3.(44)

Let us assume that 1) (c) be valid with p = 2. Although, the following result is valid for any p ∈ N∗.
As eα1M1 ∈ SU(HN1), there exists 2 ≤ l ≤ N1 such that eα1M1φ1 = φl. Thanks to (41), there exists
n ∈ N∗ large enough such that,

‖Γu
2
n

T 2
n
Γ
u1
n

T 1
n
φ1 − eα2M2eα1M1φ1‖L2 ≤ |||Γu

2
n

T 2
n
||| ‖Γu

1
n

T 1
n
φ1 − eα1M1φ1‖L2 + ‖Γu

2
n

T 2
n
φl − eα2M2φl‖L2 < ε.

The identity (40) leads to the existence of K1,K2,K3 > 0 such that for every ε > 0, there exist T > 0

and u ∈ L2((0, T ),R) such that ‖ΓuTφ1 − Γ̃N1φ1‖L2 < ε and

‖u‖BV (T ) ≤ K1, ‖u‖L∞((0,T ),R) ≤ K2, T‖u‖L∞((0,T ),R) ≤ K3.(45)

The relation (38) and the triangular inequality achieve the claim.

1) (e) Approximate controllability with respect to the L2-norm. Let ψ ∈H and Γ̂ ∈ U(H ).

Claim. There exist K1,K2,K3 > 0 such that for every ε > 0, there exist T > 0 and u ∈
L2((0, T ),R) such that ‖ΓuTψ − Γ̂ψ‖L2 < ε and

‖u‖BV (T ) ≤ K1, ‖u‖L∞((0,T ),R) ≤ K2, T‖u‖L∞((0,T ),R) ≤ K3.(46)

We assume that ‖ψ‖L2 = 1 but the same proof is also valid in the general case. We consider the

unitary propagator Γ̃ut describing the reversed dynamics of the (BSE) introduced in Remark 4.1. Now,
the results from [Cha12], which are adopted in the point 1) (c), are also valid for the reversed dynamics.

Thus, such as in 1) (d), it is also true that, for every Γ̂ ∈ U(H ), there exist K1,K2,K3 > 0 such that
for every ε > 0, there exist T > 0 and u ∈ L2((0, T ),R) such that the relations (46) are satisfied and

‖Γ̃uTφ1 − Γ̂φ1‖L2 < ε. By keeping in mind that Γ̃uT = (ΓuT )−1 and |||ΓuT ||| = 1, we have

‖φ1 − ΓuT Γ̂φ1‖L2 = ‖ΓuT Γ̃uTφ1 − ΓuT Γ̂φ1‖L2 ≤ |||ΓuT ||| ‖Γ̃uTφ1 − Γ̂φ1‖L2 < ε.
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The last relation guarantees that, for every ψ ∈ H such that ‖ψ‖L2 = 1, there exist T1 > 0 and
u1 ∈ L2((0, T1),R) such that

‖Γu1

T1
ψ − φ1‖L2 < ε.

Now, 1) (d) ensures that, for every Γ̂ ∈ U(H ), there exist T2 > 0 and u2 ∈ L2((0, T2),R) such that

‖Γu2

T2
φ1 − Γ̂ψ‖L2 < ε.

The chosen controls u1 and u2 satisfy (46). In conclusion, the claim is proved as

‖Γu2

T2
Γu1

T1
ψ − Γ̂ψ‖L2 ≤ ‖Γu2

T2
Γu1

T1
ψ − Γu2

T2
φ1‖L2 + ‖Γu2

T2
φ1 − Γ̂ψ‖L2 < 2ε.

1) (f) Global approximate controllability in higher regularity norms. Let ψ ∈ Hs
G with

s ∈ [s1, s1 + 2) and s1 ∈ N∗. Let Γ̂ ∈ U(H ) be such that Γ̂ψ ∈ Hs
G and B : Hs1

G −→ Hs1
G .

Claim. There exist T > 0 and u ∈ L2((0, T ),R) such that ‖ΓuTψ − Γ̂ψ‖(s) < ε.

We notice that the operator −i(A+u(t)B− ic) is dissipative in Hs1
G for c := ‖u‖L∞((0,T ),R) |||B ||| (s1).

Indeed, for every λ > 0 and ψ ∈ Hs1+2
G , we have

‖(λ+ i(A+ u(t)B − ic))ψ‖(s1) ≥ ‖(λ+ c+ iA)ψ‖(s1) − ‖u‖L∞((0,T ),R) |||B ||| (s1)‖ψ‖(s1).

Now, the operator A with domain Hs1+2
G is self-adjoint in the Hilbert space Hs1

G and we have the
inequality ‖(λ+ c+ iA)ψ‖(s1) ≥ (λ+ c)‖ψ‖(s1). By recalling that c = ‖u‖L∞((0,T ),R) |||B ||| (s1), we obtain

‖(λ− i(−A+ u(T − t)B − ic))ψ‖(s1) ≥ (λ+ c)‖ψ‖(s1) − c‖ψ‖(s1) = λ‖ψ‖(s1).(47)

Thus, −i(A + u(t)B − ic) is dissipative and the Kato-Rellich’s Theorem yields that it is also maximal
dissipative. We consider the propagation of regularity developed by Kato in the work [Kat53]. Let λ > c

and Ĥs1+2
G := D(A

s1
2 (iλ− A)) ≡ Hs1+2

G . We know that B : Ĥs1+2
G ⊂ Hs1

G → Hs1
G and the arguments of

[Duc18b, Remark 2.1] imply that B ∈ L(Ĥs1+2
G , Hs1

G ). For T > 0 and u ∈ BV ((0, T ),R), we have

M := sup
t∈[0,T ]

||| (iλ−A− u(t)B)−1 |||
L(H

s1
G ,Ĥ

s1+2

G )
< +∞.

We know ‖k + f(·)‖BV ((0,T ),R) = ‖f‖BV ((0,T ),R) for f ∈ BV ((0, T ),R) and k ∈ R. Equivalently,

N := ||| iλ−A− u(·)B |||
BV
(
[0,T ],L(Ĥ

s1+2

G ,H
s1
G )
) = ‖u‖BV (T ) |||B ||| L(Ĥs1+2

G ,H
s1
G )

< +∞.

We call C1 := |||A(A+ u(T )B− iλ)−1 ||| (s1) <∞ and Uut the propagator generated by A+ uB− ic such

that Uut ψ = e−ctΓut ψ. Thanks to [Kat53, Section 3.10], for every ψ ∈ Hs1+2
G , it follows

‖(A+ u(T )B − iλ)Uut ψ‖(s1) ≤MeMN‖(A− iλ)ψ‖(s1) =⇒ ‖ΓuTψ‖(s1+2) ≤ C1MeMN+cT ‖ψ‖(s1+2).

For every T > 0, u ∈ BV ((0, T ),R) and ψ ∈ Hs1+2
G , there exists C = C(K) > 0 depending on

K =
(
‖u‖BV (T ), ‖u‖L∞((0,T ),R), T‖u‖L∞((0,T ),R)

)
such that

(48) ‖ΓuTψ‖(s1+2) ≤ C‖ψ‖(s1+2).

Now, we notice that, for every ψ ∈ H6
G , we have ‖Aψ‖2L2 ≤ ‖ψ‖L2‖A2ψ‖L2 from the Cauchy-Schwarz

inequality and there exists C2 > 0 such that ‖A2ψ‖4L2 ≤ ‖Aψ‖2L2‖A3ψ‖2L2 ≤ C2‖ψ‖L2‖A3ψ‖3L2 . By

following the same idea, for every ψ ∈ Hs1+2
G , there exist m1,m2 ∈ N∗ and C3, C4 > 0 such that

(49) ‖A s
2ψ‖m1+m2

L2 ≤ C3‖ψ‖m1

L2 ‖A
s1+2

2 ψ‖m2

L2 =⇒ ‖ψ‖m1+m2

(s) ≤ C4‖ψ‖m1

L2 ‖ψ‖m2

(s1+2).

In conclusion, the point 1) (e), the relation (48) and the relation (49) ensure the claim.

1) (g) Conclusion. Let d be defined in Assumptions II(η, d̃). If d < 2, thenB : H2
G → H2

G and the global

approximate controllability is verified in Hd+2
G since d+ 2 < 4. If d ∈ [2, 5/2), then B : Hd1 → Hd1 with
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d1 ∈ (d, 5/2) from Assumptions II(η, d̃). Now, Hd1
G = Hd1 ∩ H2

G , thanks to [Duc18a, P roposition 3.2],

and B : H2
G → H2

G implies B : Hd1
G → Hd1

G . The global approximate controllability is verified in Hd+2
G

since d+2 < d1+2. If d ∈ [5/2, 7/2), then B : Hd1
NK → Hd1

NK for d1 ∈ (d, 7/2) and Hd1
G = Hd1

NK∩H2
G from

[Duc18a, P roposition 3.2]. Now, B : H2
G → H2

G that implies B : Hd1
G → Hd1

G . The global approximate

controllability is verified in Hd+2
G since d+ 2 < d1 + 2.

2) Generalization. Let (A,B) do not admit a non-degenerate chain of connectedness. We decompose

A+ u(·)B = (A+ u0B) + u1(·)B, u0 ∈ R, u1 ∈ L2((0, T ),R).

We notice that, if (A,B) satisfies Assumptions I(η) and Assumptions II(η, d̃) for η > 0 and d̃ ≥ 0,
then [Duc18a, Lemma C.2 & Lemma C.3] are valid. We consider u0 belonging to the neighborhoods
provided by [Duc18a, Lemma C.2 & Lemma C.3] and we denote (φu0

k )k∈N∗ a Hilbert basis of H made
by eigenfunctions of A + u0B. The steps of the point 1) can be repeated by considering the sequence

(φu0

k )k∈N∗ instead of (φk)k∈N∗ and the spaces D(|A+u0B|
s1
2 ) in substitution of Hs1

G with s1 > 0. Thanks
to the mentioned results, the claim is equivalently proved since (A + u0B,B) admits a non-degenerate

chain of connectedness and
∥∥|A + u0B|

s1
2 ·
∥∥
L2 � ‖ · ‖(s1) with s1 ∈ [s, s + 2), s = 2 + d and d from

Assumptions II(η, d̃).

By referring to Remark 4.1, we consider the reversed dynamics of the (BSE) and the unitary propa-

gator Γ̃ut generated by the time-dependent Hamiltonian −A− u(T − t)B with u ∈ L2((0, T ),R). In the
following corollary, we present the global approximate controllability for the reversed dynamics.

Corollary A.3. Let (A,B) satisfy Assumptions I(η) and Assumptions II(η, d̃) for η > 0 and d̃ ≥ 0. Let

s = 2 + d be defined by d from Assumptions II(η, d̃). For every ψ ∈ Hs
G , Γ̂ ∈ U(H ) such that Γ̂ψ ∈ Hs

G

and ε > 0, there exist T > 0 and u ∈ L2((0, T ),R) such that ‖Γ̂ψ − Γ̃uTψ‖(s) < ε.

Proof. The proof follows from the one of Proposition A.2. First, for every ψ ∈ H and Γ̂ ∈ U(H ), we

call ψ̃ = Γ̂ψ and Γ̃ =
(
Γ̂
)−1 ∈ U(H ). Now, the point 1) (e) of the mentioned proof yields the existence

of K1,K2,K3 > 0 such that, for every ε > 0, there exist T > 0 and u ∈ L2((0, T ),R) such that

‖ΓuT ψ̃ − Γ̃ψ̃‖L2 < ε

and the identities (46) are verified. Thanks to the relations Γ̃uT = (ΓuT )−1 and ||| Γ̃uT ||| = 1,

‖Γ̃uTψ − Γ̂ψ‖L2 = ‖Γ̃uTψ − Γ̃uTΓuT Γ̂ψ‖L2 ≤ ||| Γ̃uT ||| ‖ψ − ΓuT Γ̂ψ‖L2 = ‖Γ̃ψ̃ − ΓuT ψ̃‖L2 < ε.

The last relation ensures the global approximate controllability of the reversed dynamics with respect to
the L2−norm. Second, the estimation provided in (47) is also valid for the operator i(A+u(T − t)B+ ic)
which is dissipative in Hs1

G when B : Hs1
G −→ Hs1

G and for c := ‖u‖L∞((0,T ),R) |||B ||| (s1). The claim is

ensured by repeating for the propagator Γ̃uT the arguments developed in 1) (f) and in the remaining
part of the proof of Proposition A.2.

B Appendix: Spectral properties

For x ∈ R, we denote E(x) the closest integer number to x, |||x ||| = minz∈Z |x−z| and F (x) = x−E(x).
We notice |F (x)| = |||x ||| and − 1

2 ≤ F (z) ≤ 1
2 . Let {Lj}j≤N ∈ (R+)N and i ≤ N , we also define

n(x) := E
(
x− 1

2

)
, r(x) := F

(
x− 1

2

)
, d(x) := |||x− 1

2
||| , m̃i(x) := n

(Li
π
x
)
.

In this appendix, we pursue [Duc18a, Appendix A], which is based on the techniques from [DZ06, Appendix A].

Lemma B.1. Let {Lk}k≤N ⊂ R+, I1 ⊆ {1, ..., N}, I2 := {1, ..., N} \ I1 and

a(·) :=
∏
i∈I2

| sin((·)Li)|
∑
i∈I1

∏
j∈I1
j 6=i

| cos((·)Lj)|+
∏
i∈I1

| cos((·)Li)|
∑
i∈I2

∏
j∈I2
j 6=i

| sin((·)Lj)|.
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Let {L̃j}j≤N ⊂ R+ be such that L̃j = 2Lj when j ∈ I1 and L̃j = Lj when j ∈ I2. There exists C > 0
such that, for every x ∈ R, there holds

a(x) ≥ C min
(

min
i≤N

∏
j 6=i

|||
(
m̃i(x) +

1

2

) L̃j
Li
||| , min

i≤N

∏
j 6=i

|||mi(x)
L̃j
Li
|||
)
.

Proof. From [DZ06, relation (A.3)], for every x ∈ R, there follows

(50) 2d(x) ≤ | cos(πx)| ≤ πd(x).

As 2d
((
m̃i(x) + 1

2

)Lj
Li

)
≤
∣∣ cos

((
m̃i(x) + 1

2

)Lj
Li
π
)∣∣ and m̃i(x) + 1

2 = Li
π x− r

(
Li
π x
)

for x ∈ R and i, j ≤ N ,

2d
((
m̃i(x) +

1

2

)Lj
Li

)
≤ | cos(Ljx)|+

∣∣∣∣sin(πLjLi
∣∣∣r(Li

π
x
)∣∣∣)∣∣∣∣ .(51)

Now, | sin(π|r(·)|)| ≤ π ||| |r(·)| ||| ≤ π|r(·)| = πd(·) ≤ π
2 | cos(π(·))| thanks to [DZ06, relation (A.3)] and

(50). For every x ∈ R, it holds

(52)

∣∣∣∣sin(πLjLi
∣∣∣r(Li

π
x
)∣∣∣)∣∣∣∣ ≤ πLjLi

∣∣∣r(Li
π
x
)∣∣∣ ≤ πLj

2Li
| cos(Lix)|.

From (51) and (52), there exists C1 > 0 such that, for every i, j ≤ N ,

2d
((
m̃i(x) +

1

2

)Lj
Li

)
≤ | cos(Ljx)|+ πLj

2Li
| cos(Lix)|, ∀x ∈ R+,(53)

=⇒ C1

∏
j∈I1
j 6=i

d
((
m̃i(x) +

1

2

)Lj
Li

)
≤
∏
j∈I1
j 6=i

| cos(Ljx)|+ | cos(Lix)|.

From [DZ06, relation (A.3)], as done in (51) and (52), there exists C2 > 0 such that

2 |||
(
m̃i(x) +

1

2

)Lj
Li
||| ≤ | sin(Ljx)|+ πLj

2Li
| cos(Lix)|, ∀x ∈ R,(54)

=⇒ C2

∏
j∈I1
j 6=i

d
((
m̃i(x) +

1

2

)Lj
Li

) ∏
j∈I2
j 6=i

|||
(
m̃i(x) +

1

2

)Lj
Li
||| ≤

∏
j∈I2
j 6=i

| sin(Ljx)|
∏
j∈I1
j 6=i

| cos(Ljx)|+ | cos(Lix)|.

Now, d(x) = ||| 12 (2x − 1) ||| ≥ 1
2 ||| 2x − 1 ||| = 1

2 ||| 2x ||| for every x ∈ R and d
((
m̃i(x) + 1

2

)Lj
Li

)
≥

1
2 |||
(
m̃i(x) + 1

2

)
2Lj
Li
||| , which imply

C2

∏
j≤N
j 6=i

1

2
|||
(
m̃i(·) +

1

2

) L̃j
Li
||| ≤ a(·) + | cos(Li(·))|.(55)

Equivalently, from the proof of [DZ06, P roposition A.1], for every x ∈ R,

2 |||mi(x)
Lj
Li
||| ≤ | sin(Ljx)|+ πLj

2Li
| sin(Lix)|, 2d

(
mi(x)

Lj
Li

)
≤ | cos(Ljx)|+ πLj

2Li
| sin(Lix)|,

(56)

=⇒ C2

∏
j≤N
j 6=i

1

2
|||mi(·) L̃j

Li
||| ≤ a(·) + | sin(Li(·))|.(57)

The claim follows as [DZ06, P roposition A.1]. Indeed, if (λk)k∈N∗ ⊂ R+ is so that a(λk)
k→∞−−−−→ 0, then

there exist some i0 ≤ N such that | sin(λkLi0)| k→∞−−−−→ 0 or | cos(λkLi0)| k→∞−−−−→ 0. By considering (55)
and (57) with i = i0, we have

z(λk) := min
(

min
i≤N

∏
j 6=i

|||
(
m̃i(λk) +

1

2

) L̃j
Li
||| ,min

i≤N

∏
j 6=i

|||mi(λk)
L̃j
Li
|||
)

k−→∞−−−−→ 0.

The lemma is proved since z(λk) converges to 0 at least as fast as a(λk) thanks (53), (54) and (56).
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Proposition B.2. Let {Lj}j≤N ⊂ R, I1 ⊆ {1, ..., N} and I2 := {1, ..., N} \ I1. If {Lj}j≤N ∈ AL(N),
then, for every ε > 0, there exists Cε > 0 such that, for every x > max{π/2Lj : j ≤ N}, we have∏

j∈I2

| sin(xLj)|
∑
j∈I1

∏
k∈I1
k 6=j

| cos(xLk)|+
∏
j∈I1

| cos(xLj)|
∑
j∈I2

∏
k∈I2
k 6=j

| sin(xLk)| ≥ Cε
x1+ε

.

Proof. The claim is due to Lemma B.1 and to the Schmidt’s Theorem [DZ06, Theorem A.8], which
implies that, for every ε > 0 and i ≤ N , there exist C1(i), C2(i), C3(i) > 0 such that, for every x ∈ R,

∏
j≤N
j 6=i

|||
(
m̃i(x) +

1

2

) L̃j
Li
||| ≥ C1(i)

(2m̃i(x) + 1)1+ε
≥ C1(i)(

2Li
π x+ 1

)1+ε ≥ C2(i)

x1+ε(58)

and
∏
j≤N
j 6=i

|||mi(x)
L̃j
Li
||| ≥ C3(i)x−1−ε for every x > π

2 max{1/Lj : j ≤ N}. The statement follows

with Cε := min
(

mini≤N C2(i),mini≤N C3(i)
)
.

Corollary B.3. Let {Lk}k≤N ∈ AL(N) with N ∈ N∗. Let {ωn}n∈N∗ be the unbounded sequence of
positive solutions of the equation

(59)
∑
l≤N

sin(xLl)
∏
m6=l

cos(xLm) = 0, x ∈ R.

For every ε > 0, there exists Cε > 0 so that | cos(ωnLl)| ≥ Cε
ω1+ε
n

for every l ≤ N and n ∈ N.

Proof. If there exists {ωnk}k∈N∗ , subsequence of {ωn}n∈N∗ , such that | cos(Ljωnk)| k→∞−−−−→ 0 for some

j ≤ N , then there exists i ≤ N such that i 6= j and | cos(Liωnk)| k→∞−−−−→ 0 thanks to (59). From (53), we

have
∏
j 6=i d

((
m̃i(ωnk) + 1

2

)
Lj
Li

)
k→∞−−−−→ 0 and, as in the proof of Lemma B.1, there exists C2 > 0 so that

C2| cos(Liωn)| ≥
∏
j 6=i

d
((
m̃i(ωn) +

1

2

)Lj
Li

)
=
∏
j 6=i

||| 1
2

((
m̃i(ωn) +

1

2

)2Lj
Li
− 1
)
||| .

The last identity and the techniques leading to the equation (58) achieve the claim.
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