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ON THE STABILITY OF 2D DIPOLAR BOSE-EINSTEIN

CONDENSATES

ARNAUD EYCHENNE AND NICOLAS ROUGERIE

Abstract. We study the existence of energy minimizers for a Bose-Einstein condensate
with dipole-dipole interactions, tightly confined to a plane. The problem is critical in
that the kinetic energy and the (partially attractive) interaction energy behave the same
under mass-preserving scalings of the wave-function. We obtain a sharp criterion for
the existence of ground states, involving the optimal constant of a certain generalized
Gagliardo-Nirenberg inequality.
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1. Introduction

Bose-Einstein condensates (BEC) are macroscopic matter waves consisting of a large
number of particles occupying the same quantum state [11, 20]. Since the first realization
of BECs with large magnetic dipole moment [16, 35], dipolar BECs have become a popular
subject of investigation in the cold atoms physics community, see [22] for review.

In typical experiments, all the dipoles are polarized along a fixed, common, direction set
by a strong external field. A 3D condensate with dipole-dipole interactions is then modeled
via the following non-local and non-linear Schrödinger equation:

i∂tψ = −1

2
∆ψ + V ψ + β|ψ|2ψ + λ(Udip ⋆ |ψ|2)ψ (1.1)

where ψ : R3 7→ C is the common wave-function of the Bose-condensed particles, V : R3 7→
R+ is a confining potential, β, λ ∈ R are the strength of van der Waals (modeled as zero-
range, contact) interactions and dipole-dipole interactions, respectively. The dipole-dipole
interaction potential is

Udip(x) =
3

4π

1− 3(x · n)2/|x|2
|x|3 =

3

4π

1− 3 cos2(θx)

|x|3 (1.2)

where the unit vector n denotes the fixed polarization direction and θx the angle between n
and x. Note the long-range and anisotropic nature of this potential, which contrasts with
the more standard contact interactions.
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2 A. EYCHENNE AND N. ROUGERIE

The above equation conserves the mass, that we shall henceforth fix to unity:
∫

R3

|ψ|2 = 1, (1.3)

and the energy

E3D[ψ] :=
∫

R3

1

2
|∇ψ|2 + V |ψ|2 + β

2
|ψ|4 + λ

2

(
Udip ⋆ |ψ|2

)
|ψ|2. (1.4)

A central question is to investigate whether or not the energy is bounded below and has
minimizers (ground states) under the mass constraint (1.3). This we refer to as the stability
question.

It has been proved in [4, 9] (see also [1, 10, 7, 6, 29] for other mathematical studies of 3D
dipolar BECs, in particular for the existence of non energy minimizing stationary states)
that stability holds if and only if

β > 0 and − β

2
6 λ 6 β.

In particular, a positive contact interaction is always needed to stabilize the gas, and in
case of stability, the total interaction energy must always be non-negative

β

∫

R3

|ψ|4 + λ

∫

R3

(
Udip ⋆ |ψ|2

)
|ψ|2 > 0 for all ψ

so that the total interaction is always globally repulsive. In the stable regime, the 3D dipolar
Gross-Pitaevskii energy has recently been rigorously derived from many-body quantum
mechanics in [36].

Quasi-2D dipolar BECs should be more stable than 3D ones, as put forward first in [13].
Dimensional reduction indeed makes more room for studying attractive interactions, which
is particularly interesting in view of the experimental possibilities to tune the trapping
potential V for tight confinement along one or two directions. 1D condensates, with or
without dipole-dipole interactions, are always stable, because the kinetic energy then pre-
vents the collapse that might be triggered by attractive interactions. The most interesting
case is the borderline 2D one, where kinetic and interaction energies have the same order of
magnitude in case of collapse. Our aim in this paper is to investigate the stability question
for 2D dipolar BECs, with particular emphasis on the attractive regime. We shall extend
the results of [3] by finding a sharp criterion for stability.

The model for 2D dipolar BECs we use is that formally derived from 3D in [8, 13, 33]
(see also [34, 31, 5, 10] for related results). We find that the stability criterion is given
in terms of a certain large-frequency limit of the 2D dipolar interaction. In this limit, the
interaction energy reduces to one of the form

− a

∫

R2

|ψ|4 − b

∫

R2

(U2D ⋆ |ψ|2)|ψ|2 (1.5)

where a and b are suitable effective parameters and U2D is a close analogue of the 3D
dipole-dipole interaction (1.2):

U2D(x) =
1− 2 cos2(θx)

2π|x|2 (1.6)
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with θx the angle in polar coordinates. Let then C(a, b) be the optimal constant in the
following variant of the Gagliardo-Nirenberg inequality1:

a

∫

R2

|ψ|4 + b

∫

R2

(U2D ⋆ |ψ|2)|ψ|2 6 C

∫

R2

|∇ψ|2
∫

R2

|ψ|2. (1.7)

The sharp stability criterion we find is

C(a, b) < 1,

which should be compared with the well-known stability criterion for 2D BECs without
dipole-dipole interactions [18, 30, 37, 38], involving the usual (b = 0) Gagliardo-Nirenberg
inequality and its optimizers [14]. The above stability criterion is not very explicit, but
in the particular case of dipoles polarized perpendicular to the plane of confinement, it
turns out that b = 0, so that a simpler expression is obtained. We also investigate the
borderline situation C(a, b) = 1. It differs markedly from the purely non-dipolar situation
thoroughly investigated in [18] and following papers [17, 19, 25] (see also [2, 28, 15, 32] for
related topics), for then the next order of the original, physical, 2D interaction matters in
the high-frequency limit.

Acknowledgement. This project has received funding from the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and innovation programme
(grant agreement CORFRONMAT No 758620).

2. Main Results

To obtain a sensible 2D model of a dipolar BEC, the procedure followed in [8, 33] is to
start from the 3D model (1.1), (1.4) and insert there a potential V strongly confining along
the x3 direction. The most physically relevant case is to consider a harmonic perpendicular
confinement:

V (x1, x2, x3) = Ṽ (x1, x2) +
x23
2ε4

with ε > 0 a small parameter. It is then natural to use an ansatz of the form

ψ(x1, x2, x3) = u(x1, x2)
1

ε1/2π1/4
e−

x2
3

2ε2 (2.1)

for the wave-function of the 3D condensate, i.e. to assume that the motion in the x3-
direction is confined to the ground state of the harmonic oscillator. The question is then:
what is the effective 2D interaction felt by u ? The computation is facilitated by noting
that the 3D interaction satisfies

Udip = −δ0 −
3

4π
∂2nn

(
1

| . |

)

in the sense of distributions. The conclusion is that inserting the ansatz (2.1) in the en-
ergy (1.4) leads to the effective functional

E2D[u] =
∫

R2

1

2
|∇u|2 + Ṽ |u|2 + β − λ+ 3n23λ

2
√
2πε

|u|4 − 3λ

4
|u|2Φ (2.2)

1It might be that C(a, b) = 0, see below.
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where

Φ =
(
∂2n⊥

− n23∆
) (
U2D
ε ⋆ |u|2

)

U2D
ε (x1, x2) =

1

2
√
2π3/2

∫

R

e−s2/2

√
x21 + x22 + ε2s2

ds. (2.3)

In the above we have denoted n = (n⊥, n3) with n⊥ ∈ R2, n3 ∈ R. Recall that the
polarization direction n is a unit vector so that |n⊥|2 + n23 = 1. Note that the ε → 0
limit is not taken in the above, it is just assumed that ε is small enough for the ansatz (2.1)
to make sense. The ε→ 0 limit actually leads to another model whose stability properties
are worked out in [3, Section 3]. This case is less interesting than the finite ε one, for the
ε→ 0 limit leads to a stability criterion resembling the 3D one, and in particular demands
a globally repulsive interaction.

From now on we focus on the minimization of the above 2D energy. We clean the
notation a little bit by setting ε = (2π)−1/2 and rotating the (x1, x2) frame in order to have
n⊥ = (1−n23, 0). This only changes the trapping potential (unless it is radial) and leads to
the general problem of minimizing

E2D[u] =
∫

R2

1

2
|∇u|2 + V |u|2 + β − λ+ 3n23λ

2
|u|4 − 3λ

4
|u|2Φ (2.4)

under a unit mass constraint, with

Φ =
(
(1− 2n3)

3∂2x1
− n23∂

2
x2

) (
K ⋆ |u|2

)

K(x1, x2) =
1

2
√
2π3/2

∫

R

e−s2/2

√
x21 + x22 + (2π)−1s2

ds (2.5)

and V a (say smooth, for simplicity) trapping potential

V (x) →
|x|→∞

∞.

Concerning the minimization problem

E2D := inf

{
E2D[u]

∣∣
∫

R2

|u|2 = 1

}
, (2.6)

our main result is as follows:

Theorem 2.1 (Stability/instability of the 2D dipolar gas).
(1, generalized Gagliardo-Nirenberg inequality) Let a, b be a pair of real numbers such that

a+
b

2
> 0 or a− b

2
> 0 (2.7)

and U2D be defined as in (1.6). There exists a constant C(a, b) > 0 such that

a

∫

R2

|u|4 + b

∫

R2

(
U2D ⋆ |u|2

)
|u|2 6 C(a, b)

∫

R2

|∇u|2
∫

R2

|u|2 (2.8)

for all u : R2 7→ C, and a function ua,b such that

a

∫

R2

|ua,b|4 + b

∫

R2

(
U2D ⋆ |ua,b|2

)
|ua,b|2 = C(a, b)

∫

R2

|∇ua,b|2
∫

R2

|ua,b|2. (2.9)

(2, stability of 2D dipolar BECs) In terms of the parameters of (2.4), set

a = λ− β +
3λ

2
(n23 − 1), b = 3λ(n23 − 1). (2.10)
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Then, if

a+
b

2
6 0 and a− b

2
6 0 (2.11)

or if (2.7) holds and the above constant C(a, b) < 1 we have stability, E2D > −∞ and there
exists a minimizer for Problem (2.6).

(3, instability of 2D dipolar BECs) Again with the choice (2.10), if (2.7) holds and C(a, b) >
1 we have instability, E2D = −∞.

A few comments:

1. The above shows that, unlike in 3D, BECs with genuinely attractive dipolar interactions
can be stable in 2D.

2. Note that the convolution appearing in the left side of (2.8) (just as that appearing
in (1.4)) is a singular integral, for U2D is not locally integrable. However, just as Udip, U

2D

averages to 0 on spheres centered at the origin, so that the convolution is well defined as a
principal value [12, Chapter 4].

3. The non-local interaction term in (2.4) can be put in a more familiar form

F int[|u|2] :=
∫

R2

|u|2Φ =

∫

R2

(
K̃ ⋆ |u|2

)
|u|2 (2.12)

with an explicit interaction kernel K̃, but the expression, involving Bessel functions, is not
particularly illuminating, see [8, Appendix C]. Much more useful to us will be the expression
in Fourier variables following from [3, Lemma 2.2] and Plancherel’s formula:

F int[|u|2] = − 1

π

∫

R2

∫

R

(1− 2n23)ξ
2
1 − n23ξ

2
2

|ξ|2 + s2
|ρ̂(ξ)|2e− s2

4π dsdξ (2.13)

with the Fourier transform2

f̂(ξ) =
1

2π

∫

R2

f(η)e−iξ·ηdη

and ρ = |u|2.
4. The main insight in the proof is to realize that, should instability occur, it can only
be due to a minimizing sequence concentrating around a point. But then, only the small-
length/high-frequency part of (2.13) contributes to the leading order of the energy, which
leads to an effective non-local interaction energy

∫

R2

|u|2Φ ≃ −2

∫

R2

(1− 2n23)ξ
2
1 − n23ξ

2
2

|ξ|2 |ρ̂(ξ)|2dξ

obtained from (2.13) by ignoring the s2 term in the denominator of the integrand and
performing the integration in s. We relate the above to (2.8) in Lemma 3.1 below.

5. The above theorem completes the partial results obtained in [3, Section 2] by giving
an optimal stability criterion. One might prefer more explicit but less optimal criteria. In
this direction, note that for dipoles polarized along the perpendicular axis, i.e. n23 = 1, the
generalized Gagliardo-Nirenberg boils down to the usual one (set a = 1, b = 0 in (2.8)):

∫

R2

|u|4 6 C

∫

R2

|∇u|2
∫

R2

|u|2. (2.14)

2Remark that our convention differs from that of [3]. We prefer the Fourier transform to be an isometry.
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Let CGN be the optimal constant [37, 14] for the above. The stability criterion is that
minimizers exist if β − λ > C−1

GN, and the energy is −∞ if β − λ < C−1
GN.

Note that since 0 6 n23 6 1, elementary inequalities already used in [3] allow to deduce
more explicit stability/instability results for the general case from the perpendicular dipoles
case. These are not optimal however, and for brevity we leave them to the reader.

Theorem 2.1 leaves out the equality case where C(a, b) = 1. Refining our methods we
can however discuss this as well:

Theorem 2.2 (Borderline cases).
With the notation of Theorem 2.1, assume that (2.7) holds and C(a, b) = 1. We have:
(1) If λ(1− 3n23) < 0, then E2D > −∞ and minimizers exists.

(2) If λ(1 − 3n23) = 0, then E2D > −∞ but there exists sequences (un)n∈N of finite energy
that collapse to a point, |un|2 ⇀ δx as measures with δx the Dirac mass at some point
x ∈ R2.

(3) If λ(1− 3n23) > 0, then E2D = −∞.

Some comments:

1. This is based on analyzing the next order of the interaction (beyond (2.8)) in the high
frequency limit. This leads to a singular term that can either prevent collapse if it is overall
repulsive (case (1)) or on the contrary enhance it (case (3)). For the special angle n23 = 1/3
(case (2)) the second order interaction turns out not to diverge in the high-frequency limit
because of an averaging over angles that kills the singularity in Fourier space. We have less
information in this case. Note that some sequences having finite energy but badly failing to
be compact does not rule out the existence of minimizers by itself. It does rule out standard
approaches to the problem however.

2. In [18] (case λ = 0), the behavior of the minimizers is studied in details when one
approaches the borderline case from the stability side. It is not obvious how to do the same
here because of the diverging next order term in the high frequency limit.

The rest of the paper is devoted to the proofs of our main theorems. We first discuss the
generalized Gagliardo-Nirenberg inequality in Section 3, proving Item 1 of Theorem 2.1.
Then we deduce Items 2 and 3 in Section 4. A refinement of the method, discussed in
Section 5, leads to the proof of Theorem 2.2.

3. The high frequency model

We start by properly defining the high-frequency interaction entering the left-hand side
of (2.8):

Lemma 3.1 (Interaction energy of collapsing densities).
Recall that

U2D(x) =
1− 2 cos2(θx)

2π|x|2 . (3.1)

The linear map

ρ 7→ U2D ⋆ ρ

is bounded from Lp(R2) to Lp(R2) for any 1 < p <∞. Moreover we have the distributional
identity

U2D = ∂2x1
(log | . |) − πδ0 (3.2)
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and the Fourier transform of (3.1) is given by

Û2D(ξ) =
ξ21
|ξ|2 − 1

2
. (3.3)

Proof. The first part is a direct application of [12, Theorem 4.12], the convolution being
well-defined as a principal value because U2D averages to 0 on spheres of center 0. The
distributional identity (3.2) follows from a straightforward calculation, similar to the stan-
dard proof that x 7→ −(2π)−1 log |x| is the Green function of the Laplacian in 2D, see
e.g. [27, Theorem 6.20]. The 3D analogue of this computation is in [4, Appendix A]. The
expression of the Fourier transform follows directly from (1.6): since −i∂xj is equivalent to
multiplication by ξj on the Fourier side,

−̂ log | . |(ξ) = 2π

|ξ|2 (3.4)

follows from the distributional identity

−∆

(
− 1

2π
log | . |

)
= δ0.

Note that strictly speaking (3.4) only makes sense when tested against functions with sup-
port outside of the origin (in frequency space), but a mild regularization argument allows to
deduce (3.3) nevertheless since the right-hand side is bounded and is tested against bounded
functions (Fourier transforms of L1 functions). �

An immediate consequence of the above and of Plancherel’s formula is that we have three
equivalent formulations for the high-frequency interaction energy, and continuity thereof.

Lemma 3.2 (The high-frequency interaction energy).
For ρ ∈ L1 ∩ L2, let

Uρ := − 1

2π
log | . |

be the Coulomb potential generated by ρ, solution of

−∆Uρ = ρ.

We have

Fa,b[ρ] := a

∫

R2

ρ2 + b

∫

R2

(
U2D ⋆ ρ

)
ρ

=

(
a− b

2

)∫

R2

ρ2 − b

∫

R2

(
∂2x1

Uρ

)
ρ

=

(
a− b

2

)∫

R2

ρ2 + b

∫

R2

ξ21
|ξ|2 |ρ̂(ξ)|

2dξ (3.5)

=

∫

R2

(a+ b/2)ξ21 + (a− b/2)ξ22
|ξ|2 |ρ̂(ξ)|2. (3.6)

Moreover ρ 7→ Fa,b[ρ] is continuous in the strong L2 topology.

Proof. The continuity follows most easily from the formulation in Fourier variables, the rest
is self-evident from the previous lemma. �

From the last expression in (3.5), it is clear that when (2.7) holds, there exists u with
Fa,b[ρ] > 0 (simply concentrate a test function along frequencies close to ξ1 = 0 or ξ2 = 0).
Then Inequality (2.8) makes sense and we can proceed to the
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Proof of Theorem 2.1, Item (1). Clearly, using Plancherel’s formula and (2.14) we have

∣∣Fa,b[|u|2]
∣∣ 6 C

∫

R2

|∇u|2
∫

R2

|u|2

so that the infimum

C(a, b)−1 := inf

{∫
R2 |∇u|2

∫
R2 |u|2

Fa,b[|u|2]
∣∣Fa,b[|u|2] > 0

}

exists. We now want to show it is attained.
Consider a minimizing sequence (un) for the above infimum. Denote ρn = |un|2. By

scaling, we may assume that
∫

R2

|∇un|2 =
∫

R2

|un|2 = 1. (3.7)

It follows from Plancherel and the Sobolev embedding that, for j = 1, 2,
∫

R2

ξ2j
|ξ|2 |ρ̂n(ξ)|

2 6

∫

R2

|ρ̂n(ξ)|2 6
∫

R2

|un|4

are bounded uniformly. We use the concentration compactness-principle in the form dis-
cussed e.g. in [23, Appendix] and [24, Chapter 3] (see also [26, Section 3.4], [21, Section 4.2]
and references therein). We may assume that vanishing (in the sense of the concentration-
compactness principle) does not occur, for otherwise un → 0 strongly in L4 and thus
Fa,b[|un|2] → 0. This would lead to the contradiction C(a, b) = 0.

Thus, modulo extraction and translation (we do not relabel, nor indicate the translation,
for our variational problem is translation-invariant), we may assume that

un = vn + rn + o(1) (3.8)

where vn → v 6= 0 weakly in H1 and strongly in Lp, 1 < p < ∞, the distance between the
disjoint supports of vn and rn goes to infinity when n → ∞, and the o(1) is in H1 norm.
Then, clearly,

∫

R2

|∇un|2 =
∫

R2

|∇vn|2 +
∫

R2

|∇rn|2 + o(1)

∫

R2

|un|2 =
∫

R2

|vn|2 +
∫

R2

|rn|2 + o(1)

∫

R2

|un|4 =
∫

R2

|vn|4 +
∫

R2

|rn|4 + o(1) (3.9)

and since U2D decays uniformly at large distances
∫

R2

(
U2D ⋆ |un|2

)
|un|2 =

∫

R2

(
U2D ⋆ |vn|2

)
|vn|2 +

∫

R2

(
U2D ⋆ |rn|2

)
|rn|2 + o(1),

using that the distance between the supports of vn and rn diverges.
Then we get easily

1 =

∫

R2

|∇un|2
∫

R2

|un|2

>

∫

R2

|∇vn|2
∫

R2

|vn|2 +
∫

R2

|∇rn|2
∫

R2

|rn|2 + o(1)

>

∫

R2

|∇vn|2
∫

R2

|vn|2 + C(a, b)−1Fa,b[|rn|2] + o(1). (3.10)
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On the other hand we obtain

Fa,b[|vn|2] +C(a, b)

∫

R2

|∇rn|2
∫

R2

|rn|2 + o(1) > Fa,b[|vn|2] + Fa,b[|rn|2] + o(1)

> Fa,b[|un|2] = C(a, b) + o(1). (3.11)

Combining (3.10) with C(a, b)−1 times (3.11) we deduce

C(a, b)−1Fa,b[|vn|2] >
∫

R2

|∇vn|2
∫

R2

|vn|2 + o(1). (3.12)

Passing to the liminf in the right-hand side and using the strong Lp convergence in the
left-hand side we conclude that

C(a, b)−1Fa,b[|v|2] >
∫

R2

|∇v|2
∫

R2

|v|2

and thus v is the sought-after optimizer. �

Remark 3.3 (Strong convergence of minimizing sequences).
In (3.10) we have dropped the positive cross-terms

∫

R2

|∇vn|2
∫

R2

|rn|2 +
∫

R2

|∇rn|2
∫

R2

|vn|2

from the lower bound. Retaining them we have the additional information that they must
converge to 0 in the limit. Hence, recalling (3.9) and by the strong Lp convergence of vn,

∫
|v|2 = 1

. From (3.12) and the strong Lp convergence of vn we then obtain
∫

R2

|∇v|2 > C(a, b)−1Fa,b[|v|2] = C(a, b)−1Fa,b[|vn|2] + o(1) >

∫

R2

|∇vn|2 + o(1)

and we deduce that vn → v strongly in H1. This convergence holds (modulo translation
and extraction) for any minimizing sequence having

∫
R2 |∇vn|2 =

∫
R2 |vn|2 = 1. �

4. Proof of the main stability criterion

Let us start by relating the true, physical, interaction (2.5) to its high frequency limit.
Since the stability/instability criterion is related to whether or not minimizing sequences
collapse to a point we need the following:

Lemma 4.1 (High frequency limit).
Let (νn) be a bounded sequence in L1∩L2, (Ln) a sequence of positive numbers with Ln → 0
and

ρn(x) := L−2
n νn

(
x

Ln

)
.

We have, for the physical 2D interaction (2.12),

F int[ρn] =
2

L2
n

∫

R2

n23ξ
2
2 − (1− 2n23)ξ

2
1

|ξ|2 |ν̂n(ξ)|2dξ +O(L−1
n ) (4.1)

in the limit n→ ∞.
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Proof. We use the expression in Fourier space (2.13), which gives, after scaling,

F int[ρn] =
1

πL2
n

∫

R

∫

R2

n23ξ
2
2 − (1− 2n23)ξ

2
1

|ξ|2 + s2L2
n

|ν̂n(ξ)|2e−s2/4πdξds. (4.2)

We split the ξ integral according to whether |ξ| 6 ε or the other way around. The former
contribution is O(ε2L−2

n ) since (νn) is bounded in L1 and thus (ν̂n) is bounded in L∞. For
the latter contribution we use that∣∣∣∣

1

|ξ|2 + s2L2
n

− 1

|ξ|2
∣∣∣∣ 6

s2L2
n

|ξ|4 .

This gives

∫

R

∫

B(0,ε)c

n23ξ
2
2 − (1− 2n23)ξ

2
1

|ξ|2 + s2L2
n

|ν̂n(ξ)|2e−s2/4πdξds

= 2π

∫

B(0,ε)c

n23ξ
2
2 − (1− 2n23)ξ

2
1

|ξ|2 |ν̂n(ξ)|2dξ +O

(
L2
n

∫

B(0,ε)c

1

|ξ|2 |ν̂n(ξ)|
2dξ

)

= 2π

∫

R2

n23ξ
2
2 − (1− 2n23)ξ

2
1

|ξ|2 |ν̂n(ξ)|2dξ +O(ε2) +O(L2
nε

−2)

where we bound |ξ|−2 by its sup over B(0, ε)c, use that (νn), hence (ν̂n) is bounded in L2,
and get rid of the contribution of B(0, ε) as precedently. There remains to optimize the

estimate by picking ε = L
1/2
n . �

Now we can complete the

Proof of Theorem 2.1. We start with the existence result. Let (un) be a minimizing se-
quence. If it is bounded in H1(R2), we extract a weakly convergent subsequence in H1

and may conclude immediately: using [3, Lemma 2.2] (analogue of Lemma 3.2, but for the
original interaction (2.12)), the interactions terms are bounded below uniformly. We deduce
that the potential term

∫
R2 V |un|2 is also uniformly bounded. Since V grows at infinity, we

may then use a compact embedding yielding strong convergence in Lp, 2 < p < ∞ along
a subsequence. The interaction terms then converge by [3, Lemma 2.2] again, and we may
pass to the liminf in the kinetic energy using Fatou’s lemma. All in all, for the weak limit
v we get

E2D > E2D[v]
and by the strong L2 convergence, v is L2-normalized. Thus we obtain an optimizer for
Problem (2.6).

Let us then work under the assumptions of Item (2) and prove by contradiction that any
minimizing sequence must be bounded in H1(R2). Let (un) be such a minimizing sequence
and

Ln =

(∫

R2

|∇un|2
)−1/2

.

Assume that there exists a subsequence (not relabeled) along which Ln → 0. Then define

vn(x) := Lnun (xLn) .

By definition we have ∫

R2

|∇vn|2 =
∫

R2

|vn|2 = 1
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and ∫

R2

|un|4 = L−2
n

∫

R2

|vn|4.

Moreover ρn = |un|2 satisfies the assumptions of Lemma 4.1 with νn = |vn|2. Therefore

E2D[un] >
1

2L2
n

(∫

R2

|∇vn|2 − Fa,b[|vn|2]
)
+O(L−1

n )

with the parameters a, b chosen as in (2.10). In case (2.11), it follows from Lemma 3.2 that
Fa,b[|vn|2] 6 0. In the other case we get that

Fa,b[|vn|2] 6 C(a, b)

∫

R2

|∇vn|2
∫

R2

|vn|2 <
∫

R2

|∇vn|2
∫

R2

|vn|2.

In both cases there is a constant c > 0 such that

E2D[un] > cL−2
n

∫

R2

|∇vn|2 +O(L−1
n )

which is a contradiction if Ln → 0 because E2D[un] is bounded above and
∫
R2 |∇vn|2 = 1.

We deduce that the sequence (un) was in fact bounded in H1 in the first place, and we may
conclude as discussed at the beginning of the proof.

For the non-existence result, it suffices to construct a trial state whose energy tends to
−∞. Let again the parameters a, b be chosen according to (2.10) and ua,b be the optimizer
for Inequality (2.8), proven to exist in the preceding section. By scaling invariance we may
choose it to be L2-normalized. Define

uL := L−1ua,b

( x
L

)

for some sequence of lengths L→ 0. Clearly
∫

R2

V |uL|2 → V (0).

For the rest of the energy we get, using Lemma 4.1 again,

E2D[uL] = L−2

(∫

R2

|∇ua,b| − Fa,b[|ua,b|2]
)
+O(L−1) + V (0) + o(1)

= L−2 (1− C(a, b))

∫

R2

|∇ua,b|2 +O(L−1)

and this tends to −∞ when L→ 0 under the conditions of Item (3). �

5. Borderline cases

We start by refining Lemma 4.1, taking into account subleading corrections:

Lemma 5.1 (High frequency limit, refinement).
With the notation of Lemma 4.1, we have, for the physical 2D interaction (2.12),

F int[ρn] =
2

L2
n

∫

R2

n23ξ
2
2 − (1− 2n23)ξ

2
1

|ξ|2 |ν̂n(ξ)|2dξ

+ 4π

∫

B(0,Ln)c

(1− 2n23)ξ
2
1 − n23ξ

2
2

|ξ|4 |ν̂n(ξ)|2dξ +O(1) (5.1)

in the limit n→ ∞ (i.e. Ln → 0).
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Proof. Starting from (4.2), we again split the ξ integral according to whether |ξ| 6 ε or the
other way around. Again, the small frequency part contributes a O(ε2L−2

n ). For the high
frequency part we use that

∣∣∣∣
1

|ξ|2 + s2L2
n

− 1

|ξ|2 +
s2L2

n

|ξ|4
∣∣∣∣ 6

s4L4
n

|ξ|6 .

This gives
∫

R

∫

B(0,ε)c

n23ξ
2
2 − (1− 2n23)ξ

2
1

|ξ|2 + s2L2
n

|ν̂n(ξ)|2e−s2/4πdξds

= 2π

∫

R2

n23ξ
2
2 − (1− 2n23)ξ

2
1

|ξ|2 |ν̂n(ξ)|2dξ +O(ε2)

− 4π2L2
n

∫

B(0,ε)c

n23ξ
2
2 − (1− 2n23)ξ

2
1

|ξ|4 |ν̂n(ξ)|2dξ

+O

(
L4
n

∫

B(0,ε)c

1

|ξ|4 |ν̂n(ξ)|
2dξ

)
.

Using that (ν̂n) is uniformly bounded in L∞ (because (νn) is uniformly bounded in L1) we
conclude that the last term is a O(L4

nε
−2). Choosing ε = Ln optimizes the estimate and

yields the lemma. �

Proof of Theorem 2.2. We prove the statements in the order they appear in the Theorem,
but the main argument is anyway the same in all cases.

Proof of Item 1. As in the proof of Item (2) in Theorem 2.1, we mostly need prove that
minimizing sequences must be bounded in H1, and the existence result follows easily. Let
then (un) be a minimizing sequence and

Ln =

(∫

R2

|∇un|2
)−1/2

.

Assume that there exists a subsequence (not relabeled) along which Ln → 0. Then define

vn(x) := Lnun (xLn) . (5.2)

By definition we have ∫

R2

|∇vn|2 =
∫

R2

|vn|2 = 1.

We use Lemma 5.1 with ρn = |un|2 and νn = |vn|2:

E2D[un] > L−2
n

(∫

R2

|∇vn|2 − Fa,b[|vn|2]
)

− 3πλ

∫

B(0,Ln)c

(1− 2n23)ξ
2
1 − n23ξ

2
2

|ξ|4 |ν̂n(ξ)|2dξ +O(1)

> −3πλ

∫

B(0,Ln)c

(1− 2n23)ξ
2
1 − n23ξ

2
2

|ξ|4 |ν̂n(ξ)|2dξ +O(1) (5.3)

with the parameters a, b chosen as in (2.10) and using (2.8) with C(a, b) = 1. The term in
the last line is O(| logLn|) because (ν̂n) is uniformly bounded in L∞. Since the energy is
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bounded from above and Ln → 0 by assumption, multiplying the previous inequality by L2
n

gives that
∫

R2

|∇vn|2 − Fa,b[|vn|2] →
n→∞

0.

Hence vn is an optimizing sequence for (2.8). As per Remark 3.3, we may after extraction
and translation assume it converges strongly in H1. We do not relabel the extraction and
ignore the translation, for it affects only the potential term of the energy that we have
already dropped from the lower bound.

For shortness, we denote

f(ξ) =
(1− 2n23)ξ

2
1 − n23ξ

2
2

|ξ|4 .

Pick now Ln ≪ ℓn = Lα
n ≪ 1 with α a small positive number to be fixed later on. Clearly,

an :=

∫

Ln6|ξ|6ℓn

|ξ| |f(ξ)| dξ →
n→∞

0. (5.4)

On the other hand, since (νn) converges strongly in L1, it is a tight sequence, and modulo
extracting a subsequence, we may assume that (see e.g. [24, Lemma 3.8])

∫

|x|>a
−1/2
n

νn(x)dx →
n→∞

0. (5.5)

Then, we split the last term in (5.3) as follows:

∫

B(0,Ln)c

(1− 2n23)ξ
2
1 − n23ξ

2
2

|ξ|4 |ν̂n(ξ)|2dξ

=

∫

16|ξ|
f(ξ)|ν̂n(ξ)|2dxdydξ

+

∫

ℓn6|ξ|61

∫∫

R2×R2

νn(x)νn(y)e
iξ·(x−y)f(ξ)dxdydξ

+

∫

Ln6|ξ|6ℓn

∫∫

|x−y|6a
−1/2
n

νn(x)νn(y)e
iξ·(x−y)f(ξ)dxdydξ

+

∫

Ln6|ξ|6ℓn

∫∫

|x−y|>a
1/2
n

νn(x)νn(y)e
iξ·(x−y)f(ξ)dxdydξ

= I + II + III + IV. (5.6)

Term number I we just bound by a fixed constant, using that ν̂n is uniformly bounded in
L2. Since

∫
νn = 1 it is immediate to see that

|II| 6
∫

ℓn6|ξ|61
|f(ξ)|dξ 6 C| log ℓn| = Cα| logLn|.

By a similar bound, but using now (5.5), we get

|IV| 6 C| logLn|
∫∫

|x−y|>a
1/2
n

νn(x)νn(y)dxdy ≪ | logLn|.
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As for III, by a first order Taylor expansion of eiξ·(x−y),
∫

Ln6|ξ|6ℓn

∫∫

|x−y|6a
−1/2
n

νn(x)νn(y)e
iξ·(x−y)f(ξ)dxdydξ

=

∫

Ln6|ξ|6ℓn

∫∫

|x−y|6a
−1/2
n

νn(x)νn(y)f(ξ)dxdydξ

+O

(∫

Ln6|ξ|6ℓn

∫∫

|x−y|6a
−1/2
n

νn(x)νn(y)|x− y||ξ||f(ξ)|dxdydξ
)
.

Recalling (5.4) the last term is bounded by a
1/2
n → 0 when n → ∞. For the first one we

perform explicitly the ξ integration:
∫

Ln6|ξ|6ℓn

f(ξ)dξ =

∫ ℓn

r=Ln

∫ 2π

θ=0

(1− 2n23) cos
2 θ − n23 sin

2 θ

r2
rdrdθ

= π(1− 3n23)(α− 1) log Ln.

Combining with (5.5) we get

III ∼ π(1− 3n23)(α− 1) log Ln.

All in all, since α can be chosen arbitrarily small, we may return to (5.3) and conclude that

E2D[un] > cλ(1− 3n23) logLn +O(1)

with c > 0 a constant. Then, if λ(1 − 3n23) < 0 this certainly implies that the energy must
be bounded below and rules out the possibility that Ln → 0. Minimizing sequences must
then be bounded in H1 and we may conclude the proof in a standard way.

Proof of Item 2. Assume now that λ(1 − 3n23) = 0. Then either λ = 0 and the result is
already included in [18] or 1− 3n23 = 0 and we return to (5.3). In this case

f(ξ) =
(1− 2n23)ξ

2
1 − n23ξ

2
2

|ξ|4

averages to 0 on spheres centered at the origin, so that term number III in (5.6) is uniformly
bounded, its limit Ln → 0 being well-defined as a principal value. Indeed, following [12,
Chapter 4], we have that the inverse Fourier transform of f(ξ) is

cδ0 + c′
x21
|x|2

for two constants c and c′ (this is similar to what we did in Lemma 3.1). Using Plancherel’s
formula, the last term in (5.3) converges when Ln → 0 to a term of the form

c

∫

R2

|vn|4 + c′
∫

R2×R2

|vn(x)|2
(x1 − y1)

2

|x− y|2 |vn(y)|2dxdy,

which is clearly bounded for vn bounded in H1. We conclude that the energy is bounded
below. However, taking a trial sequence (un) of the form (5.2) with Ln → and vn ≡ ua,b
independent of n, the above discussion shows that its energy stays is bounded despite it
collapsing to a point.

Proof of Item 3. Take again a trial sequence (un) of the form (5.2) with Ln → 0 and
vn ≡ ua,b. The energy E2D[un] is then given by the right-hand side of (5.3) again (the
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potential term is of lower order). The last term can be analyzed exactly as previously, and
we obtain that it is bounded above by

cλ(1− 3n23) logLn +O(1).

With λ(1− 3n23) > 0 this goes to −∞ as n→ ∞, and this concludes the proof. �
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[2] W. Aschbacher, J. Fröhlich, G. Graf, K. Schnee, and M. Troyer, Symmetry breaking regime

in the nonlinear Hartree equation, J. Math. Phys., 43 (2002), pp. 3879–3891.
[3] W. Bao, N. ben Abdallah, and Y. Cai, Gross-Pitaevskii-Poisson equations for dipolar Bose-Einstein

condensates with anisotropic confinement, SIAM J. Math. Anal., 44 (2012), pp. 1713–1741.
[4] W. Bao, Y. Cai, and H. Wang, Efficient numerical methods for computing ground states and dynamics

of dipolar Bose-Einstein condensates, J. Computational Physics, 229 (2010), pp. 7874–7892.
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