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Impact of dissipation on the energy spectrum of experimental turbulence of gravity
surface waves
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Sommeria, Thomas Valran, Samuel Viboud, Nicolas Mordant1, ∗
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Université Grenoble Alpes, CNRS, Grenoble-INP, F-38000 Grenoble, France

We discuss the impact of dissipation on the development of the energy spectrum in wave turbu-
lence of gravity surface waves with emphasis on the effect of surface contamination. We performed
experiments in the Coriolis facility which is a 13-m diameter wave tank. We took care of cleaning
surface contamination as well as possible considering that the surface of water exceeds 100 m2. We
observe that for the cleanest condition the frequency energy spectrum shows a power law decay
extending up to the gravity capillary crossover (14 Hz) with a spectral exponent that is increasing
with the forcing strength and decaying with surface contamination. Although slightly higher than
reported previously in the literature, the exponent for the cleanest water remains significantly below
the prediction from the Weak Turbulence Theory. By discussing length and time scales, we show
that weak turbulence cannot be expected at frequencies above 3 Hz. We observe with a stereoscopic
reconstruction technique that the increase with the forcing strength of energy spectrum beyond 3 Hz
is mostly due to the formation and strenghtening of bound waves.
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The effect of an oil film spread on the sea to calm the waves has been reported since Antiquity. This phenomenon
is used in practice to detect remotely oil spills by radar probing the roughness of the sea surface [1]. Experiments
show that the maximum damping occurs usually for frequencies between 1 and 10 Hz (i.e. for wavelengths between
1 cm to 1 m) [2–4]. In the laboratory, the dedicated wave tanks are of typical size equal to a few times 10 m. In order
to fit enough wavelengths in the tank to observe significant phenomena, the typical excitation of waves occurs most
often at wavelengths of the order of 1 m (about 1 Hz for deep water waves) or slightly larger. In the wave turbulence
framework, energy is expected to cascade in wavelength space from forcing scales to small dissipative scales [5–7].
It means that the range of wavelengths over which the cascade occurs is precisely the one in which the damping by
surface contamination is supposed to be the most efficient. This damping is most likely impacting significantly the
nonlinear cascade and it maybe one of the reasons that explain the discrepancy between laboratory observations and
theoretical predictions from the weak turbulence theory [8, 9]. Indeed considering the surface of wave tanks covering
several hundreds square meter, it is very challenging to achieve a perfect control of the quality of the water surface, so
that surface contamination is hard to avoid. Dissipation is known to cause a steepening of turbulent wave elevation
spectra as was reported for elastic waves in a thin plate [10, 11] and for capillary-gravity waves [12, 13].

Here we report experiments dedicated to observe the impact of surface contamination on wave turbulence of surface
gravity-capillary waves. We also discuss more generally the impact of dissipation of the development of the energy
cascade due to wave turbulence of gravity surface waves.

I. WAVE DAMPING BY MOLECULAR FILMS AT THE SURFACE OF WATER

The physical mechanism hidden behind this spectacular phenomenon is the modification of the tangential stress
boundary condition at the air/water interface. For a perfectly clean interface, the tangential stress should vanish
due to the much lower density of air. When a monomolecular film is present at the interface, the tangential stress
does not vanish anymore due to concentration gradients resulting from the elongation or compression of the film. In
the presence of a film, the boundary layer can sustain longitudinal waves (referred to as Marangoni waves) due to
the viscoelastic properties of the film [4, 14, 15]. The consequence of the modification of the boundary condition is
the appearance of strong velocity gradients in the boundary layer which are maximum when the Marangoni waves
are resonant with the gravity-capillary waves. This resonance leads to a much stronger dissipation that the one of a
perfectly clean surface. Following Alpers & Hühnerfuss [4], let us write the wave vector as κ = k + i∆. κ is complex
due to the attenuation (k and ∆ are real numbers). For a perfectly clean surface, the damping coefficient ∆0 is equal
to

∆0 =
4k2ηω

ρg + 3γk2
, (1)

where η is the dynamic viscosity, ρ is the density of the fluid, γ is the surface tension of pure water, g is the
acceleration of gravity and ω is the angular temporal frequency. Alpers & Hühnerfuss reports the calculation of the
extra dissipation factor y(ω) = ∆

∆0
due to the surface film:

y =
1 +X(cos θ − sin θ) +XY − Y sin θ

1 + 2X(cos θ − sin θ) + 2X2
(2)

X =
|E|k2

(2ρηω3)1/2
, Y =

|E|k
4ωη

(3)

where the complex dilational modulus of the film is E = |E|e−iθ (see fig. 1 for an example). Alpers & Hühnerfuss
investigated the variation of y for various contaminants and they observed typically that the peak of the resonance
occurs at frequencies between 3 and 7 Hz and that the maximum overdamping reaches easily a factor 10 or even
higher. This frequency range corresponds to wavelengths between 4 and 20 centimeters. At lower frequencies, for
these surfactants, y goes back to one at about 1 Hz (i.e. for metric wavelengths). The existence of the resonance
was confirmed experimentally by Cini & Lombardini [3]. The variation of interfacial surfactant concentration due
to the interaction of surface waves with the surfactant layer was directly observed by Strickland et al. [17]. Note
that dissipation occurs also through boundary layers at the bottom and at the vertical walls of the tank [18]. This
contribution is expected to be significant for large wavelength and to be independent of the surface contamination.

II. THE ISSUE OF SPECTRA IN EXPERIMENTAL WAVE TURBULENCE

The weak turbulence theory (WTT) is aimed at describing the statistical properties of a wave assembly, notably in
the out of equilibrium case in which waves are forced at relatively large scale and dissipated at the smallest scales [5–
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Figure 1. Additional dissipation factor y(f) as a function of frequency using Przadka et al. parameters in equation (2) for a
commercial paint pigment [16]. A maximum is observed at about 4 Hz with a peak value close to 15.

7, 19]. It is based on the hypothesis of weak nonlinearity such that a scale separation exists between the period T
of the wave and TNL the time scale of the slow evolution of the wave energy due to the nonlinear coupling with the
ensemble of all the other waves. TNL can be seen as the timescale of the correlation of the wave amplitude modulation
(see [20]). Under this hypothesis, a multiscale analysis can be developed that predicts the occurrence of an energy
cascade. For waves propagating on a 2D surface, the energy cascade is direct i.e. it transfers energy to small scales.
The WTT also provides estimates of the surface deformation spectrum Eη(k) in either gravity or capillary regimes:

Eη(k) ∝ g1/2P 1/3k−5/2 (gravity waves), (4)

Eη(k) ∝ γ1/4P 1/2k−7/4 (capillary waves), (5)

where g is the gravity acceleration and P is the energy flux in the cascade. Using the dispersion relation

ω2
LDR = gk +

γ

ρ
k3 (6)

at either small or large k one can translate the k spectra prediction into frequency spectra as

Eη(ω) ∝ gP 1/3ω−4 (gravity waves), (7)

Eη(ω) ∝
(
γ
ρ

)1/6

P 1/2ω−17/6 (capillary waves). (8)

Concerning gravity waves, some field measurements seem compatible with the theoretical prediction [21–25] but
the natural conditions may not be matched to the theoretical hypotheses notably that of stationarity and isotropy.
Several experiments have been aimed at confronting these predictions to well controlled experiments in the laboratory
notably in the last decade [9, 26–28]. The measured spectra “look” turbulent i.e. they show a wide range of excited
scales down the forcing scale but the spectral exponent fitted to the data are significantly lower than the theoretical
prediction [9, 27, 28] both for Eη(k) and Eη(ω). An example is shown in fig. 2 which is a compilation of exponents
from Aubourg et al. [28] and Deike et al. [9] as a function of the wave steepness ε. ε is defined as ε = 2kpση where
kp is the wavenumber of the main peak of the spectrum and ση is the standard deviation of the surface height. This
definition is quite usual in oceanography and has been shown in [30] to be indeed a good estimate of the slopes of
the water surface. In the data from Aubourg [28], two sets of exponents are visible. In red, the data correspond to
a strongly contaminated water surface. The blue set of exponents corresponds to a case for which the surface was
cleaned up to some extent by using a skimmer. The impact of surface contamination is very strong: for instance for a
typical steepness of 0.1, the exponent is reduced by more than 2 between the filtered case and the cleaner case. Note
that the distinction between the two sets reduces when the steepness of the wave (i.e. the nonlinearity) is increased.
For very steep waves, the exponent reaches the theoretical value of −4 but in a strongly nonlinear regime at odds with
the range of validity of the theoretical prediction for weak turbulence. Nazarenko et al. [8] report that it neither fits
with the k and ω spectra proposed by Philips [31] or Kuznetsov [32] for singular or overturning waves respectively.
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Figure 2. Measured spectral exponent α of the temporal spectrum as function of the typical steepness of the waves ε (changed
by tuning the magnitude of the forcing and dependent as well on the surface contamination). Dark triangles are previous
measurements reported by Deike et al. [9]. The blue and red squares are measurements by Aubourg [28, 30] with and without
filtration. The single purple point is an in-situ measurement of gravity waves in the Black sea [21]. Our present data for the
cleanest case are the two cyan dots.

III. EXPERIMENTS IN THE CORIOLIS FACILITY

A. Experimental setup

(a) (b)

Figure 3. (a) Global schematics of the setup in the Coriolis facility (seen from above). The tank is 13m in diameter and the
water is 0.9 m deep. The position of the two wavemakers is shown (black ovals) and that of the 10 capacitive probes is shown as
red dots. The field of view of the stereoscopic reconstruction (see section V) is the green rectangle at the center. (b) schematics
of a wavewaker. It is a wedge wavemaker (horizontal size 2m× 1m at the top) set into vertical oscillation by an eccentric cam.
The off-center distance is 20 mm in the two experiments reported here. The rotation frequency is changed randomly in a given
interval 0.585± 0.15 Hz and 0.78± 0.15 Hz for the two experiments.

The setup is very similar to that of Aubourg et al. (fig. 3)[28, 30]. The wave tank is circular with a diameter equal
to 13 m and the water depth is h = 0.9 m. The water surface is maintained as clean a possible by pumping the surface
through a skimmer located near the wall and by flowing the pumped water through an active carbon filter. The
water is then reinjected near the wall at a location diametrically opposite to the skimmer. Wave are generated by two
wedge wavemakers oscillating vertically at a randomly modulated frequency (fig. 3(b)). The wavemakers have been
upgraded compared to Aubourg et al.. They keep their wedge geometry but with round ends so that to have a less
directional generation. Two conditions of forcing were studied: a center frequency f0 either equal to 0.585± 0.15 Hz
(called “weak” case, steepness ε = 0.11) or 0.78 ± 0.15 Hz (called “strong” case, ε = 0.16) with the same amplitude
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(2 cm) of vertical oscillation of the wavemaker. The filtration is not operating during the experiments so that it
does not induce a spurious current in the tank. The surface elevation is recorded by using 10 capacitive wave gauges
(their positions are shown in fig. 3). Surface tension is known to be very sensitive to surface contamination. Thus we
measure surface tension by sampling the water surface regularly before and after the record once waves are damped.
For reasons of convenience, the sample is taken at the periphery of the tank. The measured surface tension displays
some variability due to sample collection and also due to a possible inhomogeneity of the surface contamination when
waves are present. Indeed a weak but visible surface current is induced by the waves that can advect patches of
surface films. Nevertheless our protocol allowed us to achieve a reasonable repeatability of the measurement. We
estimate the confidence of the measurement close to ±5mN/m. After several days of filtration the measured surface
tension was 74 mN/m which was the value measured from fresh tap water at the same temperature. For clean water
the repeatability of the measurement was actually significantly better (±2mN/m).

B. Frequency spectra
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Figure 4. Spectra after several days of almost continuous filtration. Top: “strong” case, bottom: “weak” case. The spectra
have been averaged over several capacitive probes. The dashed lines correspond to a decay 1/f5.2 (top) and 1/f6 (bottom).
The gravity-capillarity crossover occurs at 14Hz which corresponds to the observed change of slope of the spectrum. The signal
reaches the noise level at about 100 Hz.

Figure 4 shows typical spectra obtained after several days of almost continuous filtration of the surface. The weakest
case displays a spectral exponent close to −6 and the strongest case an exponent close to −5. Although the duration
of filtration was much longer than in Aubourg et al. [28, 30] the spectral exponents do not exceed the upper limit of
the previous data (fig. 2).

In a first experiment, after a long cleaning of the surface, we stop the filtration and record the wave elevation over
several hours (each record being one hour long). The evolution of the spectra with time is shown in fig. 5. In fig. 5(b)
the spectra have been compensated by f6 in order to highlight the change of the slope. The spectra exponent is
seen to decay continuously with time from −6 to −6.5. At the same time the surface tension decayed monotonously
from 74 mN/m to 57 mN/m. The final value of the surface tension is typical of that observed for water exposed
to air [16]. The spectrum of the wave elevation is thus sensitive to the surface condition and is a good indicator of
surface contamination for a given forcing condition.

In order to highlight the variation of attenuation as a function of frequency, we take the initial spectrum Eη0 (f)
as a reference and plot the ratio of the spectra divided by this initial value (Fig. 6). The frequencies up to about
2 Hz are unaffected by the extra damping but higher frequencies are strongly diminished. A maximum damping
efficiency is observed at about 6.5 Hz that can reach 60% for the latest spectra. The black curve is the variation
of 1/y(f) for oleic acid with parameters taken from Alpers et al. [4] that happens to have a maximum at the same
frequency. This is mostly a coincidence as no oleic acid has been added to the water surface. The physico-chemical
nature of the contamination is unknown as the contamination comes from dust falling on the surface and solvants
from paint and plastic parts immersed in the water. Nevertheless the shape of y(f) for oleic acid is quite typical
and this comparison supports the fact that the increasing damping of our spectra comes from surface contamination.
The shape of the normalized spectra is actually qualitatively similar to that of 1/y(f) for oleic acid. Nevertheless the
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Figure 5. Evolution of the wave spectrum versus time for weakest forcing. Each curve corresponds to an average over the 10
probes and a time average over one hour of continuous recording (7 successive records from red to blue). (a) Wave elevation
spectrum Eη(f). (b) compensated spectrum f6Eη(f) in the low frequency range. The dashed line is ∝ f−0.5.
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Figure 6. Temporal evolution of the wave spectrum for weak forcing relative to the initial spectrum (same colors as Fig. 5).
This representation highlights the deficit of energy in the spectrum as the surface becomes contaminated. The solid black curve
represents the extra dissipation factor 1/y(f) for oleic acid (taken from Alpers et al. [4]). For this dataset the forcing occurs at
a central frequency of 0.585 Hz.

impact of surface damping is more complex than just filtering as it affects the nonlinear cascade that provides energy
to waves. Damping at a given frequency must impact the waves at higher frequencies as the flux that feeds them
must be reduced. Thus, in place of having a constant energy flux, the flux is progressively reduced as the frequency
increases.

Figure 7 shows a collection of spectra for either weak or strong forcing in a stationary configuration. Each curve
corresponds to a one hour record of the surface elevation. The typical experimental sequence is 1 hour-long filtration,
then two successive 1 hour-long records then filtration again. After a day of recording the filtration is then operated
overnight and the sequence restarts. We see that a quite strong variability of the spectra of the weak case is seen in
spite of our efforts to cleanup the surface. By contrast, the variability of the spectra is much reduced in the strong case
(although the cleaning sequence is the same) which is much less sensitive to the surface condition. This is remisniscent
of the dispersion of the exponents in fig. 2 which is much more pronounced for low steepness than for the strongest
ones.



7

(a)

10 0 10 1

f [Hz]

10 -3

10 -2

E
η
(f

) 
[m

2
/H

z
]

(b)

10 0 10 1

f [Hz]

10 -4

10 -3

E
η
(f

) 
[m

2
/H

z
]

Figure 7. Variability of spectra measured in similar conditions over time. (a) & (b) weak and strong forcing respectively. In
(a) we show 28 spectra (averaged over the 10 probes) corresponding each to a 1 hour long record. In (b) we show 19 similar

spectra. The spectra have been compensated by f6 and f5 respectively. The dashed line shows a f−1/2 decay. The variability
is less at stronger forcing.

IV. DISCUSSION OF TIME SCALES

The core of the Weak Turbulence Theory is the hypothesis of scale separation between the linear period of the wave
T and the nonlinear time scale TNL over which the non linearity operates. In the theory the dissipation is supposed
to occur only at vanishing scales so that the dynamics is conservative over most scales leading for gravity waves to
the theoretical prediction:

E(ω) = C
gP 1/3

ω4
(9)

where C is a constant, g is the gravity acceleration and P is the energy flux [6].
In actual physical systems, viscosity operates at any scale but is most efficient at the smallest scales. One may

expect the predictions of the Weak Turbulence theory to be valid if an additional scale separation exists between TNL
and the dissipative time scale Td so that

T � TNL � Td (10)

at least in an inertial range of scales.
If one assumes that the dissipative time is much larger than the nonlinear time scale, the energy flux is progressively

but only slightly depleted as the cascade proceeds to small scales. In that case the overall structure of the KZ spectrum
should be preserved so that the energy spectrum may keep the form:

E(ω) = C
gP (ω)1/3

ω4
(11)

where the energy flux P (ω) is slowly decaying with ω. If the nonlinear coupling is very local in scale then the kinetic
equation can be written in frequency space (see Ref. [6] for instance) and for frequencies higher than that of the
forcing as

∂E(ω)

∂t
= −∂P

∂ω
− 2γ(ω)E(ω) , (12)

with the inclusion of dissipation. ν = η
ρ is the kinematic viscosity and γ(ω) = 2νk2 = 2νω4/g2 is the dissipation rate.

With the above shape of the energy spectrum, this equation can be rewritten in the stationary case as

∂P

∂ω
= −4νCP 1/3/g (13)

The flux is thus obviously decaying with ω. This equation can be integrated as

P (ω) =

(
P (ωf )2/3 − 8νC

3g
(ω − ωf )

)3/2

(14)
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with ωf being the frequency of the energy injection (supposed to be narrow band around ωf ). Using Eqs. (11) and
(14), the spectrum is then

E(ω) = C
g

ω4

(
P (ωf )2/3 − 8νC

3g
(ω − ωf )

)1/2

. (15)

The spectrum is thus expected to be slightly steeper than the KZ prediction in the limit Td � TNL. Unfortunately
we cannot test directly this prediction as P is unknown in our experiments as it is extremely difficult to measure it.
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Figure 8. (a)Ratio ∆/k which provides the dissipation length scale in terms of wavelengths. Blue: case of perfectly clean
surface. Red: case of contaminated surface with oleic acid. Black: y(f) for oleic acid (b) Timescale ratio of the dissipation
scale Td over the period of the wave T . Same color code.

Figure 8(a) shows the dissipative length scale expressed in terms of the wavelength i.e. the ratio k/∆. In the
frequency interval [1, 10] Hz, for a perfectly clean surface, the ratio decays from 105 wavelengths down to about 400.
In terms of time scales, the imaginary part of the angular frequency is 2νk2 (∆0 is actually computed by multiplying
this value by the group velocity [4]). Figure 8(b) shows the ratio Td/T = ω/2νk2. The variation of the time scale
ratio takes naturally similar values to that of length scales. When the surface contamination is taken into account,
the scale ratio is unchanged up to 2 Hz but may decay by more than one order of magnitude at the peak of y(f) (the
actual value depends on the pollutant) and falls below 100.

In the framework of the WTT, due to the 4-wave interactions of gravity waves, the ratio TNL/T is expected to
scale as ε−4 i.e. should be of order 10000 for ε = 0.1 [33]. This can be achieved for frequencies below 2 Hz but not for
higher frequencies even for a perfectly clean surface. For instance at 5 Hz (λ ≈ 7 cm), the waves can propagate only
over 1000 periods (with clear water) before being damped and over less than 100 periods for contaminated water.
Thus one expects a very strong impact of dissipation over most frequencies even for very clean water and thus even
the corrected spectrum (15) should not be valid.

The ratio T/TNL actually depends on the frequency. In the gravity range and in the kinetic regime, if the wave
spectrum follows the Kolmogorov-Zakharov spectrum, then following Newell et al. ([33], p. 544) one should have:

T

TNL
≈ 1

ωnk

∂nk
∂t

= CP 2/3k/g (16)

where nk is the wave action spectrum. ∂nk

∂t is estimated with the kinetic equation (see [33] for details). The ratio T
Td

should be in the gravity range

T

Td
=

4πη

ρg1/2
k3/2 (17)

so that the ratio TNL/Td is

TNL
Td

=
4πηg1/2

CρP 2/3
k1/2 (18)
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This ratio must remain much smaller than one but is increasing a k1/2 so that at a given value of the nonlinearity
the second inequality maybe broken at a critical wavenumber or frequency

kc =

(
CρP 2/3

4πηg1/2

)2

(19)

ωc =
Cρg1/2P 2/3

4πη
. (20)

P 2/3 is actually proportional to ε4 so the critical frequency is decaying very fast when ε is reduced (kc ∝ ε8, ωc ∝ ε4)
and can be very low for weak waves. Even for our cleanest conditions the spectral exponent is strongly reduced as
compared to the KZ prediction. Furthermore it should be very sensitive to a slight contamination of the water surface
that further reduces the dissipative time scale. These observations suggest that the frequencies of the waves in our
experiment are beyond the critical frequency. The above scaling suggests that one should recover the KZ spectrum
when increasing the nonlinearity. This appears consistent with the observation of spectral exponent becoming closer
to the KZ prediction at larger steepness (Fig. 2). The issue is then that the steepness may become so large that the
hypothesis of small nonlinearity is broken and the waves are whitecapping. In this case one has T ∼ TNL and the
theory is not established in this limit.

At frequencies above the gravity-capillarity crossover the issue of time scale separation will be present as well. The
pure capillary cascade is then a 3-wave process so that, in the kinetic regime and for the KZ spectrum,

T

TNL
≈ 1

ωnk

∂nk
∂t
∝ P 1/2k−3/4 (21)

and

TNL
Td
∝ k5/4P−1/2 (22)

Although the ratio T/TNL is getting smaller with k (the cascade is getting less nonlinear as it proceeds), the ratio
TNL/Td is increasing faster with k. The critical wavenumber is thus

kc ∝ P 2/5 (23)

P 1/2 is scaling as ε2 [33] so that kc ∝ ε8/5. Thus, as for the case of gravity waves, kc is also decaying (although not
as fast) when the nonlinearity is decreased.

When the nonlinear time scale estimated from the kinetic equation (equations (16) & (21)) becomes comparable
to Td, the hypotheses underlying the computation of the collision term are not valid. Indeed, the obtention of the
collision term involves taking a limit of large times that cannot be operated anymore if there is no scale separation.
The frequency resonance condition results from the fact that only resonant waves can exchange a significant amount
of energy, by a cumulative process, as ε goes to zero . Here we see that at weak enough a nonlinearity, the energy
exchange can operate at most over a time Td which strongly reduces the efficiency of the energy transfers and thus
should steepen the spectra. A distinct statistical theory must be developed. Based on the still existing scale separation
T/Td � 1 a multiscale development may be relevant. For the kinetic theory to be valid one must have T � TNL � Td
which is possible in laboratories only with very large flumes and most likely over a very narrow range of frequencies
up to a few Hz (even with a clean water surface). Note that another limit exists which is the size of the wave tank
which should be much larger than the wavelength which is not the case for meter wavelengths. We take advantage of
reflexions on the walls to increase the effective propagation length at the expense of the presence of discrete modes
(see [20] and references therein for a discussion of finite size effects in another system supporting wave turbulence).

Another observation in fig. 6 is that the attenuation is not as strong for frequencies higher than 10 Hz i.e. for
capillary waves. If the cascade would be strongly local in wavenumber space, one would expect that the attenuation
is a decaying function of the scale which is not what is observed. A non local nonlinear coupling mechanism has
been reported by Aubourg & Mordant [34] at the gravity-capillary crossover. This crossover occurs at f = 13.5 Hz
(λ = 1.7 cm). This coupling has been observed to be quite strong because it involves only 3 waves. It is also
nonlocal and couples short gravity waves (1 − 2 Hz) and capillary waves. The increase of the observed attenuation
at frequencies larger that 7 Hz is most likely due to this mechanism that pumps energy directly from gravity waves.
Note that being a 3-wave process, the nonlinear time of this mechanism is expected to be much shorter than that of
the 4-wave process (scaling as ε2 rather than ε4). Thus the 3-wave crossover coupling is likely to remain efficient even
for contaminated water. Actually the next section reports space and time resolved measurements that show a very
different explanation.
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It must be noted also that another feature is operating in laboratory experiments which is the effect of the finite size
of the flume. As mentioned in [8, 26], in finite basins, the linear modes are discrete. In order for a truly kinetic regime
to develop (i.e. with continuous frequencies and wavenumbers) the nonlinear spectral widening must compensate for
the mode separation. Thus the nonlinearity must be large enough, typically ε ≥ 1/kpL where L is the size of the
flume and kp is the value of the wavenumber at the peak of the spectrum. In our case the values are similar to that of
refs. [8, 26] i.e. ε ≥ 0.4. We obviously do not reach such high values of the nonlinearity and this explains most likely
that the spectral exponent does not reach the kinetic prediction as predicted in [35] even in the cleanest conditions.

V. k–ω SPECTRUM
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Figure 9. Variation of spectra when floating particles are present or not. Blue/Red weak case, without/with particles resp.
Black/Green strong forcing without/with particles resp. Insert: the spectra with particles have been normalized by the spectra
without particles.

In order to check in more details the structure of the wave field, we use a stereoscopic technique to obtain a fully
resolved (in space and time) measurement of the water surface (see [30, 36] for information on the technique). We
seed the surface of water with small (700 µm) buoyant particles to make the surface visible. The first question is the
impact of the particles on the wave statistics. Strickland et al. [17] suggested that a mechanism similar to Marangoni
damping could be operating when particles are floating at the surface. Figure 9 displays the comparison between
surface elevation spectra obtained with clean water and with floating particles (at a surface concentration about 10
particles/cm2). At the weakest forcing the spectrum seems actually slightly amplified. By contrast it is very weakly
damped at the strongest forcing. This damping is weaker than that due to surface contamination and occurs at higher
frequencies. Thus the mechanism of surface alteration due to floating particles seems quite distinct to that of chemical
surface contamination. The weakness of the effect of adding the particles makes us confident that the particles do not
alter the wave dynamics for scales much larger than the particle size.

The space-time spectrum Eη(k, ω) is shown in Fig. 10(a). The spectrum is obtained by performing a Fourier
transform in both space and time (over time window of duration 125 s) providing η(k, ω). The squared modulus
of the Fourier transform is averaged over succesive time windows (Welch method) and integrated over directions of
the wavevector k to give Eη(k, ω). The main energy component is a continuous line of energy on the dispersion
relation that extends up to 4 Hz as expected for weak turbulence. Secondary energy lines are also visible on each
side of the dispersion relation (highlighted by dashed lines) that correspond to so-called bound waves, which are not
freely propagating waves following the quasilinear dispersion relation. They result from a triadic interaction between
freely propagating waves. In our case, the observed lines can be obtained by assuming that the forcing peak at
(kf , ωf ) is interacting with all free waves on the dispersion relation propagating in the same direction. The equation

of the first line on the right of the dispersion relation in Fig. 10(a) is thus: ω(1) = ωLDR(k − k0) + ω0 where ω(k)
is the dispersion relation (6). The line on the left follows ω(−1) = ωLDR(k + k0) − ω0. The lines further from the
dispersion relation can be obtained assuming a similar interaction with successive harmonics of the forcing peak:
ω(±n) = ωLDR(k ∓ nk0) ± nω0. It is worth noting that at frequencies higher than 4 Hz, almost all the energy lies
in the bound waves. Fig. 10(b) shows the construction of the full frequency spectrum when adding progressively
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Figure 10. (a) k − ω spectrum Eη(k, ω) for ε = 0.11 (“weak” case). The spectrum has been normalized by its maximum value
and is displayed in log10 scale. The red line is the linear dispersion relation (6). Dotted lines correspond to bound waves made
from successive harmonics of the forcing peak and waves on the dispersion relation. (b) frequency spectrum constructed by

adding successively the spectral contributions Eηn of the bound waves following ω(±n) = ωLDR(k ∓ nk0)± nω0 with n > 0 (see
text). Eη(ω) is the full spectrum, EηLDR(ω) is the contribution on the linear dispersion relation and Eηn(ω) is the contribution
of the n-th bound waves as described in the text. The red dashed line is the spectrum obtained from the local probes. The
divergence of the black and dashed red curves at about 7 Hz on the black line is due to the noise level of the stereoscopic
measurement. (c) similar construction for the wavenumber spectrum Eη(k).

the energy lying on the bound waves (for n > 0). It confirms that the contribution to the spectrum at frequencies
higher than 4 Hz comes from those bound waves and not from an extension of the weakly non linear cascade to higher
frequencies. The wave cascade seems to stop at 4 Hz in agreement with the above discussion on time scales. Fig. 10(c)
shows a similar construction for the wavenumber spectrum when adding the bound waves (with n < 0). It can be seen
that the k-spectrum is much less sensitive to the bound waves than the frequency spectrum. This is due to the fact
that the extension in k of the bound waves is about the same than the main energy line lying on the linear dispersion
relation and the energy of the bound waves remains smaller than that of the dispersion relation.

In summary, the development of the weak energy cascade along the dispersion relation is strongly restricted by the
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viscous cutoff and even more restricted if the surface is contaminated. The extension of the frequency spectrum at
higher frequencies observed for stronger forcing intensities is actually due to development of bound waves. In order to
observe a weak turbulent cascade of gravity waves, one has to use much wider wave tanks in very large scale facilities
in which a forcing could be achieved at lower frequency.
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[31] O.M. Phillips, “The equilibrium range in the spectrum of wind generated waves,” Journal Of Fluid Mechanics 4, 426–434
(1958).

[32] E.A. Kuznetsov, “Turbulence spectra generated by singularities,” JETP Lett. 80, 83–89 (2004).
[33] A.C. Newell, S.V. Nazarenko, and L. Biven, “Wave turbulence and intermittency,” Physica D-Nonlinear Phenomena 152,

520–550 (2001).
[34] Quentin Aubourg and N. Mordant, “Nonlocal resonances in weak turbulence of gravity-capillary waves,” Phys. Rev. Lett.

114, 1–5 (2015).
[35] Sergey Nazarenko, “Sandpile behaviour in discrete water-wave turbulence,” J. Stat. Mech.: Theory and Experiment 02002,

1–8 (2013), 0510054 [nlin].
[36] Q. Aubourg, J. Sommeria, S. Viboud, and N. Mordant, “Combined stereoscopic wave mapping and particle image

velocimetry,” submitted to Exp. Fluids (2017).


