Editing on P2P S Networks

P. Urso P Molli Weiss

Keywords:

to maintain consistency of different copies in the face of concurrent modifications? How to evaluate the design of collaborative systems and approaches? How to secure collaboration data?

• n copies of an object hosted at n sites

• An object is modified by applying operations

• Each operation is

• generated at a site (local execution), and applied immediately on the local copy

• broadcasted to other sites • integrated at those sites (remote execution)

• System is correct if when it is idle all copies are identical (SEC)

• General architecture with two main components:

• An integration algorithm (diffusion, integration)

• A set of transformation functions (conflict resolution)

• Running example for textual document = sequence of characters • Transforms non commuting operations to make them commute

• Genericity

• Time complexity Conflict-free Replicated Data Types (CRDT) [START_REF] Shapiro | Conflict-free Replicated Data Types[END_REF] • Design operations to be commutative by construction • Merge operator:

• Commutative: x • y = y • x • Associative: (x • y) • z = x • (y • z) • Idempotent : x • x = x
• A semi-lattice is a Partial order ≤ set S with a least upper bound (LUB), denoted ⊔ Conflict-free Replicated Data Types (CRDT) CvRDT vs. CmRDT

• m = x ⊔ y is a LUB of { x, y } under ≤ if and only if ∀ mʹ′, x ≤ mʹ′ ∧ y ≤ mʹ′ ⇒ x ≤ m ∧ y ≤ m ∧ m ≤ mʹ′ • It follows that ⊔ is commutative,
• Both approaches are equivalent • Register

• Last-Writer Wins • Multi-Value • Set • Grow-Only • 2-Phase • Observed-Remove • Observed-Update-Remove • Map • Counter • Graph • Directed • Monotonic DAG • Edit graph
• Sequence • Document = linear sequence of elements

• Each element has a unique identifier • Identifier constant for the lifetime of the document • Dense total order of identifiers consistent with element order:

• ∀ id x , id y : id x < id y ⇒ ∃ id z : id x < id z < id y

• Different approaches for generating identifiers:

• TreeDoc, Logoot, LogootSplit, …
Conflict-free Replicated Data Types (CRDT) Large-scale trustworthy distributed collaborative systems

Logoot [WUM09] <1,2,1> c <1,2,2> o <2,1,2> n <3,1,3> c <3,1,3><8,4,5> u <3,2,5> r
• New uses and new practices due to large scale adoption

• New challenges

 § Trade-off between consistency and availability • Optimistic replication : allows replicas to diverge § Strong Eventual Consistency • Eventual delivery: An update executed at some correct replica eventually executes at all correct replicas • Strong convergence: Correct replicas that have executed the same updates have equivalent states • No consensus in background, no need to rollback § Intention preservation • « Effect of each operation should be observed on all copies »

••

 Average: O(H c) H: #ops • Worst case: O(H 2) c: avg. #conc. ops • Difficult to write correct transformation functions • State vectors used for detecting concurrency ⇒ scalability limitations Not very suitable for large scale peer-to-peer collaboration

 associative and idempotent 26 Conflict-free Replicated Data Types (CRDT) State-based Replication Conflict-free Replicated Data Types (CRDT) Convergent Replicated Data Type (CvRDT) = {3, 5} {5} U {7} = {5, 7} {3, 5} U {5, 7} = {3, 5, 7} {5, 7} U {3, 5} = {3, 5, 7} {5} U {3, 5} = {3, 5} {3, 5} U {5, 7} = {3, 5, 7}Conflict-free Replicated Data Types (CRDT) Operation-based Replication• An update split into (t,u): t is a side-effect-free prepare-update method and u is an effect-update method• Algorithm• Updates delivered to all replicas • Causally-ordered broadcast, every message delivered to every node exactly once w.r.t. happen-before order• Commutativity holds for concurrent updates 28

 High performance, sharded, transactional, causal Aims to scale to 100s of DCs • Very modular • Partial replication • Small but safe metadata (vector clock) In DC: strong consistency, physical clocks (Clock-SI) Industrial apps: Virtual Wallet, SocialApp, configuration management, FMK Conflict-free Replicated Data Types (CRDT) (Text) Sequence [PMSL09] [WUM09]

• Suitable for large-scale collaboration 33 •••

 33 1><7,8,2><12,3,5> t <12,3,1><7,8,2><13,3,6> r <12,3,1><7,8,2><14,3,7> l ins(<3,2,5><13,1,7>, r) ins(<12,3,1><7,8,2><13,3,6><7,2,9>, o) • Time complexity Average: O(k log(n)) Worst case: O(H*log(H)) H: #ops n: doc. size (non deleted chars.) k: avg. size of Logoot identifier• No need for concurrency detection• Identifiers storage cost• New design for each data type Logoot identifiers:<p 1 ,s 1 ,h 1 ><p 2 ,s 2 ,h 2 > ⋅⋅⋅ <p k ,s k ,h k > p i integer s i site identifier h i logical clock at site s iConflict-free Replicated Data Types (CRDT) Insert r between "concur" and "ency contrl"Insert o between "ency contr" and "l" vs. operation-based CRDT• CRDT: more formalised approach• OT: more generic and guided• Generic concurrency control algorithm• Operation transformations specific to application domain• CRDT: different solutions for concurrency handling for different data types • CRDT: Metadata overhead Experiment design • 20 groups of 4 students • Perform several collaborative editing tasks • A proofreading task • A sorting task • A note taking task • Use the provided collaborative editor (Etherpad) + chat • Each group experienced a certain delay (0, 4, 6, 8, 10 s) • Registration of user keyboard inputs • Video recording of user activities on desktop Design implications Reduce the delay by the choice of the architecture and synchronisation algorithms • Make users aware of existing delays such that they can compensate for the delay by coordination strategies Analyse real collaboration traces to understand collaboration patterns and behavior [NI18]

op 1 =ins(7,r)

	Site 2
	concurency contrl
	concurrency contorl

concurency contrl

Site 1

op 2 =ins(17,o) concurrency control op 2 =ins(17,o) op 1 =ins(7,r) concurrency control op 2 =ins(18,o)

	concurrency contrl	concurency control

op 1 op 2 op' 2 op' 1

	Operational transformation
	Correctness [EG89]
	(TP1) op 1 ∘ T(op 2 , op 1) ≣ op 2 ∘ T(op 1 ,op 2) (TP2) T(op 3 , op 1 ∘ T(op 2 , op 1))= T(op 3 , op 2 ∘ T(op 1 ,op 2))
	Site 1 Site 1	Site 2 Site 2	T(op 2 : operation, op 1 : operation) = op' 2
			• op 1 and op 2 concurrent, defined on a state S
			• op' 2 same effects as op 2 , defined on S.op 1

• Operations:

• ins(p, c)

• del(p)

T(ins(p1,c1), ins(p2,c2)) :if (p1<p2) return ins(p1,c1) else return ins(p1+1,c1) endif

op 1 op 2 op' 2 op 3 Site 3 op' 3 op'' 3 op' 1

	Operational transformation (OT)
	Existing approaches
	• Two main families:
	• Transformation functions satisfying both TP1 and
	TP2: SOCT2 [SCF97] + TTF [OUMI06]
	• Control algorithms avoiding (needs of) TP2: SOCT4
	[VCFS00], Jupiter [NCDL95]

Delays in MUTE [NEOIC17] https://coedit.re/

Delays in GoogleDocs [DI16]

Research issues

How to maintain consistency of different copies in the face of concurrent modifications? How to evaluate the design of collaborative systems and approaches? How to secure collaboration data?